Anionics

The Procedure is based on Epton’s method, also known as the two-phase titration where the anionic surfactant is titrated with a cationic surfactant (1 mol cationic = 1 mol anionic) in the presence of methylene blue as indicator.

Reagents

- Methylene Blue
- Sodium Sulfate
- Fumic Sulfuric Acid
- Chloroform
- Deionized Water

Equipment (See Figure 3)

- 25-mL graduated glass cylinder with stopper
- 10-mL graduated buret; scale is read to the nearest 0.01 mL
- Double Buret Holder

Methylene Blue Indicator: 1 liter

1. Transfer to 1-liter volumetric flask with a magnetic stirring bar inside
 a. 50 grams of sodium sulfate
 b. 0.03 grams of Methylene Blue
2. Add about 600-mL of deionize water
3. Mix thoroughly on a magnetic plate located inside the hood
4. Slowly, while mixing contents, add 6-mL of Fumic Sulfuric acid

Hint: a very clean 10-mL pipette is filled, directly from bottle, to the 6-mL mark using a pipette filler that lets evacuate, fill pipette, and dispense liquid easily. (The use of 1,5, or 3-mL Ostwald-Folin pipettes is recommended)

5. Sliding a magnet outside flask wall, lift magnetic-stirring bar inside flask to its top and fill to 1-liter mark with deionize water. Release stirring bar and mix well
Titrant

Prepare a solution of cationic surfactant; e.g., Hyamine, TEGO, of molar equivalence of "unknown" sample to be determined.

Hint: the operator should guess-estimate the surfactant concentration in test sample. For accuracy, the volume of titrant dispensed should not be larger than 10-mL; thus titrant molarity should be adjusted accordingly to “unknown” sample molarity

Titrant Calibration

Prepare a standard solution with a pure, standard, Sodium Dodecyl Sulfate (SDS). The SDS molarity is prepared to theoretically match molarity of cationic solution to be used for titrating unknown sample, which concentration has been guest-estimated.

Determine Molarity of cationic titrant according to **Titration Procedures**

Sample Preparation

1. Weight at least three aliquots of different volumes into clean, dried 25-mL graduated cylinders labeled 1 to 3 with water resistant markers.

 Optional Hints for speeding determination
 1- Gauge a volume, from micro-liters to milliliters, using pipettes. For precise measure, discharge volume measured into a 25-mL cylinder located on an accurate balance. This method will eliminate steps of sample dilutions that increase experimental errors; If sample is of (a) high-surfactant concentration, weigh the equivalent of µL (b) low-surfactant concentration, weight the equivalent of mL.

 2- Write value of weighted volume on cylinder immediately after pulling away from balance. Before titration transfer sample number and its value to labnotebook

 3- Before cleaning cylinders with water for next titration, whip markings with a paper towel slightly soaked with iso-propyl alcohol (IPA)

2. Add to sample in 25-mL cylinder
 3-mL of Chloroform
 5-mL of Methylene Blue indicator

3. Insert stopper and mix cylinder contents: See 0% image
4. Follow directions on **Titration Procedure**
Titration Procedure

Figure 1 is to illustrate steps for finding same-color end point. After each addition of cationic-surfactant solution, contents are shaken and let equilibrate before further addition. The titration should be conducted to for following more or less images disclosed.

Percentage of completion using Hyamine volume added. [Hyamine]=0.001 M

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>54%</td>
<td></td>
</tr>
<tr>
<td>81%</td>
<td></td>
</tr>
<tr>
<td>94.5%</td>
<td></td>
</tr>
<tr>
<td>101.35%</td>
<td></td>
</tr>
<tr>
<td>108%</td>
<td></td>
</tr>
</tbody>
</table>

Two Phase Epton’s Titration
End-Point: equal color

Figure 1. Pictures to illustrate 2-Phase titration
Test Case Example

Find the concentration of a nominal 0.5% surfactant concentration where

- Molecular Weight = 450
- Hyamine Molarity (after SDS standardization) = 0.0095

Procedure

- Titrate 3 different aliquot (1, 1.5, 2.0 gram)
- Plot values
- Calculate concentration by

 \[
 \% \text{ Anionic Surfactant} = \text{Slope} \times \text{Titrant concentration (molar)} \times \frac{\text{MW}}{10}
 \]

 \[
 \% \text{ Anionic Surfactant} = 1.0197 \times 0.0095 \times 450 / 10
 \]

 \[
 = 0.434
 \]

Figure 2. Example of data handling
Equipment Images

Double Buret Holder for 10mL

Pipette Fillers

Graduated Cylinder with stopper

Figure 3: Images to illustrate Equipment
For fumic sulfuric acid use Ostwald-Folin pipettes (5 ml and 1 ml, or 3ml)

Note: Centrifuging may help to break emulsions, and will help to detect the end point.