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Abstract 
 

Predicting branches has increasingly become an area of interest due to its effect on the 

performance of processors. Various methods have been proposed to speculate the path of 

an instruction stream after a branch. One such scheme is issuing down the other path 

(the non-predicted path or the wrong path) as well as the predicted path when a branch 

is encountered.  This paper questions this technique and proposes to eliminate issuing the 

wrong path at all times.  In fact, issue the wrong path, but do so” intelligently”.  This 

technique may give birth to an approach that maximizes performance and is optimal.  We 

use selected benchmark programs from SPEC2000.   

 
1.  Introduction 
 
Branch prediction is used to solve the problems of limited fetches that are imposed by 

control hazards in order to exploit instruction level parallelism (ILP).  Clearly, ILP is the 

key ingredient for processors to mask execution latency.  The goal is to have efficient 

branch prediction techniques that result in high prediction rates and in turn have better 

performance and thus resulting in more instructions being committed per cycle (IPC).  

This paper focuses on implementing a scheme that issues the wrong path of a branch 

“intelligently” based on parameters that represent the prediction of that particular branch.  
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1.1 Paper Overview 
 
Section 2 covers our motivation and hypothesis of this paper.  The detail of the 

architecture is presented in section 3.  Section 4 describes the experimental methodology 

employed in our proposed scheme.  We analyze our experimental results in section 5 and 

draw our conclusions in section 6. 

 
 
2. Motivation and Hypothesis 
 
When executing the wrong path in conjunction with the predicted path, the execution 

units execute instructions that may or may not be used.  For example, in the case of 

correct prediction, the wrong path that has also been issued is simply not used.  On the 

other hand, in the case of incorrect prediction, the predicted path is invalidated and the 

wrong path that has already been issued is used.  This is done every time a branch is 

encountered and it is clearly beneficial in the event of a wrong prediction. The question 

that arises at this point is how good are branch predictors?  Today, branches are predicted 

with an accuracy that reaches the high 90 percentile [1].   And the motivation behind the 

question leads to another question; when braches are predicted with such good accuracy, 

then why execute the wrong path simultaneously with the predicted path for every branch 

prediction?  In fact, we hypothesize that the execution of the wrong path should only be 

done when the branch is mispredicted often and not when the branch is regularly 

predicted correctly.  This means that the functional units are not executing useless 

instructions that will invariably be flushed from the pipeline.   

On one hand, this scheme will work at its best when enough independent instructions are 

found that can be executed in parallel.  On the other hand, this scheme will also perform 
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well when the behavior of the branch is highly predictable, despite the lack of 

parallelism.  In this latter case, knowing the behavior of the branch is beneficial in 

deciding whether or not to issue the wrong path.  Figure 1 below shows a trace of the 

branch instruction BLEZ within a particular execution window.  This instruction has been 

extracted from other branch instructions to observe its behavior within the program.  A 1 

denotes correct prediction while a 0 stands for an incorrect prediction. 
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 BLEZ instruction. 
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Figure 1: Program trace of BLEZ 

 
 
 
3.  Architecture Details 
 
A bimodal branch predictor is employed to use various past instances of a branch 

behavior to predict the next instance.  The fields of the branch target buffer (BTB) in the 

baseline architecture include the branch address, branch opcode and the branch target 

address. Each branch address indexes the BTB for its corresponding target address.  An 



  4 

additional field in the BTB is now added that represents the branch threshold value of a 

particular branch (see figure 2 below).  This value is initialized to be 20 for each branch.  

In addition, we included confidence values in the predictor which contain the following 

information (the importance of each field is explained in the next paragraph): 

 
��Increment Value for each Correct Prediction (IVCP):  this value is set to be 1 

��Maximum Value of Branch Threshold (MVBT): 30 

��System Threshold Value:  28 is the optimum value determined via simulations 

��Prediction Penalty for a Wrong Prediction (PPWP):  this value, 4, is chosen to be 

greater than the difference between the maximum value and the system threshold 

 
When a branch address indexes the BTB, two pieces of information are output.  The first 

information is the branch target address and the second is the branch threshold value for 

that particular branch instance.  This branch threshold is compared against the system 

threshold value.  If the branch threshold value is greater than the system threshold value 

of 28, this means that the branch is predicted correctly most of the time.  In this case, the 

wrong path is not issued.  Conversely, if the branch threshold value is less than or equal 

to the system threshold value of 28, this means that the branch prediction is not very 

accurate and the wrong path is also fetched and issued.  We have tried using lower 

system threshold values but it was found from our simulations that these lower values 

lead to worse performance.  This is because we are now setting an easier constraint to be 

reached by the branch and in some cases the wrong path is not issued when it should have 

been.  Recall, in the baseline architecture, the wrong path is issued with every prediction 

despite the accuracy of the prediction. 
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The branch threshold value is updated on the resolution of the branch instruction.  If the 

prediction was found to be correct then the branch threshold is incremented by IVCP.  On 

a wrong prediction, the branch threshold value is decremented by PPWP.   
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4.  Experimental Methodology 
 
Simulations were run on three SPEC2000 reduced benchmarks namely, Equake, mcf and 

Parser.  Equake is a floating point program that does simulation of seismic wave 

propagation in large basins.  Mcf is an integer program that performs combinatorial 

optimization and single-depot vehicle scheduling while Parser, an integer program, does 

word processing and is a bit more parallel than Equake and Mcf.   
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Figure 2: BTB Entries 

Comparator 
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The baseline architecture was simulated with these three programs and the clock cycles 

per instruction on average (CPI), IPC and execution bandwidth was recorded.  The results 

are summarized in table 1 below.   The programs were then run on our modified 

architecture using two different sets of parameters.  The first set included 4 FPU adders, 4 

integer ALUs, 1 integer MULT/DIV unit and 1 FPU MULT/DIV unit.  The results 

obtained are summarized in table 2.  

 
Benchmark CPI IPC Exec BW 

Equake 0.7175 1.3938 1.5320 

Mcf 1.4201 0.7042 0.7672 

Parser 0.6121 1.6338 1.9959 

 
Table 1: Baseline architecture with first set of parameters 

                          
 
 
 
 
 
 
 

Table 2: Modified architecture with first set of parameters 
 

Equake suffered 0.11% degradation in IPC from the baseline architecture while Mcf 

degraded 0.24%.  Parser, in contrast, showed a 2.29% improvement in the instructions 

commited per cycle on average.   

The second set of parameters included 3 FPU adders, 3 integer ALUs, 1 integer 

MULT/DIV unit and 1 FPU MULT/DIV unit.  These results are shown in table 4 while 

the baseline architecture results with the same set of parameters are shown in table 3. 

 

Benchmark CPI IPC Exec BW 

Equake 0.7181 1.3927 1.4303 

Mcf 1.4250 0.7018 0.7466 

Parser 0.6036 1.6567 1.7259 
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Benchmark CPI IPC Exec BW 

Equake 0.7225 1.3840 1.5256 

Mcf 1.4174 0.7055 0.7700 

Parser 0.6228 1.6057 1.9657 

 
Table 3: Baseline architecture with second set of parameters 

               
 
 
 
 
 
 
 

 
Table 4: Modified architecture with second set of parameters 

 
With the second set of parameters, Equake’s degradation remained the same while Mcf’s 

degraded to 0.48% for IPC.  Parser performed slightly worse than before but still showed 

a 2.15% improvement.  

 
5.  Experimental Analysis 
 
Our results from both sets of parameters show that for programs having a little 

parallelism like Parser, improvements in IPC can be seen despite the number of 

functional units available.  At the same time the execution bandwidth decreased.  For 

Parser we observed up to 28% reduction in execution bandwidth, 10% for Equake and 

2% for Mcf. This means that useless instructions from the wrong path are not executed 

and are replaced by useful instructions.   

We feel our algorithm will work best with programs that are highly parallel because more 

instructions can be issued and executed in parallel.  Therefore, to some degree, our results 

prove our hypothesis; moreover, using our algorithm on highly parallel programs may 

Benchmark CPI IPC Exec BW 

Equake 0.7231 1.3829 1.4204 

Mcf 1.4271 0.7007 0.7450 

Parser 0.6146 1.6272 1.6877 
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additionally support our hypothesis.  We will run our algorithm using such programs and 

show results in future papers. 

 
6. Conclusions 
 
Issuing down the wrong path “intelligently”, on parallel programs, shows performance 

gain.  This can be seen with Parser despite it being not too highly parallel.  Further more, 

the complexity involved in always issuing and executing the wrong path, especially in the 

case of a correct prediction, is reduced.  

Our simulation results show execution bandwidth reduction for the programs.  This 

implies that usage of resources for useless instructions was reduced with a minute penalty 

of less than 0.5% degradation in IPC.    

The effect of the number of execution resources on one hand implies that the more 

resources available, the less the IPC degradation.  On the other hand, fewer resources 

available do not show dramatic performance degradations.  Therefore, this proves that 

useful instructions can be allocated with our scheme when the number of resources is 

increased.  However, we feel that the effect of fewer functional resources on IPC require 

the need for extra simulations.  Unfortunately, due to time constraints, these simulations 

could not be run. 

In conclusion, the degree of success of this scheme is highly depended on the amount of 

parallelism available in an application.  Even though Parser is not highly parallel, it still 

showed improvements, we can imagine how our algorithm will perform for programs that 

are even slightly more parallel which is the incentive for further future work on this topic.  

Finally, our algorithm can be modified to keep up with the changes in the increasing 

lengths of pipelines in today’s modern processors. 
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