DTntelligent wrong path issue: a
means of Improving performance

By
Chidiogo Madubike
Meghana Sardesal

Nmita Sarna

Introduction

ulation of instructions is crucial for modern superscalars

ch predictors provide accuracies of up to 96% and are key
ective speculation

ever we cannot rely solely on prediction because the latency
sprediction has a negative impact on performance

olve this problem, computer architects came up with the idea
ong path issue

To 1ssue or not to I1ssue?

ng path issue reduces the misprediction penalty

he other hand, useless wrong path instructions waste
essor resources and must invariably be flushed from the
line

ave to have enough resources to issue and execute 2 paths
nowing that one of them will be invalidated

Ind a better solution, we look at the behavior of branch
uctions:

Branch behavior

Am trace- branch instructions

1111110011011001011010111111101
1011111111111111111111111

 E—

” Instruction.

....0110111011111111171111171111111172........

|dea

pve performance by introducing an algorithm which only selectively
s from the wrong path by observing the behavior of individual
hes within a program

pts to:

Reduce number of useless instructions being executed thus
creasing useful instruction throughput

educe complexity involved in always issuing and executing of
rong path instructions

Prevent flushing of these instructions whenever the prediction is
orrect and therefore improving usage of resources and
erformance >

Resource Usage

nctional units, dispatch queues, IFQs, reservation stations,

I programs without enough ILP to make full use of processor
sources, this might not be a problem

)wever if we have any programs that can make sufficient use of
2 processor resources then something needs to be done

pt to Improve resource usage using a new algorithm

Implementation details

anch address sent to predictor

edictor entry for each branch includes
Threshold value of particular branch

edictor includes confidence values which contain
Increment value for each correct prediction
System threshold value — (have to determine optimum value)

Max value of branch threshold
Prediction penalty for wrong predictions

Architecture

T

baddr

op

btarget

Br. threshold

D

Fetch and
ISsue wrong
path?

BTB entries

Sys. threshold

Program trace:

Our program traces
indicate that we attempt
to capture those areas
of the program in which
the branch behavior is
predicted to be highly
accurate

op =6; 0 brthr=21 path dec=1
op=2;1brthr=27 path dec=1
op =3; 1 brthr= 28 path dec=1
op =6 ;0 brthr=17 path dec=1
op =2; 1 br thr= 28 path dec=1
op =3; 1 brthr=29 path dec=0
op =6 0 br thr=25 path dec=1
op =6 0 brthr=13 path dec=1
op =6; 1brthr=14 path dec=1

Simulations

erformed our simulations on spec2000 reduced

marks using two different #'s of execution resources
)enchmarks : equake (FP), mcf (INT), parser (INT)

fuake: Simulation of seismic wave propagation in large basins
cf: Combinatorial optimization / Single-depot vehicle scheduling
arser: Word Processing

programs we simulated didn’t have much parallelism but we

able to obtain data that proved our hypothesis to some
e

10

D
Simulations cont’d...

st set of data ¥ 2" set of data

— 4 FPU adders — 3 FPU adders

— 4 integer ALUs — 3integer ALUs

— linteger MULT/DIV unit — linteger MULT/DIV unit
— 1 FPU MULT/DIV unit — 1 FPU MULT/DIV unit

Baseline Architecture — Always issues and executes the
wrong path

Our program — Selectively issues and executes the wrong
path depending on information from the branch predictor

11

Results for FU =4

D

& Our Dynamic Program

IPC Exec BW Benchm. | CPI |PC Exec BW
1.3938 | 1.5320 Equake |0.7181 | 1.3927 | 1.4303
0.7042 | 0.7672 Mcf 1.4250 | 0.7018 | 0.7466
1.6338 | 1.9959 Parser 0.6036 | 1.6567 | 1.7259

Equake = 0.11% degradation (IPC)
Mcf = 0.24% degradation (IPC)
Parser=2.29% improvement (IPC)

12

D
Results for FU = 3

line & Our Dynamic program

CPI IPC Exec BW Benchm. | CPI IPC Exec BW

0.7225 | 1.3840 | 1.5256 Equake |0.7231 | 1.3829 |1.4204

1.4174 | 0.7055 |0.7700 Mcf 1.4271|0.7007 | 0.7450

0.6228 | 1.6057 | 1.9657 Parser | 0.6146 | 1.6272 | 1.6877

Equake = 0.11% degradation (IPC)
Mcf = 0.48% degradation (IPC)
Parser=2.15% improvement (IPC)

13

Conclusions

tion of useless resource usage

of ILP

of more or less execution resources
on longer pipelines

y of Hypothesis

14

—~ References

, McDowell, Swift, Eggers, Levy. “An evaluation of Speculative Instruction Execution on
eous Multithreaded processors”, submitted for publication.

F. Lee, Alan Jay Smith, “Branch Prediction Strategies and Branch Target Buffer Design”,
r, January 1984,

er, Nikolas Gloy. “A Language for Describing Predictors and its Application to Automatic
", Proceedings of the 24" International Symposium on Computer Architecture, June 1997

nberg, Steve Bennet, James E. Smith, “Trace Cache: a Low Latency Approach to High
h Instruction Fetching”, Proceedings of the 291 International Symposium on
itecture, December 1996.

pimes Friendly, Sanjay Jeram Patel, Yale N. Patt, “Alternative Fetch and Issue Policies for the
che Fetch Mechanism”, Proceedings of the 301 International Symposium on
itecture, November 1997.

15

