
1

Intelligent wrong path issue: a 
means of improving performance

By
Chidiogo Madubike
Meghana Sardesai

Nmita Sarna



2

Introduction

Speculation of instructions is crucial for modern superscalars
Branch predictors provide accuracies of up to 96% and are key 
to effective speculation
However we cannot rely solely on prediction because the latency 
of misprediction has a negative impact on performance
To solve this problem, computer architects came up with the idea
of wrong path issue



3

To issue or not to issue?

Wrong path issue reduces the misprediction penalty
On the other hand, useless wrong path instructions waste 
processor resources and must invariably be flushed from the 
pipeline
– Have to have enough resources to issue and execute 2 paths 

knowing that one of them will be invalidated

To find a better solution, we look at the behavior of branch 
instructions:



4

Branch behavior

Program trace- branch instructions
1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BLEZ instruction.

…………0110111011111111111111111111111………..



5

Idea

Improve performance by introducing an algorithm which only selectively 
issues from the wrong path by observing the behavior of individual 
branches within a program

Attempts to:

– Reduce number of useless instructions being executed thus 
increasing useful instruction throughput

– Reduce complexity involved in always issuing and executing of 
wrong path instructions 

– Prevent flushing of these instructions whenever the prediction is 
correct and therefore improving usage of resources and 
performance



6

Resource Usage

# of functional units, dispatch queues, IFQs, reservation stations, 
etc.
– For programs without enough ILP to make full use of processor 

resources, this might not be a problem
– However if we have any programs that can make sufficient use of 

the processor resources then something needs to be done

Attempt to improve resource usage using a new algorithm



7

Implementation details 

Branch address sent to predictor

Predictor entry for each branch includes
– Threshold value of particular branch

Predictor includes confidence values which contain
– Increment value for each correct prediction
– System threshold value – (have to determine optimum value)
– Max value of branch threshold
– Prediction penalty for wrong predictions



8

Architecture

baddr btarget Br. threshold
baddr

>

Sys. threshold

Fetch and
Issue wrong 

path?

BTB entries

op



9

Program trace:

Our program traces 
indicate that we attempt 
to capture those areas 
of the program in which 
the branch behavior is 
predicted to be highly 
accurate

:
op = 6 ; 0 br thr= 21 path dec= 1

op = 2 ; 1 br thr= 27 path dec= 1

op = 3 ; 1 br thr= 28 path dec= 1

op = 6 ; 0 br thr= 17 path dec= 1

op = 2 ; 1 br thr= 28 path dec= 1

op = 3 ; 1 br thr= 29 path dec= 0

op = 6 ; 0 br thr= 25 path dec= 1

op = 6 ; 0 br thr= 13 path dec= 1

op = 6 ; 1 br thr= 14 path dec= 1

:



10

Simulations

We performed our simulations on spec2000 reduced 
benchmarks using two different #’s of execution resources
Our benchmarks : equake (FP), mcf (INT), parser (INT)
– Equake: Simulation of seismic wave propagation in large basins
– Mcf: Combinatorial optimization / Single-depot vehicle scheduling
– Parser:  Word Processing

The programs we simulated didn’t have much parallelism but we 
were able to obtain data that proved our hypothesis to some 
degree



11

Simulations cont’d…

2nd set of data
– 3 FPU adders
– 3 integer ALUs 
– 1 integer MULT/DIV unit
– 1 FPU MULT/DIV unit

1st set of data
– 4 FPU adders
– 4 integer ALUs 
– 1 integer MULT/DIV unit
– 1 FPU MULT/DIV unit

Baseline Architecture – Always issues and executes the 
wrong path 
Our program – Selectively issues and executes the wrong 
path depending on information from the branch predictor



12

Results for FU = 4

Baseline Our Dynamic Program

Equake = 0.11% degradation (IPC)
Mcf = 0.24% degradation (IPC)
Parser= 2.29% improvement (IPC)

1.53201.39380.7175Equake

0.76720.70421.4201Mcf

0.6121

CPI

1.6338

IPC

1.9959Parser

Exec_BWBenchm.

1.43031.39270.7181Equake

0.74660.70181.4250Mcf

0.6036

CPI

1.6567

IPC

1.7259Parser

Exec_BWBenchm.



13

Results for FU = 3

Baseline Our Dynamic program

Equake = 0.11% degradation (IPC)
Mcf = 0.48% degradation (IPC)
Parser= 2.15% improvement (IPC)

1.52561.38400.7225Equake

0.77000.70551.4174Mcf

0.6228

CPI

1.6057

IPC

1.9657Parser

Exec_BWBenchm.

1.42041.38290.7231Equake

0.74500.70071.4271Mcf

0.6146

CPI

1.6272

IPC

1.6877Parser

Exec_BWBenchm.



14

Conclusions

Reduction of useless resource usage 
Effect of ILP
Effect of more or less execution resources
Effect on longer pipelines
Validity of Hypothesis



15

References

Swanson, McDowell, Swift, Eggers, Levy.  “An evaluation of Speculative Instruction Execution on 
Simultaneous Multithreaded processors”, submitted for publication.

Johnny K.F. Lee, Alan Jay Smith, “Branch Prediction Strategies and Branch Target Buffer Design”, 
Computer, January 1984.

Joel Emer, Nikolas Gloy.  “A Language for Describing Predictors and its Application to Automatic 
Synthesis”, Proceedings of the 24th International Symposium on Computer Architecture, June 1997

Eric Rotenberg, Steve Bennet, James E. Smith, “Trace Cache: a Low Latency Approach to High 
Bandwidth Instruction Fetching”, Proceedings of the 29th International Symposium on
Microarchitecture, December 1996.

Daniel Holmes Friendly, Sanjay Jeram Patel, Yale N. Patt, “Alternative Fetch and Issue Policies for the 
Trace Cache Fetch Mechanism”,  Proceedings of the 30th International Symposium on
Microarchitecture, November 1997.


