
 1

Threshold-Based Markov Prefetchers

Carlos Marchani

Tamer Mohamed

Lerzan Celikkanat

George AbiNader

Rice University, Department of Electrical and Compu ter Engineering

ELEC 525, Spring 2006

Abstract
In this report we present a novel technique for a Markov
prefetcher designed to hide memory latency. This pre-
fetcher makes use of the information about previous cache
misses in a memory trace and effectively predicts future
misses with high accuracy and coverage rate. The analysis
of the memory traces of the executed benchmarks reveals
that our threshold-based prefetcher poses an optimized
memory bandwidth overhead while not hurting the pre-
fetcher coverage and effectively increasing its accuracy.
Our data indicate that the average loss in coverage is 1%
while the gain in accuracy is 13% and the reduction in
memory bandwidth overhead is 39%. The design also
achieves more than an order of magnitude reduction in
mispredictions as compared to previous results.

Keywords
Hiding Memory Latency, Markov Tables

BACKGROUND
As modern superscalar processors get higher clock speeds
and deeper pipelines the cost of memory latency becomes
an increasing burden on the system performance. Prefetch-
ers are a mechanism that aims to hide the memory latency
in modern processors by fetching data from memory before
the processor actually requests it. The data is typically
fetched following a model pre-established by the system
designer and it is stored in dedicated buffers.

Several researchers have worked on different models for a
prefetcher design, including compiler-dependant prefetch-
ers, stride prefetchers, stream buffers and correlation- based
prefetchers. Joseph and Grunwald studied Markov pre-
fetchers as a model for correlation prefetchers [1]. In their
work, they considered and simulated the above prefetchers
in addition to a Markov model. They found that the Markov
prefetcher provided the best performance for the SPEC95
applications that were considered. Nonetheless, they recog-
nized the need to reduce the bandwidth usage and the pos-
sibility to improve the prefetcher accuracy.

The main idea behind utilizing a Markov table in a pre-
fetcher is to account for the probabilities of transitions from
one state to another state. In this context, a state refers to a
certain miss address following a given miss address. The
frequencies of transition are used to populate a table as
shown in table 1, and these frequencies are utilized as a

measure of probability for the prediction of future transi-
tions from a reached state. The table is continuously being
updated and a stride prefetcher is also used in order to en-
hance the performance of benchmarks that exhibit a lot of
strided accesses.

Table 1: A Markov table populated by the transitions and
frequency of transition occurrence for the sequence of states
(cache misses): A, B, C, D, C, E, A, B, C

Miss Address
(current state) Next Miss (state)

A B [2]

B C [1]

C D [1] E [1]

D C [1]

E A [1]

HYPOTHESIS
In [1], the authors implemented a Markov design based on
the miss occurrences of the L1-Cache; they built a Markov
tree based on the next reported misses (states) of a given
miss. In fact they would always track and prefetch next four
states of a miss. We propose to create and simulate a more
dynamic model that adapts to the frequency of occurrence
of next states. The prefetcher would only prefetch among
the tracked next states theses misses that exceeded in the
past a given threshold of appearance. In our opinion, pre-
fetching misses based on past frequency of occurrence us-
ing our dynamic threshold would improve prefetcher accu-
racy and reduce the memory bandwidth.

Our solution assumes that the probability of occurrence of a
miss is correlated to the history of occurrence of that miss.
In other words, if “miss B” occurred after “miss A” half the
time in the past then it has a 50% chance of occurring now
and thus is useful to prefetch.

To confirm our assumption we examined the data-L1 miss
stream of several SPEC2000 benchmarks and found good
evidence to our intuition. Figure 1 shows a sample of the
behavior that proves the viability of our hypothesis. In the

 2

VPR benchmark, the frequency of occurrence of misses
grows as the program progresses, i.e. the misses that ap-
peared in the past are likely to appear in the future. Their
relative frequency of occurrence is more likely to stay con-
stant or change slowly throughout the program’s life than to
change behavior drastically.

0

2

4

6

8

10

T6 T7 T8 T9 T10

7FFF734C

7FFF73A0

100091DC

7FFF7590

7FFF73C0

7FFF7320

7FFF7528

1001D72C

1001DF88

1001C4D0

Figure 1: VPR sample next misses from L1 miss stream shows
the number of occurrences of “next-miss” at progressive time
periods of the program.

Early examination of the miss stream confirmed several
observations from previously published results [1]. The
most notable is that some benchmarks –like mcf- will bene-
fit little from a Markov prefetcher alone; as most of their
cache misses exhibit a strided access behavior and not a
correlation between previous history and the current time
instances. The abundance of the strided access thus over-
whelms the number of misses that can benefit from a corre-
lation prefetcher. For that reason we decided to place a
stride prefetcher in series and ahead of the Markov pre-
fetcher.

In this report, we did not consider timeliness and we did not
run any timing simulations on the data. On the other hand
we gauge memory bandwidth usage by looking at the num-
ber of memory references initiated by the Markov pre-
fetcher. In addition, having implemented the Markov pre-
fetcher following a stride prefetcher we will measure cover-
age and accuracy for the Markov independently.

In this paper we will use the same terminology established
in [1] to evaluate our prefetcher, namely we will use the two
following metrics:

• The coverage defined as the fraction of memory refer-
ences that were supplied by the Markov prefetcher

and not demand-fetched or supplied by the stride pre-
fetcher.

misses cache total

bufferprefetch in hits
Coverage=

• Accuracy is defined as the fraction of Markov prefetched
cache lines that were actually used by the processor.

prefetches total

bufferprefetch in hits unique
Accuracy=

The definition for accuracy has a main deviation from the
definition of the coverage in that it uses a different metric
for the number of hits in the prefetch buffer. In our experi-
ments we found that a single prefetched entry in the pre-
fetch buffer may get used several times and this caused the
calculated accuracy to be above 100% and thus we modi-
fied the definition to account for the effect of mispredic-
tions which limits the accuracy to be always less than
100%.

• The definition of misprediction used in [1] and the previ-
ous reports is given as the number of useless pre-
fetches to the number of cache misses and this value
can be in excess of 100%.

misses cache

bufferprefetch in hits unique- prefetches total
ionMispredict =

In our project we were analyzing the performance of the
prefetcher on the memory accesses of the data stream. A
similar arrangement can be implemented for the instruction
stream as well.

ARCHITECTURE
We assume a conventional modern architecture for the
cache structure of the processor. We have separate data and
instruction L1 cache; we will vary their size from 4 to 32
KB- and a unified 1MB L2 cache. In addition, we place two
buffers at the same level as L1, between L2 and the proces-
sor: the stride prefetcher which holds four cache lines of 32
bytes each and the Markov prefetch buffer which holds 32
lines of cache. These two additional buffers will be dedi-
cated to data memory references only.

Feeding the two buffers will be the stride prefetcher and the
Markov prefetcher. The stride prefetcher looks for patterns
of strided accesses to memory in the miss stream of the L1,
when such patterns are detected, a demand is placed to the
L2 to pass the data to the prefetcher the data into the stride
buffer, such a demand would likely occur later when the
memory reference actually misses in the L1 cache. If no
strided access is identified for a given miss, it is passed to
the Markov prefetcher. The Markov table will use that entry
to build the next state tree. If the miss follows a previously
known miss it would be recorded as a next state or incre-
ment the corresponding next state for that pre-miss. Also if
the recent miss has a tree of next states that follow it, a de-
mand for some or all of these next states will be passed to
L2.

 3

In [1], the authors decided to always prefetch the next 4
states, in our experiment we will dynamically decide on the
number of states to prefetch. In fact we will keep track of
the history of up to 16 next states but only fetch those
whose frequency of occurrence has exceeded a given
threshold. In this architecture, the prefetchers and L1 com-
pete for service from L2. The L1 requests are assumed to
always be given priority over the prefetcher requests be-
cause they are imminent and certain. The prefetch requests
are future and speculative as they are trying to guess an
upcoming miss that may not occur. When the miss events
are spread out in time, the prefetchers have a better chance
of being serviced by the L2 and of being effective at getting
data from memory if needed in a timely matter. We have
not considered the timeliness aspect in our paper and as-
sume that the prefetchers handle the predicted cache misses
sufficiently ahead in time of their actual occurrence.

Figure 2: System Design

Table 2: Configuration parameters for the simulator

 Size KB Rpl Assoc.

L1-Cache-
Data

4 8 16 32 LRU direct

L1-Cache-Inst 4 8 16 32 LRU direct

L2-Cache-Uni 1024 LRU 4-way

TLB-Inst 256 LRU 4-way

TLB-Data 512 LRU 4-way

EXPERIMENTAL METHODOLOGY
For our simulations, we used SimpleScalar 3.0 to run the
following SPEC2000 benchmarks: mcf, equake, vpr, parser,
and gzip. Since we were only interested in the cache miss
stream for the L1 data cache, we modified the file cache.c
and recompiled simplescalar such that it would dump the
data-L1 miss addresses. We then ran sim-cache on the
benchmarks and redirected the output to a memory trace

file. In running the benchmarks, we used input data sets
provided in the ELEC525 class directory on owlnet; the
SPEC_2000_REDUCED folder. We stopped the simula-
tions when we have collected information in excess of
6Megabytes which is roughly equivalent to the first 500000
L1 data cache misses that occurred in the benchmark.

We ran simulations for different L1-cache sizes, 4KB, 8KB,
16KB and 32KB. Although we are only interested in the
data misses, both the data L1 and the instruction L1 were
modified to have the same size. On the other hand we did
not modify the size of the unified L2 cache for any of the
runs. The complete parameter configuration that we used
for simplescalar is listed in Table 2.

We then used the collected miss-stream information to ana-
lyze the effectiveness of our dynamic prefetcher. The pre-
fetcher simulation code mimics the behavior of the cas-
caded Stride/Markov prefetcher described above. Part of
the code is responsible for collecting data about the per-
formance of the Stride and Markov prefetchers in order to
calculate the accuracy and coverage of each prefetcher and
the performance of their combination for a given miss
stream. The performance data is reported at the end of the
simulation run. The following is an example of the output
from analyzing 576853 d-L1 cache misses in the “equake”
benchmark.

Number of L1 Cache Misses = 576853

STRIDE PREFETCH BUFFER

Number of Prefetches from L2 Cache = 70399

Number of Hits in Buffer = 63443

Number of Unique Hits in Buffer = 62756

Prefetch Coverage = 0.109981

Prefetch Accuracy = 0.891433

MARKOV PREFETCH BUFFER

Number of Prefetches from L2 Cache = 86

Number of Hits in Buffer = 291025

Number of Unique Hits in Buffer = 86

Prefetch Coverage = 0.504505

Prefetch Accuracy = 1.000000

As mentioned earlier, the number of hits is used to calculate
the coverage and the number of unique hits is used to calcu-
late the accuracy and misprediciton. In the example output
shown above, the accuracy is 100%. This is due to the con-
straint heuristic used in controlling the prefectching. This
did not just impact the accuracy but indirectly greatly im-
pacted the coverage and the mispredictions.

The coverage is more than 50% and the misprediction is
0%! Such values are in huge contrast with the values ob-
tained in [1] and previous year ELEC525 reports. This is
explained by the fact that the entries in the Markov buffer
were utilized more than one time and they did not get

 4

evicted by unnecessary prefetches due to the constraint. We
will illustrate this in more detail and with more benchmarks
in the experimental analysis section of this report.

HW COST OF THE EXPERIMENTAL PREFETCHER
The main blocks in this system are the two prefetch buffers
and the two prefetchers. The following is a break down of
the estimated hardware cost to implement each one of them.

The Markov prefetcher has the following configuration
parameters and associated hardware cost:

• 128 row entries. This is the number of miss ad-
dresses analyzed by the prefetcher.

• Up to 16 next states per entry. (We used 4 in our
experiments)

• Counters to count the frequency of occurrence of
each next state.

• Comparators to detect if a counter has exceeded a
preset threshold. The thresholds we used in our
experiments are 3, 5 and 10

• Eviction policy for the row and column entries of
the table. In our simulation we used the least re-
cently used (LRU) policy for both rows and col-
umns. We intend in future work to consider ran-
dom eviction and assess the performance vs. the
reduced hardware complexity.

The Markov Prefetch Buffer

• A 32 entry fully associative buffer.

• Utilizes the LRU eviction policy

The Stride Prefetcher calculates the step in a strided mem-
ory access and thus has the following cost

• Subtractor current miss address from a previous
miss address to get current stride

• Comparator to compare currently calculated stride
to previously calculated stride and if they match it
begins giving predicted requests to the L2 cache.

The Stride Prefetch Buffer

• A four entry fully associative buffer.

• Utilizes the LRU eviction policy.

The estimated storage requirement for the above HW con-
figuration is 128KB. It is also assumed that it takes one
cycle to search the combined prefetch buffers on an L1
miss.

EXPERIMENTAL ANALYSIS
In the following, we present our obtained results for run-
ning the benchmarks with the different cache size configu-
rations and with different threshold heuristic. The thresh-
olds used in our experiments are 0, 3, 5 and 10. The zero
threshold is used to account for aggressive prefetching
which does not make use of our heuristic. We use that as a

datum for evaluating the effect on performance when the
threshold heuristic is used.

Figure 3 illustrates the combined stride/Markov prefetcher
performance in terms of accuracy. The point of comparison
is the performance in conjunction with the threshold heuris-
tic. The results for “mcf “ are not affected because “mcf”
exhibits a large number of strided accesses and since the
stride prefetcher supersedes the Markov prefetcher, almost
all the predictions by the stride prefetcher were utilized and
the Markov prefetcher was prevented from carrying out
unnecessary prefetches. This is further illustrated in Figure
4 and Figure 5 which show the prefetcher coverage due to
each prefetcher. The Markov prefetcher almost did not op-
erate at all in the case of the “mcf” benchmark. Figure 6
again compares the coverage obtained with an aggressive
zero threshold Markov prefetcher and with the threshold set
at 5.

The intuitive expectation is that the coverage would go
down and accuracy would go up as the threshold is in-
creased. The data in figure 6 indicate that the system with
thresholds has max decrease of coverage of 12 % and an
average decrease of coverage of 1% with respect to the sys-
tem without prefetcher threshold.

While this has been the trend in all the cases, it is worthy to
note the performance for cache sizes 4k and 8k in the
“equake” benchmark. The large increase in accuracy with
the ‘5’ threshold Markov prefetcher actually led to a subse-
quent improvement in coverage. The average increase in
accuracy with the threshold Markov is 13%

In figures 7 and 8, we compare the performance of the sys-
tem with the Markov prefetcher threshold set at 3, 5 and 10.
The intuitive expectation that there will be an increasing
trend for accuracy with threshold is not satisfied for all
cache sizes. This result indicates that it is in general re-
quired to decide the parameters of the Markov prefetcher in
conjunction with the cache size since there is a performance
dependency. This observation requires further investigation
in order to determine optimum thresholds vs. cache sizes.

In figure 9, we illustrate the percentage of requests carried
out by the system which has a thresholded Markov pre-
fetcher normalized with respect to the prefetches of a sys-
tem with unthresholded Markov prefetchers. In this case
100% represents similar usage to the system without
threshold. The merit of evaluating this performance metric
is to assess the amelioration in memory bandwidth overhead
imposed by the prefetcher. The maximum memory request
decrease is 77% and the average request decrease is 39%.
The results in general are in line with our proposed hy-
pothesis.

The data we obtained for mispredictions are superior by
orders of magnitude to that obtained in [1] and previous
ELEC525 reports. This indicates that the inhibiting action
of the stride prefetcher over the Markov prefetcher has tre-
mendously improved the Markov prefetcher performance
metrics. In other words, the Markov prefetcher does not

 5

operate when it is expected that it will degrade the perform-
ance. Also the Markov prefetcher operation is dependent on
whether the cache miss is satisfied by either prefetch buffer.
This led to having the large favorable discrepancy between
the number of hits in the prefetch buffer and the number of
unique hits. Although this was not intentionally designed in
our code, it came out as a pleasant pug.

CONCLUSIONS AND FUTURE WORK
In this report, we examined the construction of a prefetch
buffer that hides memory latency and uses a Markov table
for the prediction of the memory addresses for fetching.
The prefetcher operation is based on a threshold heuristic in
order to increase its accuracy and reduce the memory
bandwidth overhead due to unnecessary mispredicted pre-
fetches. While previous work has showed mispredictions in
the order of 300%~600%, our threshold-based Markov pre-
fetcher exhibited a misprediction penalty less than 10% in
most of our test cases. The superior performance of our
architecture is due in part to the accuracy of the stride pre-
fetcher that we implemented. In our design, the Markov
prefetcher is cascaded in series with the stride prefetcher
and the combined buffers are searched in parallel when an
L1 cache miss occurs. The threshold heuristic helped im-
prove the accuracy of the prefetcher with a slight 1% deg-
radation in coverage. The resulting improvement in accu-
racy in some cases actually led to improvement in coverage.
The average increase in accuracy was found to be 13%. The

threshold heuristic also led to a decrease of memory band-
width requirement of 39% on the average.

The hardware cost of the design is relatively high due to the
implementation of the LRU policy in evicting row and col-
umn entries in the Markov table.

For future work, we would like to experiment with other
eviction policies that are less hardware costly and assess the
performance. A second suggestion for future work involves
the storage requirement of the data structures which is esti-
mated to be 128KB. We think that the storage requirements
should be in comparison with the size of the L1 cache and
thus more experiments need to be conducted in order to get
a better balance in storage requirements.

We are also considering developing a functional hardware
model using HDL that can be integrated with a processor
core running on a prototyping platform. This model will
give an accurate identification of the HW cost and the de-
sign tradeoffs.

REFERENCES
[1] Joseph Doug, Grunwald Dirk, “Prefetching using

Markov Predictors”, Proceedings of the 24th Interna-
tional Symposium on Computer Architecture, June
1997.

[2] Simplescalar Tool, http://www.simplescalar.com/

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

mcf equake parser vpr gzip

all 4

threshold

Figure 3: Combined Prefetcher Accuracy with ‘0’ thr eshold in the Markov prefetcher (getting all expected 4 next entries) vs. get-
ting only entries whose counter crosses the threshold set at 5

 6

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

mcf equake parser vpr gzip

all 4 Markov

all 4 stride

Figure 4: Percentage of coverage due to the stride prefetcher and the Markov prefetcher with the threshold set at ‘0’

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

mcf equake parser vpr gzip

threshold Markov

threshold stride

Figure 5: Percentage of coverage due to the stride prefetcher and the Markov prefetcher with the threshold set at ‘5’

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

mcf equake parser vpr gzip

all 4

threshold

Figure 6: Combined Prefetcher Coverage with the Markov prefetcher thresholds set at ‘0’ and ‘5’

 7

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

mcf equake parser vpr gzip

threshold 3

threshold 5

threshold 10

Figure 7: Combined Prefetcher Coverage for different Markov prefetcher threshold levels

0

0.2

0.4

0.6

0.8

1

1.2

4 8

1
6

3
2 4 8

1
6

3
2 4 8

1
6

3
2 4 8

1
6

3
2 4 8

1
6

3
2

mcf equake parser vpr gzip

threshold 3

threshold 5

threshold 10

Figure 8: Combined prefetcher Accuracy for different Markov prefetcher threshold levels

0
10

20
30

40
50
60

70
80

90
100

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

mcf equake parser vpr gzip

Figure 9: Percentage of L2 requests with Markov threshold set at ‘5’ as compared to 100% being the memory requests when the
Markov prefetcher threshold is ‘0’. A larger L1 cache size makes the number of L2 requests less and a consequently a larger per-

centage of those is attributed to the prefetcher.

