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Abstract

In this report we present a novel technique for arkiov
prefetcher designed to hide memory latency. This- pr
fetcher makes use of the information about previcashe
misses in a memory trace and effectively predictsire
misses with high accuracy and coverage rate. Thalysis
of the memory traces of the executed benchmarksatsv
that our threshold-based prefetcher poses an optahi

measure of probability for the prediction of fututeansi-
tions from a reached state. The table is continiyobsing
updated and a stride prefetcher is also used irotd en-
hance the performance of benchmarks that exhilbitt af
strided accesses.

Table 1: A Markov table populated by the transitions and
frequency of transition occurrence for the sequencef states

memory bandwidth overhead while not hurting the-pre (cache misses): A, B, C, D, C, E, A, B, C

fetcher coverage and effectively increasing its waecy.
Our data indicate that the average loss in coveragd %
while the gain in accuracy is 13% and the reduction

memory bandwidth overhead is 39%. The design also A

achieves more than an order of magnitude reduction
mispredictions as compared to previous results.
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BACKGROUND

As modern superscalar processors get higher clpeleds
and deeper pipelines the cost of memory latencyobess
an increasing burden on the system performancdetie
ers are a mechanism that aims to hide the memdenty
in modern processors by fetching data from memaefole
the processor actually requests it. The data idchlly
fetched following a model pre-established by thestsyn
designer and it is stored in dedicated buffers.

Several researchers have worked on different mofibels
prefetcher design, including compiler-dependantfgioh-
ers, stride prefetchers, stream buffers and caicglabased

prefetchers. Joseph and Grunwald studied Markow pre

fetchers as a model for correlation prefetchers [d]their
work, they considered and simulated the above pchfas
in addition to a Markov model. They found that thrkov
prefetcher provided the best performance for th&GS85
applications that were considered. Nonethelesy, tbeog-
nized the need to reduce the bandwidth usage amgaois-
sibility to improve the prefetcher accuracy.

The main idea behind utilizing a Markov table inpae-
fetcher is to account for the probabilities of tsitions from
one state to another state. In this context, sesteters to a
certain miss address following a given miss addr8sse
frequencies of transition are used to populate laletaas
shown in table 1, and these frequencies are utlias a

Miss Address
(current state)| Next Miss (state)
B [2]
B CI[1]
C D[1] | E[1]
D CI[1]
E Al[1]
HYPOTHESIS

In [1], the authors implemented a Markov designdzhsn
the miss occurrences of the L1-Cache; they bularkov
tree based on the next reported misses (stateg) gif’en
miss. In fact they would always track and prefetaxt four
states of a miss. We propose to create and simalat®re
dynamic model that adapts to the frequency of ommre
of next states. The prefetcher would only prefetzhong
the tracked next states theses misses that exceadie
past a given threshold of appearance. In our opinfmre-
fetching misses based on past frequency of occugers-
ing our dynamic threshold would improve prefetclaecu-
racy and reduce the memory bandwidth.

Our solution assumes that the probability of ocenae of a
miss is correlated to the history of occurrencetldt miss.
In other words, if “miss B” occurred after “miss Afalf the
time in the past then it has a 50% chance of odngrnow
and thus is useful to prefetch.

To confirm our assumption we examined the data-Lidsm

stream of several SPEC2000 benchmarks and found goo

evidence to our intuition. Figure 1 shows a sampiehe
behavior that proves the viability of our hypothesin the



VPR benchmark, the frequency of occurrence of nisse
grows as the program progresses, i.e. the missasath-
peared in the past are likely to appear in the fetur heir
relative frequency of occurrence is more likelygsiay con-
stant or change slowly throughout the program’s tlian to
change behavior drastically.
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Figure 1: VPR sample next misses from L1 miss straa shows
the number of occurrences of “next-miss” at progresive time
periods of the program.

Early examination of the miss stream confirmed sale
observations from previously published results [The
most notable is that some benchmarks —like mcft kgine-
fit little from a Markov prefetcher alone; as most their
cache misses exhibit a strided access behaviorrexida
correlation between previous history and the currame
instances. The abundance of the strided accessabers
whelms the number of misses that can benefit frocoae-
lation prefetcher. For that reason we decided tacel a
stride prefetcher in series and ahead of the Margos-
fetcher.

In this report, we did not consider timeliness amel did not
run any timing simulations on the data. On the othand
we gauge memory bandwidth usage by looking at tiven
ber of memory references initiated by the Markowepr
fetcher. In addition, having implemented the Markore-
fetcher following a stride prefetcher we will measicover-
age and accuracy for the Markov independently.

In this paper we will use the same terminology bstied
in [1] to evaluate our prefetcher, namely we wilaithe two
following metrics:

» The coverage defined as the fraction of memory rrefe

and not demand-fetched or supplied by the stride pr
fetcher.
hitsin prefetchbuffer

Coverage= -
total cachtmisse

« Accuracy is defined as the fraction of Markov prefeed
cache lines that were actually used by the proaesso

uniquehitsin prefetchbuffer

Accuracy=
¥ totalprefetches

The definition for accuracy has a main deviatioorfr the
definition of the coverage in that it uses a difat metric
for the number of hits in the prefetch buffer. lnroexperi-
ments we found that a single prefetched entry ia pre-
fetch buffer may get used several times and thissed the
calculated accuracy to be above 100% and thus wdi-mo
fied the definition to account for the effect of spiredic-
tions which limits the accuracy to be always lesan
100%.

¢ The definition of misprediction used in [1] and tpeevi-
ous reports is given as the number of useless pre-
fetches to the number of cache misses and thisevalu
can be in excess of 100%.

total prefetchesuniquehitsin prefetchbuffer
cachimisse

In our project we were analyzing the performancethod

prefetcher on the memory accesses of the datamtréa

similar arrangement can be implemented for theriretton
stream as well.

Mispredicton =

ARCHITECTURE

We assume a conventional modern architecture fer th
cache structure of the processor. We have sepdedteand
instruction L1 cache; we will vary their size froshto 32
KB- and a unified 1MB L2 cache. In addition, we p&atwo
buffers at the same level as L1, between L2 andptfoees-
sor: the stride prefetcher which holds four cadhes of 32
bytes each and the Markov prefetch buffer whichdsoB2
lines of cache. These two additional buffers wi# dedi-
cated to data memory references only.

Feeding the two buffers will be the stride prefegcland the
Markov prefetcher. The stride prefetcher looks fatterns
of strided accesses to memory in the miss streftheol 1,
when such patterns are detected, a demand is plactt
L2 to pass the data to the prefetcher the data tinéostride
buffer, such a demand would likely occur later whige
memory reference actually misses in the L1 caclienol
strided access is identified for a given miss sitpassed to
the Markov prefetcher. The Markov table will usattentry
to build the next state tree. If the miss followpeeviously
known miss it would be recorded as a next staténore-
ment the corresponding next state for that pre-nAdso if
the recent miss has a tree of next states thaboit, a de-
mand for some or all of these next states will sged to

ences that were supplied by the Markov prefetcher | 5.



In [1], the authors decided to always prefetch thext 4
states, in our experiment we will dynamically deeidn the
number of states to prefetch. In fact we will kepck of
the history of up to 16 next states but only fetttiose

file. In running the benchmarks, we used input dagéds
provided in the ELEC525 class directory on owlntig

SPEC_2000_REDUCED folder. We stopped the simula-

tions when we have collected information in excexfs

whose frequency of occurrence has exceeded a given6Megabytes which is roughly equivalent to the fis10000

threshold. In this architecture, the prefetcherd &t com-
pete for service from L2. The L1 requests are assiino
always be given priority over the prefetcher redaelse-
cause they are imminent and certain. The prefe¢tjuests
are future and speculative as they are trying tesguan
upcoming miss that may not occur. When the missneve
are spread out in time, the prefetchers have aebetiance
of being serviced by the L2 and of being effectategetting
data from memory if needed in a timely matter. Wava
not considered the timeliness aspect in our papel as-
sume that the prefetchers handle the predictedecathses
sufficiently ahead in time of their actual occuroen

L1 L1 Stride | | Markov
- D-cache Buffer Buffer
I ':The I dertries | | 32 entries
L2
U-cache Stride Markov
1MB PFE [ PF

L —

Figure 2: System Design

Table 2: Configuration parameters for the simulator

Size KB Rpl | Assoc.
L1-Cache- 418 | 16| 32| LRU| direct
Data
L1-Cache-Inst| 4 8 | 16 | 32 | LRU | direct
L2-Cache-Uni 1024 LRU| 4-way
TLB-Inst 256 LRU | 4-way
TLB-Data 512 LRU | 4-way

EXPERIMENTAL METHODOLOGY

For our simulations, we used SimpleScalar 3.0 to tle
following SPEC2000 benchmarks: mcf, equake, vprspg
and gzip. Since we were only interested in the eantiss
stream for the L1 data cache, we modified the &bche.c
and recompiled simplescalar such that it would duting

L1 data cache misses that occurred in the benchmark

We ran simulations for different L1-cache sizesBIIBKB,

16KB and 32KB. Although we are only interested et
data misses, both the data L1 and the instructi@nnlere
modified to have the same size. On the other haeddd

not modify the size of the unified L2 cache for aaf/the

runs. The complete parameter configuration thatused
for simplescalar is listed in Table 2.

We then used the collected miss-stream informatioana-
lyze the effectiveness of our dynamic prefetcheneTpre-
fetcher simulation code mimics the behavior of tbas-

caded Stride/Markov prefetcher described abovet Bar
the code is responsible for collecting data abdwd per-
formance of the Stride and Markov prefetchers idesrto

calculate the accuracy and coverage of each pitedetand
the performance of their combination for a givensmi
stream. The performance data is reported at theofrnie

simulation run. The following is an example of toetput

from analyzing 576853 d-L1 cache misses in the ‘@i

benchmark.

Number of L1 Cache Misses = 576853

STRIDE PREFETCH BUFFER

Number of Prefetches from L2 Cache = 70399
Number of Hits in Buffer = 63443

Number of Unique Hits in Buffer = 62756
Prefetch Coverage = 0.109981

Prefetch Accuracy = 0.891433

MARKOV PREFETCH BUFFER

Number of Prefetches from L2 Cache = 86
Number of Hits in Buffer = 291025
Number of Unique Hits in Buffer = 86
Prefetch Coverage = 0.504505

Prefetch Accuracy = 1.000000

As mentioned earlier, the number of hits is usedatculate
the coverage and the number of unique hits is usezhlcu-
late the accuracy and misprediciton. In the exargitput
shown above, the accuracy is 100%. This is duén&odon-
straint heuristic used in controlling the prefedtaeh This
did not just impact the accuracy but indirectly gty im-
pacted the coverage and the mispredictions.

The coverage is more than 50% and the mispredicigon
0%! Such values are in huge contrast with the valob-
tained in [1] and previous year ELEC525 reportsisTis

data-L1 miss addresses. We then ran sim-cache en th explained by the fact that the entries in the Markauffer

benchmarks and redirected the output to a memagetr

were utilized more than one time and they did net g



evicted by unnecessary prefetches due to the cinstiWe
will illustrate this in more detail and with moreshchmarks
in the experimental analysis section of this report

HW COST OF THE EXPERIMENTAL PREFETCHER

The main blocks in this system are the two prefdiciffers
and the two prefetchers. The following is a breakwth of
the estimated hardware cost to implement each tizeon.

The Markov prefetcher has the following configucati
parameters and associated hardware cost:

e 128 row entries. This is the number of miss ad-
dresses analyzed by the prefetcher.

* Up to 16 next states per entry. (We used 4 in our
experiments)

datum for evaluating the effect on performance wihkea
threshold heuristic is used.

Figure 3 illustrates the combined stride/Markov fpteher
performance in terms of accuracy. The point of canigon
is the performance in conjunction with the threghbkuris-
tic. The results for “mcf “ are not affected becausncf”
exhibits a large number of strided accesses andesthe
stride prefetcher supersedes the Markov prefetclerpst
all the predictions by the stride prefetcher wetiized and
the Markov prefetcher was prevented from carryingt o
unnecessary prefetches. This is further illustrate&igure
4 and Figure 5 which show the prefetcher coverage tb
each prefetcher. The Markov prefetcher almost ditl ap-
erate at all in the case of the “mcf” benchmarkgitie 6
again compares the coverage obtained with an agiyes
zero threshold Markov prefetcher and with the thiadd set

» Counters to count the frequency of occurrence of at 5.

each next state.

The intuitive expectation is that the coverage vebgb

+ Comparators to detect if a counter has exceeded adown and accuracy would go up as the thresholdnis i
preset threshold. The thresholds we used in our creased. The data in figure 6 indicate that thetesyswith

experiments are 3, 5 and 10

» Eviction policy for the row and column entries of
the table. In our simulation we used the least re-
cently used (LRU) policy for both rows and col-
umns. We intend in future work to consider ran-

thresholds has max decrease of coverage of 12 %aand
average decrease of coverage of 1% with respeittays-
tem without prefetcher threshold.

While this has been the trend in all the casess worthy to
note the performance for cache sizes 4k and 8khia t

dom eviction and assess the performance vs. the“equake” benchmark. The large increase in accunait

reduced hardware complexity.
The Markov Prefetch Buffer
e A 32 entry fully associative buffer.
e Utilizes the LRU eviction policy

The Stride Prefetcher calculates the step in alsttimem-
ory access and thus has the following cost

the ‘5’ threshold Markov prefetcher actually leddcsubse-
quent improvement in coverage. The average incréase
accuracy with the threshold Markov is 13%

In figures 7 and 8, we compare the performancehefgys-
tem with the Markov prefetcher threshold set ab&nd 10.
The intuitive expectation that there will be an iirasing
trend for accuracy with threshold is not satisfiéat all

« Subtractor current miss address from a previous cache sizes. This result indicates that it is imgel re-

miss address to get current stride

» Comparator to compare currently calculated stride

to previously calculated stride and if they matth i
begins giving predicted requests to the L2 cache.

The Stride Prefetch Buffer
e Afour entry fully associative buffer.
« Utilizes the LRU eviction policy.

The estimated storage requirement for the above ¢t
figuration is 128KB. It is also assumed that it émkone
cycle to search the combined prefetch buffers onLan
miss.

EXPERIMENTAL ANALYSIS

In the following, we present our obtained results fun-
ning the benchmarks with the different cache sinefigu-
rations and with different threshold heuristic. Ttigesh-
olds used in our experiments are 0, 3, 5 and 1 Zéro
threshold is used to account for aggressive prafetc
which does not make use of our heuristic. We ust % a

quired to decide the parameters of the Markov frdfer in
conjunction with the cache size since there is dqrenance
dependency. This observation requires further stigation
in order to determine optimum thresholds vs. casizes.

In figure 9, we illustrate the percentage of reqeesarried
out by the system which has a thresholded Markoe- pr
fetcher normalized with respect to the prefetchéa ays-
tem with unthresholded Markov prefetchers. In thise
100% represents similar usage to the system without
threshold. The merit of evaluating this performamoetric
is to assess the amelioration in memory bandwidirbead
imposed by the prefetcher. The maximum memory esu
decrease is 77% and the average request decre88984s
The results in general are in line with our propodey-
pothesis.

The data we obtained for mispredictions are supebip
orders of magnitude to that obtained in [1] and \joes
ELEC525 reports. This indicates that the inhibitiagtion
of the stride prefetcher over the Markov prefetchas tre-
mendously improved the Markov prefetcher performanc
metrics. In other words, the Markov prefetcher doex



operate when it is expected that it will degrade pgerform-
ance. Also the Markov prefetcher operation is dejssm on
whether the cache miss is satisfied by either pgosféuffer.
This led to having the large favorable discrepabegyween
the number of hits in the prefetch buffer and thember of
unique hits. Although this was not intentionallysigned in
our code, it came out as a pleasant pug.

CONCLUSIONS AND FUTURE WORK

In this report, we examined the construction of refptch
buffer that hides memory latency and uses a Martahle
for the prediction of the memory addresses for ligtg.
The prefetcher operation is based on a thresholdlistéc in

order to increase its accuracy and reduce the mgmor

bandwidth overhead due to unnecessary mispredisted
fetches. While previous work has showed mispreditdiin
the order of 300%~600%, our threshold-based Manbim@y
fetcher exhibited a misprediction penalty less ti@%6 in
most of our test cases. The superior performancewf
architecture is due in part to the accuracy of stiéde pre-
fetcher that we implemented. In our design, the kbar
prefetcher is cascaded in series with the stridefgicher
and the combined buffers are searched in parallewan
L1 cache miss occurs. The threshold heuristic &éélpn-
prove the accuracy of the prefetcher with a sligbt deg-
radation in coverage. The resulting improvementgtu-
racy in some cases actually led to improvementinerage.
The average increase in accuracy was found to Bé. The

threshold heuristic also led to a decrease of mgnhand-
width requirement of 39% on the average.

The hardware cost of the design is relatively hilgfe to the
implementation of the LRU policy in evicting row drcol-
umn entries in the Markov table.

For future work, we would like to experiment withther
eviction policies that are less hardware costly asdess the
performance. A second suggestion for future workoimes
the storage requirement of the data structures hvisesti-
mated to be 128KB. We think that the storage regmients
should be in comparison with the size of the L1 lia@and
thus more experiments need to be conducted in dalget
a better balance in storage requirements.

We are also considering developing a functionaldiaare
model using HDL that can be integrated with a pres
core running on a prototyping platform. This modeill
give an accurate identification of the HW cost ahe de-
sign tradeoffs.
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Figure 8: Combined prefetcher Accuracy for different Markov prefetcher threshold levels

Figure 9: Percentage of L2 requests with Markov threshold set at ‘5’ as compared to 100% being the meony requests when the
Markov prefetcher threshold is ‘0. A larger L1 cache size makes the number of L2 requests less andcansequently a larger per-
centage of those is attributed to the prefetcher.



