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Hypothesis 

 

Modern scalar processors inefficiently use fetch bandwidth when executing vectorizable 

code. By augmenting a general-purpose processor with a Stream Vector Processing Unit 

(SVPU), we can use the fetch bandwidth much more efficiently and achieve speed-ups in 

performance on vectorizable code. We also believe that by using a hierarchy of register 

files, this architecture will use memory bandwidth more efficiently by exploiting locality 

in data streams. 

 

Introduction 

 

The world of general-purpose computing has experienced a transformation from text and 

2-D processing to media processing. Multimedia workloads are becoming increasingly 

dominant in general-purpose computing [1], [2]. The performance of applications such as 

high-resolution games, video conferencing, signal processing, and image manipulation on 

a typical superscalar leaves a lot to be desired. Chipmakers like Intel, AMD and Sun have 

rolled out media SIMD-style ISA extensions (MMX [3], 3DNow! [4], VIS [5] ) to meet 

the high computational demands of these applications and extract the data parallelism 

inherent in them. Fixed-function ASIC solutions also exist but the ISA extensions 

approach provides easier programmability, better performance, and easier upgrades from 

one generation to the next.  Certain other applications, such as scientific code also exhibit 

data-level parallelism.  

 

We propose to augment a general-purpose processor with a stream-vector processing unit 

(SVPU) to improve performance on vectorizable numerical and multimedia applications.  

By converting the data-parallel code segments of these programs into vector instructions, 

we believe that we can utilize the memory bandwidth much more efficiently. In the rest 

of the paper, we will also refer to these code segments (showing potential of conversion 

to vector instructions) as vectorizable code.  

 

Ideas for the architecture for the SVPU are taken from the Imagine stream processor [6]. 

The SVPU is simpler, more scalable and complexity effective than existing architectures. 



The proposed architecture gives us the benefits of a vector unit together with a wide-issue 

superscalar processor. 

 

Architecture 

 

Our project is the modification of a superscalar general-purpose processor. The basic core 

of the GPP is left intact, and we augment it with a new functional unit, the Stream Vector 

Processor Unit. The SVPU works by executing special, instruction-set defined 

instructions on streams of data loaded from a special compiler controlled cache. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Core Architecture:  

 

The basic GPP is a superscalar processor capable of fetching and issuing multiple 

instructions per clock cycle. Instructions are fetched, decoded, and then sent for 

Figure 1: Block Diagram of Processor 

with an on-chip Stream Unit 

Figure 2: Block Diagram of the Stream 

Unit (SRF/SVPU) 



execution down one of the different functional units (Integer ALU, FP ALU, BRU, LSU). 

Stream instructions are fetched and decoded exactly the same as scalar instructions, and 

then they are issued to the SVPU for processing (Figure1). Each instruction, including 

stream instructions, occupies a slot in the reorder buffer to ensure that the results commit 

in-order. Stream instructions stall in the issue logic when they depend on a value from the 

scalar core (ST.SSR, ST.LSR).  

 

When a stream instruction finishes, it signals the ROB that it has completed and commits 

its value. However, since the result is not written on a global bus or stored anywhere, 

SVPU instructions do not natively support precise exceptions. If an exception occurs and 

a stream instruction has already committed a value out-of-order that would cause a 

problem, the ROB will have an entry for the instruction and can trap to the OS for 

appropriate handling.  

 

The scalar register file can communicate with the SVPU, as certain instructions call for a 

read of GPR16 or a bulk register transfer from/to GPRs 8-15. The L1 instruction cache is 

read-only, and the L1 data cache is write-through so that the L2 cache contains all of the 

live copies and coherency information. The SVPU does not connect to the L1 or L2 

caches of the superscalar core (only the memory controller), so the L2 cache must snoop 

the loads and stores to the memory controller and take appropriate coherency actions. The 

memory controller supports virtual channels and lazy-precharge to optimize for row reuse 

and memory access locality.  

 

SVPU Architecture  

 

The SVPU (Figure 2) is composed of the Stream Register File (SRF) and the Vector 

Processing Unit (VPU). The SRF is a compiler-controlled cache totaling 2KB in size 

composed of 32 stream registers (‘streams’), each made of 8 64-bit type-agnostic data 

words. Attached to the SRF is the SVPU Load/Store Unit (LSU), which interfaces 

between the SRF and either the scalar register file or memory. The LSU supports 8 

outstanding memory requests, and can issue requests in-order and receive serviced 



requests out of order. However, the LSU has to disambiguate memory addresses before 

allowing out of order commitment of results.  

 

The VPU is the core of the SVPU and is responsible for the execution of arithmetic 

operations. The VPU has four local stream registers, each holding 8 64-bit values. Each 

of the local registers is organized into four banks of 64-bit pairs, and the local registers 

are the only ones that can directly feed the ALUs of the VPU. The VPU has two fully 

pipelined 64-bit integer arithmetic units and two pipelined floating-point units. The VPU 

performs operations on the granularity of streams, supporting three-operand format 

instructions that perform the same operation 8 or 16 times on data from one or more 

streams.  

 

The SRF and VPU are fed instructions by the SVPU issue-queue/scheduler. Instructions 

enter the SVPU at the issue queue and are checked for dependencies using a basic 

scoreboard algorithm. When all dependencies are satisfied, the instruction can issue to the 

SRF LSU, VPU local register file, or the VPU core for execution. Instructions that use 

different resources can execute in parallel, i.e. ALU and memory operations. The SRF 

and LSU are connected by a 128-bit/cycle unidirectional bus, the SRF and VPU by a 256-

bit/cycle unidirectional bus, and the scalar register file is connected to the LSU by a 64-

bit unidirectional bus.  

 

Instruction Set Extensions 

 

We need to add 16 instructions to the basic ISA to implement the SVPU. We assume that 

we have a 32-bit instruction with 8 bits required for opcode (leaving 24 bits for 

instruction control data).  

 

There are 7 integer ALU instructions (ADD, SUB, COMP, SHIFT, AND, OR, XOR). 

Stream ALU Instruction Format: 

[LR (dest) (2-bits)] [LR (source1) (2)] [LR (source2) (2)] [32-bit flag(1)] [use immediate (1)] 

[intra-stream op(1)] [immediate(15)] 



The 64-bit ALUs can treat the 64-bit data word as two 32-bit values for these basic 

operations if this is set in a flag in the instruction. A 15-bit immediate is used instead of 

source2 if the use-immediate bit is set. The instruction performs the operation on each of 

the 8 data elements in the stream (source register 1) and accumulates the result in the 

element specified by the top three bits of the immediate. The operations proceed element 

wise starting at the accumulate element.  

 

If the 32-bit flag is also set, the 8 64-bit registers in the stream are treated as 8 32-bit 

pairs, and the resulting 32-bit pair is written in the corresponding 64-bit register. 

There are 5 floating point ALU instructions (MUL(integer), FP.ADD, FP.SUB, FP.MUL, 

FP.DIV).  Floating Point Stream Instruction Format: 

[LR(2) (dest)] [LR(2) (source1)] [LSR (2) (source2)] [32-bit flag (1)] [Intra-Stream Op (1)] 

 

The FP units calculate on 64-bit (single precision) values by default, but if the 32-bit flag 

it set in the instruction, then the units treat pairs of registers in the stream as 32-bit single 

precision values for the FP ALUs, which natively support 64 and 32-bit FP math.  

The instruction performs the operation on each of the 8 data elements in the local stream 

register (LR) and accumulates the result in the element specified by the top three bits of 

the immediate. The operations proceed element wise starting at the accumulate element. 

If the 32-bit flag is also set, the 8 64-bit registers in the stream are treated as 8 32-bit 

pairs, and the resulting 32-bit pair is written in the corresponding 64-bit register. 

 

There are 4 Memory and Register instructions, LSR (load stream register from memory), 

SSR (store stream register to memory), MSR (move stream/stream), and MSL (move 

stream/local).  Memory and Register Instruction Format: 

LSR – [Destination Stream Reg (5 bits)] [Stride (6)] [Offset (13)] 

Using GPR16 as the base address + offset(13) , load 8 64-bit values into stream 

register (SR0 is not allowed), using stride specified from memory. 

SSR – [Source Stream Reg (5)] [Stride (6)] [Offset (13)] 

Using GPR16 as the base address + offset(13) , store 8 64-bit values from stream 

register (SR0 is not allowed), using stride specified into memory 

MSR – [Destination Stream Reg (5)] [source SR (5)] [Mask (8)]  



Move one stream register to another, using the mask to specify which registers to 

transfer (xFF is all of the registers). Stream register 0 (SR0) aliases to GPRs 8-15 

and initiates a data transfer to the scalar register file if SR0 is the source or 

destination for this instruction. This transfer needs to be recognized by the scalar 

decode logic and use of the register file must be scheduled as a part of the scalar 

execution path.  

MSL – [To SRF (1)] [Local Register (2)] [Stream Register (5)] [Mask (8)] 

Moves a stream register to the local register for use in computation. SR0 is not 

allowed for the source/destination for the stream register. If the To SRF bit is set, 

the instruction copies the value from the specified local register to the specified 

stream register. The mask determines which of the registers within the stream 

register to copy. 

 

Experimental Methodology 

 

To evaluate our hypothesis accurately, we needed to easily find and quantify vectorizable 

code in different types of programs.  We also needed to be able to accurately simulate 

execution time for the scalar code versus the stream version of that code.  Having the 

capability to do both these things would allow us to go forward in our experiment to 

understand speedup improvements with an SVPU.  A side benefit of this exercise would 

also give us some understanding of the ease or difficulty in recognizing vectorizable code 

for future work in compiler support. 

 

We generated a Perl script, which could be run on C programs that were assembled using 

the “-S” option.   The source code output from this compile option would include the C-

code in comments and the actual assembly code. 

 

Our script searches for the vectorizable C-code segments and prints out the corresponding 

assembly instructions.  Figure 3 shows an example of the script output. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once we found the vectorizable code segments, we wanted to concentrate on only 

converting the segments that were executed the most frequently.  To achieve this, we 

used a combination of the gprof utility tool and our own profiling script.  Using these 

tools, we could keep track of the number of times that a code segment was executed 

dynamically.  This information allowed us to find out which segments we should convert 

into stream instructions.  Figure 4 shows an example of the output from our code 

profiling script. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C- CODE 

@@@@ deflate.s @@@@  

VECTORIZABLE CODE 3 

 ===================  

! 545 for (n = 0; n < HASH_SIZE; n++)  

{ ! 547 head[n] = (Pos)(m >= WSIZE ? m-WSIZE : 

NIL);  

ASSEMBLY CODE 

sethi %hi(32768),%l0  

cmp %i4,%l0  

sub %i4,%l0,%l0  

mov %l0,%l2  

mov %g0,%l2  

sll %i5,1,%l0  

sethi %hi(prev+65536),%l1  

or %l1,%lo(prev+65536),%l1  

sth %l2,[%l0+%l1]  

add %i5,1,%i5  

sethi %hi(32768),%l0  

cmp %i5,%l0  

blu .L317 nop  

Figure 3: Output of Vectorizable Code Finder  

Benchmark Results 
GZIP   35 vec code segments found 

MATEXP 9 vec code segments found 

MPEG2DEC 17 vec code segments found 

�Profile of vectorizable code for GZIP  
�================================  

�VecCode/Line#   Times Executed  Percent 

�vec unzip.c 154   40   ( 0.00)  = *  

�vec deflate.c 338  10   ( 0.00)  = *  

�vec deflate.c 545  5079040  (24.59)  = *************  

�vec deflate.c 550  5079040  (24.59)  = *************  

�vec inflate.c 309  6027   ( 0.03)  = *  

�vec inflate.c 325  183   ( 0.00)  = *  

�vec inflate.c 331  369   ( 0.00)  = *  

�vec spec.c 87   3   ( 0.00)  = *  

�vec spec.c 96   3072   ( 0.01)  = *  

�vec trees.c 350   256   ( 0.00)  = *  

�vec trees.c 365  256   ( 0.00)  = *  

�vec util.c 72   10485760  (50.77)  = **************************  

 

Figure 4: Profile of how often each vectorizable code segment was run 



 

The first and second column in Figure 4, describe which code segment and the number of 

times it was executed.  The third column describes the percentage of times that code 

segment was run relative to the total number of code segments run. 

 

From Figure 4, we can see that out of all the vectorizable code segments that we found, 

only 3 segments dominate the dynamic instruction count for GZIP.  Thus, we could focus 

our efforts on converting only a few of the segments into stream instructions and still 

maximize the performance benefit.  To attain the scalar execution time of a code segment 

we used Simplescalar to run the simulation.   

 

Simplescalar Simulations 

 

We performed all simulations using Simplescalar 3.0 [7]. We used the annotations 

capability of the toolset to simulate the SVPU enhanced superscalar processor. In the 

assembly code for the application, we marked the beginning and end of each vectorizable 

code segment with annotated instructions and modified the simplescalar source to detect 

these annotations in the decode stage. A cycle counter tracked the number of cycles we 

spent executing the code enclosed by the annotated instructions. Note that on our SVPU-

enhanced processor, this vectorized code will not be executed in the superscalar pipeline 

but in the SVPU instead. The value of the cycle counter, therefore, is subtracted from the 

total execution time, and then by adding the cycles required to execute the vectorizable 

code on a stream-vector processor unit we get an estimate for the total cycles required to 

execute the same program on a SVPU-enhanced machine. 

 

The next part of the experiment required converting the scalar code into stream 

instructions.  We were able to do this by hand, since the number of code segments that 

actually needed to be converted into stream was quite small based on our profiling 

results.  Table 1 shows the latency and throughput values we used for our stream unit. 



 

 

 

After getting the stream execution time, we could compare the results to our scalar 

execution time, and calculate the speedup of the benchmarks when using an on-chip 

stream processing unit. 

 

Experimental Analysis 

 

Table 2 shows a list of different architecture configurations that we used to test our 

hypothesis. All of these are 4-issue superscalar architectures. There are four variables in 

our design: Number of Integer ALUs, Number of floating point ALUs, Memory access  

latency and whether or not SVPU exists.  

 

 

We chose these configuration parameters for several reasons.  A stream processing unit 

would take up area that could possibly be used for additional functional units (integer and 

floating point ALU’s). Thus, the comparison between an improved superscalar versus the 

default superscalar with the addition of a stream processing unit would make the 

performance comparisons more fair. 

Stream Instructions Latency (cycles) Throughput (cycles/inst)

Memory Instructions 100 or 200 4

SRF to LRF Instructions 2 2

INT ALU Operations 2 1

MUL Operations 4 1

FP Add/Sub/MUL 4 1

FP DIV 16 4

Table 1: Latency and throughput of stream instructions used 

in our simulation 

Int ALUs FP ALUs Memory Latency Stream Processor

Baseline Superscalar 2 2 100 cycles No

Improved Superscalar 4 4 100 cycles No

Slow Superscalar 2 2 200 cycles No

Baseline Superscalar 

with SVPU 2 2 100 cycles Yes

Slow Superscalar with 

SVPU 2 2 200 cycles Yes

Table2: Different Architecture configurations for simulations 



The different configurations for memory latency hope to show that the processor with the 

SVPU is more memory latency tolerant then the default super-scalar.  This tolerance is 

due to the inherent efficiency of fetching and processing large data streams. 

 

Based on the simulation results from simplescalar simulator, our stream processing unit 

shows a speed-up of  5%~200% over an improved superscalar architecture depending on 

the application.  A summary of these results is shown in Figure 5. 

 

 

 

 

A breakdown of the different applications show that we can get speedups of 24% for 

GZIP, 8% for mpeg2dec and 266% for MATEXP micro-benchmark. This shows a 

significant advantage over the baseline architecture across various types of applications.   

 

The MATEXP performs matrix exponentiation, which can be broken down into the 

highly data-parallel matrix multiplication and addition operations. As expected, it shows 

very good speedup. Since these operations occur very frequently in numerical, we expect 

an SVPU-enhanced superscalar to have large speedups for many numerical applications. 
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An interesting result was how MPEG2DEC, from mediabench [8], showed less speedup 

then we would have expected from a multimedia benchmark.  We believe the reason is 

related to the lack of success in finding all the vectorizable code. The main computational 

kernel in MPEG2DEC is IDCT (inverse discrete cosine transform), which was written in 

a program style that made it difficult to find vectorizable code segments. In [9] the 

authors hand-optimized the IDCT code for MMX-extended ISA, and show a speed-up of 

approximately 2.3% compared to the Alpha ISA. This is the performance gain achieved 

after performing loop unrolling and software pipelining techniques and enhancing the 

MMX by providing independent register files and an increased number of local registers 

(32).  Since they implement MMX instructions as library calls, the actual speedup can be 

expected to be higher than 2.3%. Another point worth noting is that the IDCT code runs 

on small block sizes (8). We can expect better speedup numbers as the block size 

increases. 

 

Conversely, GZIP was written such that vectorizable code was relatively easy for our 

script to find, and achieved significant speedup results. 

 

A conclusion drawn from this phenomenon is that the ease of exploiting vectorizable 

code can be variable depending on how the code is written.  Given the free-form nature 

of writing code, this could give complications for future compilers unless specific rules 

are followed to allow explicit stream instruction translation.  

 

Results on improved memory latency tolerance with a stream processing unit are 

somewhat inconclusive.  Cache hit rates were very high for these benchmarks (greater 

than 99.2%), therefore, modeling memory latency tolerance accurately would probably 

require much larger data sets.  The simulation of large data sets would have been 

desirable in understanding this difference; however, it was not feasible to do this given 

the timeframe of this project. 

 

Given more time we would have liked to improve our vectorizable code finder script to 

find more subtle examples of SIMD parallelism.  We would have also liked to model 

MMX performance versus our stream processing unit.  Documented performance 

numbers on MMX show that it improved performance 13% on Intel’s Media Benchmark, 



and 9.1% on 3DwinBench.  Given our results, we believe that a stream vector processing 

unit would show similar or superior performance over MMX. Looking at the two 

architectures, the SVPU’s compiler-controlled cache is decoupled from the scalar 

pipeline and can deliver high bandwidth to the vector unit. Also the vector instructions 

allow us to attain speed-ups even in the absence of sub-word parallelism. The MMX-

extended ISA, though, has a feature where conditional branches can be converted into bit 

masks allowing parallel execution of the two possible control paths. While we expect 

MMX to get better performance than ours for those code segments (assuming similar 

branch prediction accuracies), given the same level of compiler support, the feature can 

be easily supported in our architecture.  

 

 

Conclusions 

 

 

The addition of a stream vector processing unit to a general purpose processor does show 

performance benefits with speedups ranging from 5% to 200% against an improved 

superscalar configuration. 

 

The cost of adding a stream processing unit requires modifications to the ISA and 

requires significant compiler support.  However, given the current limits of ILP, and the 

amount of data parallelism yet to be exploited, we feel that the addition of a stream 

processing unit is still a viable solution in improving single-threaded performance in 

future architectures. 

 

Future work should include detailed comparisons between MMX versus stream 

processing performance.  In addition, memory bandwidth simulations should be modeled 

to ensure what bandwidth requirements or solutions are necessary such that the stream 

processing unit and/or the general purpose processor are never starved. 
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