Managing Interconnect Delay With Architectural and Compiler
Techniques

Walt Fish, Chris Flesher, David Suksumrit, Allen Wan,

Abstract

Interconnect delay is becoming an increasingly dominant constraint in modern processor design.
Already, several modern processors require extra pipeline stages to account for interconnect
delay, and a signal crossing the entire chip can require several cycles to propagate. Until
recently, the interconnect delays between ALUs and the register file were dwarfed by logic delay.
However, techniques in managing delay due to interconnects will become more crucial as
technology scaling causes interconnect delay to account for an increasing portion of functional
unit execution time.

We propose to address the problem of interconnect delay through the use of register bank/ALU
clusters, created by partitioning the register file into separate banks, each associated with a
nearby functional units. This means that instructions whose operands are stored in registers
adjacent to their intended functional unit do not suffer additional interconnect delay due to long
propagation distance, while instructions whose operands are in a separate cluster will suffer a
longer interconnect delay penalty. We further propose to create compiler optimizations to
ensure that operands produced and consumed by functional units will be in registers close to the
local ALU cluster whenever possible, thus ensuring that a minimum of instructions will have the
penalty of the longer, inter-cluster communication delay.

|. Introduction

As technology features scale in size, the delay due to logic in gates improves by a factor relative
to the feature scaling, but the delay due to interconnect decreases only dlightly. Gate delay is due
to the width of the transistors involved, and improves by a factor relative to feature scaling.
Interconnect delay is modeled by an RC time constant, with R being the resistance of a wire and
C the lumped coupling capacitance with other metal features. As features scale downward in
size, C improves by a factor of the scaling, but making wires smaller increases R by the factor of
the scaling. This effect causes interconnect delay to have poor improvement relative to the rest
of technology. With modern superscalar processors attempting faster clock speeds, the portion
of the chip that a signal can travel across via interconnect decreases. With current organizations
of the register file and execution units, we will soon reach a point where any operation involving
the register file will require an additional clock cycle for signal transfer. The limiting factor in
such a case would be the delay of the worst-case scenario in which operands must be transmitted
between registers located on the edges of the register file and an ALU that is physically far away.

As interconnect delay has grown relative to logic delay, circuit designers have had to add extra
pipeline stages to allow for data to travel between the register file and ALUs. At 250nm, logic
delay equals interconnect delay as a source of latency in circuit design®. Requiring an extra cycle
for operations or adding another pipeline stage could be seen as a step backward in superscalar
processing.

In a 2002 updte of the Internationa Tednology Roadmap for Semiconductors (ITRS),
interconnedt delay was identified as an area where “design and layout solutions are needed”?.
One amerging technique for addressng this hurdle is the notion of exposing elements previously
hidden by the ISA3. Exposing these dements gives compilers and programmers the aility to
explicitly acount for and manage these obstades. Our approach extends this concept by
proposing a new architedure combined with compiler optimizaions that exploit low-level

manipulation of system latencies, allowing faster exeaution time.

Our paper addresses a hypotheticd situation where interconned delay has grown to the point
where an integer operation can take several cycles due to interconned delay. Current superscdar
techniques such as Tomasulo’s algorithm®, reorder buffer and multiple ALUs will not be ale to
hide the increased delays without further advances. In order to prevent this performance
degradation, we nedd to limit the total amount of wire used by the path of an ALU instruction.
To adieve this end, we intend to place ALUs and reservation stations closer to the register file
by partitioning the file into smaller pieces, ead with its own dedicaed ALUs. Data within a
cluster cen originate from the register file, undergo computation and be written bad to the
register file in one g/cle. To ensure that the maximum portion of instructions remain inside one
cluster and do not suffer the penalty of interconned delay due to inter-cluster communication,
we propose a ©mpiler optimization which attempts to reassgn al source and destination
operands by their locaion into one of the dusters.

M otivation

As interconned delay has increased in relation to logic delay, the time that it takes for data to
travel from the registers to the ALU have risen proportionaly to become equal or greaer than
the time required to operate on the data in the ALUs. Since variations in this propagation delay
are not exposed, a procesor must allow for the worst case delay on all ALU operations even if
the operands are wming from the physicdly closest registers. We propose to separate the
register file into banks, ead with its associated functional unit so that only a portion of tota
instructions must suffer the delay from operands being communicated from one duster to
another. When an instruction hes both source and destination operands within one bank, the
instruction can complete significantly faster in its asociated ALU than in the cae of an
architedure where operations have to take into acount the worst-case delay. If an instruction
uses operands from different banks, it will have more delay than the optimal case due to longer
wire paths for inter-bank communication from the registers to the ALUSs.

We examined other architedural fedures to determine whether or not they had a large dfed on
solving the problem of interconned delay. We analyzed various configurations for the
SimpleScdar Register Update Unit (RUU). Ascan be seenin figurel, as we incressed RUU size
for vpr (a SFECInt2000 benchmark), there was very little performance benefit. Even after
increasing the RUU size until the RUU was never full, we still saw very little benefit. At the
same time, increasing ALU latency caused a linea increase in exeaution time. This iows that
increasing interconned latency cannot be hidden by the traditional methods of using reservation
stations or large reorder buffers.

o]
m

W
c
S
E an
25
§ 20
3 B RUU = 32
O
o mRUU = 256
g 15 +—
O
0 +—
54—
a
1 2 3 4
Int ALU Latency
Figure 1.
Effeds of RUU size on exeaution time
Hypothesis

We believe that we can address the isale of increasingly dominant interconned delay by
staticdly scheduling instructions in ALUs that are physicdly closer to their source and
destination registers.

We anployed the SimpleScdar tool set® for our projed due to its flexibility and extensibili ty®.
This alowed us to smulate achitedure dhanges in the partitioning of the register file and ALUs
as wel as smulating new instructions in a large superscdar madiine via SimpleScdar
anrotations’. Annotations are useful for synthesizing new instructions without having to change
and recompile the assembler. This allows us to modify the simulator and ‘tag’ instructions based
on their predicted delay. These annotations allow us to examine register usage and assgn ead
instruction a ‘delay class based on which banks an instruction’s surce and destination registers
involve. We dso used the gcc compiler that came with SimpleScdar (ssgcc) in order to output
the assembly code that we analyzed and optimized.

II. Architecture

Register files are traditionally one pieceof unified memory, with several accessports. Every
data transfer between an ALU and the register file must alow enough time for the propagation
between the farthest ALU and register combination.

Our proposed banked register file with close functional unitsisill ustrated in Figure 2. The
banking of the file is chosen such that ALU instructions that have source and destination
operands entirely within one bank will have aone-cycle delay. If an instruction has operands
involving banks farther away, there is a one-cycle penalty for ead ‘bank’ of distance between
the farthest two operands.

Traditiona Unified Register File

Register f W
Files (|

1 cycledelay 1 cycledelay 1 cycledelay

Integer
ALUs

Casel o]
Case2 |
Case3d |
Cased |

+1cycle

+2 cycles

+3 cycles

Figure 2.
Banking of aregister file to exploit physical proximity to functional units. Different casesillustrate the delay
associated with instructions communicating between distant banks for operands.

We used many of the default architecture features in SimpleScalar. The most important change
is the banking of the original 32-entry register file. We separated the file into four banks (one
bank for each ALU). The registers are divided evenly between banks, with eight registers per
bank plus a local copy of the stack pointer and frame pointer because these two values are
accessed often. Since they occur in every register bank, if the stack pointer or frame pointer is
written to, these operations will suffer the worst-case penalty as the values are propagated
throughout all banks. The duplicated registers are read from far more often than they are written
to, so their duplication results in a net improvement in execution time.

We chose to use a perfect branch predictor because the small size of our micro-benchmarks
allowed the two-level branch predictor insufficient time to warm up. This caused an unusually
low prediction accuracy which we believe is not representative of true scientific code. Using the
two-level branch predictor would have reduced the improvement by only about one percent for
most of the benchmarks. Furthermore, we used a 128-entry reorder buffer which never
completely filled, and we experienced extremely low cache misses due to the recursive nature of
our benchmarks.

[11. Experimental M ethodology

To mode the different interconnect delays, we first modified SimpleScalar to execute integer
instructions with specified latencies. As SimpleScalar parses through a program’s machine code,
it assigns a class to each instruction that specifies the latency and execution time of that type of
instruction. To model the interconnect delays associated with receiving data from registers at
different distances, we created four types of integer ALU classes, each with a different latency.

Qut-of-Order Issue Simulatlor

¥
Fetch —Dispatcht— Scheduler —2~ Exec —Writeback— cummit
Memory
Scheduler iem
I-Cache D-Cache
(1L.1) I-TLB (DL1) D-TLB
I-Cache D-Cache
(IL2) ({DL2)

e U

Virtual Memory

Figure 3.
Block diagram of the SimpleScalar simulator [taken from SSHacker’s Guide]

For integer instructions, our modified version of SimpleScdar reassgns the instructions class
before issuing. Annotations inserted into the ade indicate which class the smulator should
reassgn to the instruction.

Because testing involved hand-reordering and annotating assembly code, small snippets of
scientific code, eat a few hundred lines, were used as micro-benchmarks. Arguably, if the wde
can be optimized by hand, a compiler that acounts for interconned delays gedfied in the ISA
can optimize performance & well. We dedded to use mathematicdly-intensive C code that
might be used in the scientific community as our micro-benchmarks.

Benchmark Purpose

mm.c Matrix Manipulation

gray.c Gray Coding

spigot.c Calculating Pi

sub lex.c Lexiographic Ordering

perm.c “Short and Bewildering Reaursive Method”
Table 1.

Microbenchmarks used for simulation

For our base achitedure, we exeauted the micro-benchmarks without any annotations. When
our smulator exeautes an instruction without an annotation, operands for that instruction take the
worst-case number of cycles to arrive & the functional unit. These smulations represent a
traditional architecdure that isauesto its functional units acording to the worst case delay.

For the second set of smulations, each instruction was annotated according to the spatial
proximity of the operands assigned by the compiler. For example, if an instruction has its
operands in the same bank, then the instruction is assigned the shortest latency. If an instruction
contains operands in separate banks, the annotation reflects the time necessary for both
instructions to arrive at the functional unit. This arguably is analogous to creating hardware to
determine dynamically the necessary delay for instructionsto arrive at their functional units.

The third set of smulations involved moving operands to different registers and reordering
instructions to achieve the best gain from exposing the interconnect delays to the ISA. To
achieve this performance, operands were moved to different banks to maximize the number of
instructions that use registers from one bank. The same code transformations should be possible

with an ISA and a compiler that account for interconnect delay.
s11+h 9 ,%15,=2

. . . . lws= F15,32(EFp2
Although our experiments involved only integer operations, we giigiiiin %g ,g?ég%ﬁ
annotated load and store operations as well. When the 1.,%2 F1E 1B ($Fp)
assembler trandates a memory access ingtruction into machine =y(2 - 12.00%2)
code, it converts the instruction into an integer operation to lw/a $15, 320 5Fp)
. lwes = F16,160%Fp)
compute the memory address and a memory operationto access .o 8,95, %15
addursa $15,%16,1
that address. sSush $15,0(F3)
3 FLE

V. Experimental Analysis

Our experimental results show that we get a significant improvement through banking the
register file and attempting to statically schedule the operands of individual instructions into the
same bank. Figure 4 displays the normalized execution results for each of our five micro-
benchmarks.

1.2

@Original

o
o
|

B Dynamic

[Static

o
>
|

normalized run time
o
»

0.2 +—

mm gray spigot sub_lex perm

Figure 4.
Relative execution times for micro-benchmarks

The first bar for each benchmark represents the origina execution time of the benchmark as
compiled and assembled using SimpleScalar' s version of gcc. For the second bar of each
benchmark, each assembly instruction was annotated with its corresponding delay using the rules
that we have described above. No reordering or re-banking was done to the assembly to obtain
the second result. We believe that this is a fair representation of the performance increase that
can be obtained by dynamically annotating the assembly instructions as they arrive at the
processor, since it would be fairly easy to implement a register locality annotation scheme in
hardware. The third bar for each benchmark represents what a complier should be able to
achieve by statically renaming registers so as to minimize the distance between an ALU and its
source and destination registers. Since a compiler is able to look at a much longer series of
instructions, it should be able to group values that it knows will be used together in the future
into the same register bank. It is worth noting here that by long series of instructions does not
mean thousands of instructions. Doing the re-banking by hand, we were only able to look at
twenty to thirty instructions a a time, so we believe that a complier will be able to achieve at
least comparable resullts.

Execution mm gray spigot sub_lex perm

Cycles

Original 1234159 3103385 4314160 2372470 1923770

Dynamic 1219670 2963033 4000905 2359729 1804523

Static 1195202 2764572 3957655 2216297 1757949

Normalized mm gray spigot sub_lex perm Average

Run

Time(percent)

Dynamic 98.8 95.5 92.7 99.4 93.8 96.1

Static 96.8 89.1 91.7 934 91.3 92.5

Percent mm gray spigot sub_lex perm Average

Speedup

Dynamic 1.17 4.52 7.26 0.54 6.20 3.94

Static 3.16 10.92 8.26 6.58 8.62 7.51
Table 2.

Performance results

Our results tell a multi-level story. In Table 2, we can see that with a 7.5% average performance
increase, the static re-banking technique provides good improvement for relatively little compiler
effort and basically no effort by the hardware. This improvement is achieved not through some
overly complex technique, but simply by exposing a developing problem and having the
compiler recognize and address the problem. The second level to our results is the average 4%
speedup seen by smply dynamically annotating the instructions as they are produced by gcc.
This is a surprising good result considering that it does not require a change in the ISA and can
be done with very little hardware.

12

10

B Dynamic

[Static

Percent Improvement
(2]

mm gray spigot sub_lex perm

Figure5.
Percent speedup performanceresults

We fed that the static method shows promise & a tednique for addressng the issue of
increasing interconned delay, and that it is better overall than the dynamic method of optimizing
for physicd proximity between registers and ALUs. There ae however some individua
exceptions. In the performance results for spigot, we see in figure 5 that there ae stuations
where dynamic banking adieves the majority of the performance benefit that can be obtained.
Dynamic banking is able to adbtain such large portion of the potential gain because of the way
that gcc uses registers. Gcc assgns registers in increasing numerica order. If a program uses
very few registers, then they will tend to al be in the first bank. If this was the only program that
was used, then a dynamic banking method might be wnsidered preferable since it would
dleviate the nead to change the ISA and thus the cmpiler. The dynamic method can also be
incorporated into the eisting register renaming tedhniques used by modern processors.
However, in the cae of sub_lex, we see a example where dynamic banking does very little. In
this case, our static method is able to creae more register locdity by preventing values that will
later be used locdly from being stored into farther registers. By taking this relatively easy step,
we can obtain 12 times more improvement over the dynamic method. Even with the mnstraints
that static banking might pose, if sub_lex were an acairate representation of the ade that is run
on amadine, it would likely be worth the extra trouble for a 6.5% improvement.

Another interesting result to note is the relatively poor improvement seen in mm. This is due to
the asmbled code in mm having smaller amounts of code between ead “function/jump”. We
did not try to schedule register through a segment jump since there ae compiler conventions as
to the registers used to passead value. Thusin general, there were fewer instructions that could
be dfedively banked and also fewer instructions with registers naturally occurring in the same
bank. As a result, both the dynamic and static methods suffered. This is in contrast to gray

which has a single large segment that it loops through. The large segment allowed for a larger
window of instructions in which we could reorder. This property greatly benefited the static
method, which was able to obtain an 11% improvement on gray. The dynamic method also
benefits from large continuous code segments, but once the code segments become too large and
the compiler starts to use more registers, the amount of naturally occurring register locality may
actually decrease. This explains why the dynamic method actually did better on perm than gray
wheresas the static method achieved alarger performance increase on gray than it did on perm.

For the latter three benchmarks (mm, gray, perm), we see a rather consistent and probably more
representative trend. In every case there is good speedup in the dynamic case. With the static
case, however, there is a substantial additional speedup. We believe that this justifies our claim
that implementing the static method is worth the additional hardware constraints. This is
especially true in context of the current trend toward exposing more of the hardware architecture
to the ISA/compiler. We recognize that static banking has potential implementation problems if
used in conjunction with register renaming hardware. We believe that since this is a forward
looking paper, it is fair for us to assume that the current trend towards exposing more of the
hardware architecture will continue and thus the requirement for the static banking method that
the register naming be exposed is a reasonable one.

Although we limited the scope of our project to integer applications, there is no inherent reason
that this technique would not aso provide benefits for floating point operations. It might be
interesting for a future group to explore the benefits and challenges of applying a register
banking technique to floating-point instructions and ALUSs.

V. Conclusion

We have demonstrated that in a future architecture where delay due to interconnect composes a
significant portion of functional unit execution time, techniques to manage the use of
interconnect are needed. By banking the register file, combined with static optimization, we
have achieved an average of 7.51 percent speedup. Techniques like this can be useful in
eliminating extra pipeline stages added smply for interconnect delay. These techniques will
only become more important in the future as feature scaling increases the relative importance of
interconnect delay.

References

[1] Y. Masoud, ELEC 521 Modeling and Design of High Speed Integrated Circuits, Rice
University, Fall 2003

[2] Internationa Tednology Roadmap for Semiconductors 2002Update.

[3] Michad Bedford Taylor, Jason Kim, Jason Mill er, David Wentzlaff, FaeGhodrat, Ben
Greenwald, Henry Hoffman, Paul Johnson, JaeWook Lee Walter Leg Albert Ma, Arvind Saraf,
Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and
Anant Agarwal, “ The Raw Microprocessor: A Computational Fabric for Software Circuits and
General-Purpose Programs’, |EEE Micro, March/April 2002

[4] R.M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units’, IBM
Journal, V 11, Jan 1967.

[5] The SmpleScalar Tool Set, Version 3.0

[6] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating Future Microprocesors. The
Simplescdar Tool Set. Tedhnicd Report CS-TR-19961308 1996

[7] ToddAustin, SmpleScdar Hadker’s Guide, SimpleScdar LL C.

Appendix

Instruction Fetch Queue Size

-fetch:ifgsize

4 Instructions

Branch Misprediction Latency -fetch:mplat 3 Cycles
Front-End Speed Relative to Core -fetch:speed 1

Branch Predictor Type -brpred Perfect/2lev
Bimodal Predictor BTB Size -brpred:bimod 2048

2-Level Predictor Config -brpred:2lev 11024 8 0
BTB config -bpred:btb 512 4
Instruction Decode -decode:width 4 per Cycle
Instruction Issue Width -issue:width 4 per Cycle
In-order Issue -issue:inorder False

Issue Instructions Down Wrong Execution Paths -issue:wrongpath False
Instruction Commit -commit:width 4

Register Update Unit Size -ruu:size 32/128/256
Load/Store Queue Size -Isq:size 16

L1 Data Cache Config -cache:dl1 di1:128 32 4 1
L1 Data Cache Hit Latency -cache:dlllat 1 Cycle

L2 Data Cache Config -cache:dI2 ul2:1024 64 4 1
L2 Data Cache Hit Latency -cache:d2lat 6

Flush Caches on System Calls -cache:flush False

Convert 64 Bit Addresses to 32 Bit -cache:icompress False

Memory Access Latency <first> <rest> -mem:lat 36 2

Memory Access Bus Width -mem:width 8 Bytes
Instruction TLB Configuration -tlb:itlb ith:16:4096:4:1
Data TLB Configuration -tlb:dtlb Dtlb:32:4096:4:1
Instruction/Data TLB Miss Latency -tib:lat 40 Cycles
Number of Int ALUs -resialu 4

Number of Int Multipliers -res:imult 1

Number o fMemory Ports -res:memport 2

Number of Floating Point ALU -res:fpalu 4

Number of Floating Point Multiplier/Dividers -res:fpmult 1

Operate in Backward-Compatible Bugs Mode -bugcompat false

SimpleScalar Configuration Settings

