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Abstract 
Interconnect delay is becoming an increasingly dominant constraint in modern processor design.  
Already, several modern processors require extra pipeline stages to account for interconnect 
delay, and a signal crossing the entire chip can require several cycles to propagate.  Until 
recently, the interconnect delays between ALUs and the register file were dwarfed by logic delay.  
However, techniques in managing delay due to interconnects will become more crucial as 
technology scaling causes interconnect delay to account for an increasing portion of functional 
unit execution time. 
 
We propose to address the problem of interconnect delay through the use of register bank/ALU 
clusters, created by partitioning the register file into separate banks, each associated with a 
nearby functional units.  This means that instructions whose operands are stored in registers 
adjacent to their intended functional unit do not suffer additional interconnect delay due to long 
propagation distance, while instructions whose operands are in a separate cluster will suffer a 
longer interconnect delay penalty.  We further propose to create compiler optimizations to 
ensure that operands produced and consumed by functional units will be in registers close to the 
local ALU cluster whenever possible, thus ensuring that a minimum of instructions will have the 
penalty of the longer, inter-cluster communication delay. 
 
I. Introduction 
As technology features scale in size, the delay due to logic in gates improves by a factor relative 
to the feature scaling, but the delay due to interconnect decreases only slightly.  Gate delay is due 
to the width of the transistors involved, and improves by a factor relative to feature scaling.  
Interconnect delay is modeled by an RC time constant, with R being the resistance of a wire and 
C the lumped coupling capacitance with other metal features.  As features scale downward in 
size, C improves by a factor of the scaling, but making wires smaller increases R by the factor of 
the scaling.  This effect causes interconnect delay to have poor improvement relative to the rest 
of technology.  With modern superscalar processors attempting faster clock speeds, the portion 
of the chip that a signal can travel across via interconnect decreases.  With current organizations 
of the register file and execution units, we will soon reach a point where any operation involving 
the register file will require an additional clock cycle for signal transfer.  The limiting factor in 
such a case would be the delay of the worst-case scenario in which operands must be transmitted 
between registers located on the edges of the register file and an ALU that is physically far away. 
 
As interconnect delay has grown relative to logic delay, circuit designers have had to add extra 
pipeline stages to allow for data to travel between the register file and ALUs. At 250nm, logic 
delay equals interconnect delay as a source of latency in circuit design1. Requiring an extra cycle 
for operations or adding another pipeline stage could be seen as a step backward in superscalar 
processing. 
 



In a 2002 update of the International Technology Roadmap for Semiconductors (ITRS), 
interconnect delay was identified as an area where “design and layout solutions are needed”2.  
One emerging technique for addressing this hurdle is the notion of exposing elements previously 
hidden by the ISA3.  Exposing these elements gives compilers and programmers the abili ty to 
explicitly account for and manage these obstacles.  Our approach extends this concept by 
proposing a new architecture combined with compiler optimizations that exploit low-level 
manipulation of system latencies, allowing faster execution time. 
 
Our paper addresses a hypothetical situation where interconnect delay has grown to the point 
where an integer operation can take several cycles due to interconnect delay.  Current superscalar 
techniques such as Tomasulo’s algorithm4, reorder buffer and multiple ALUs will not be able to 
hide the increased delays without further advances.  In order to prevent this performance 
degradation, we need to limit the total amount of wire used by the path of an ALU instruction.  
To achieve this end, we intend to place ALUs and reservation stations closer to the register file 
by partitioning the file into smaller pieces, each with its own dedicated ALUs.  Data within a 
cluster can originate from the register file, undergo computation and be written back to the 
register file in one cycle.  To ensure that the maximum portion of instructions remain inside one 
cluster and do not suffer the penalty of interconnect delay due to inter-cluster communication, 
we propose a compiler optimization which attempts to reassign all source and destination 
operands by their location into one of the clusters. 
 
Motivation 
As interconnect delay has increased in relation to logic delay, the time that it takes for data to 
travel from the registers to the ALU have risen proportionally to become equal or greater than 
the time required to operate on the data in the ALUs. Since variations in this propagation delay 
are not exposed, a processor must allow for the worst case delay on all ALU operations even if 
the operands are coming from the physically closest registers. We propose to separate the 
register file into banks, each with its associated functional unit so that only a portion of total 
instructions must suffer the delay from operands being communicated from one cluster to 
another.  When an instruction has both source and destination operands within one bank, the 
instruction can complete significantly faster in its associated ALU than in the case of an 
architecture where operations have to take into account the worst-case delay.  If an instruction 
uses operands from different banks, it will have more delay than the optimal case due to longer 
wire paths for inter-bank communication from the registers to the ALUs. 
 
We examined other architectural features to determine whether or not they had a large effect on 
solving the problem of interconnect delay. We analyzed various configurations for the 
SimpleScalar Register Update Unit (RUU).  As can be seen in figure1, as we increased RUU size 
for vpr (a SPECint2000 benchmark), there was very little performance benefit. Even after 
increasing the RUU size until the RUU was never full, we still saw very little benefit. At the 
same time, increasing ALU latency caused a linear increase in execution time. This shows that 
increasing interconnect latency cannot be hidden by the traditional methods of using reservation 
stations or large reorder buffers.  
 



 
Figure 1. 

Effects of RUU size on execution time 
 
Hypothesis 
We believe that we can address the issue of increasingly dominant interconnect delay by 
statically scheduling instructions in ALUs that are physically closer to their source and 
destination registers. 
 
We employed the SimpleScalar tool set5 for our project due to its flexibili ty and extensibili ty6.  
This allowed us to simulate architecture changes in the partitioning of the register file and ALUs 
as well as simulating new instructions in a large superscalar machine via SimpleScalar 
annotations7.  Annotations are useful for synthesizing new instructions without having to change 
and recompile the assembler.  This allows us to modify the simulator and ‘ tag’ instructions based 
on their predicted delay.  These annotations allow us to examine register usage and assign each 
instruction a ‘delay class’ based on which banks an instruction’s source and destination registers 
involve.  We also used the gcc compiler that came with SimpleScalar (ss-gcc) in order to output 
the assembly code that we analyzed and optimized. 
 
II. Architecture 
Register files are traditionally one piece of unified memory, with several access ports.  Every 
data transfer between an ALU and the register file must allow enough time for the propagation 
between the farthest ALU and register combination.   
 
Our proposed banked register file with close functional units is ill ustrated in Figure 2.  The 
banking of the file is chosen such that ALU instructions that have source and destination 
operands entirely within one bank will have a one-cycle delay.  If an instruction has operands 
involving banks farther away, there is a one-cycle penalty for each ‘bank’ of distance between 
the farthest two operands.   
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Figure 2. 

Banking of a register file to exploit physical proximity to functional units.  Different cases illustrate the delay 
associated with instructions communicating between distant banks for operands. 

 
We used many of the default architecture features in SimpleScalar.  The most important change 
is the banking of the original 32-entry register file.  We separated the file into four banks (one 
bank for each ALU).  The registers are divided evenly between banks, with eight registers per 
bank plus a local copy of the stack pointer and frame pointer because these two values are 
accessed often.  Since they occur in every register bank, if the stack pointer or frame pointer is 
written to, these operations will suffer the worst-case penalty as the values are propagated 
throughout all banks.  The duplicated registers are read from far more often than they are written 
to, so their duplication results in a net improvement in execution time.  
 
We chose to use a perfect branch predictor because the small size of our micro-benchmarks 
allowed the two-level branch predictor insufficient time to warm up.  This caused an unusually 
low prediction accuracy which we believe is not representative of true scientific code.  Using the 
two-level branch predictor would have reduced the improvement by only about one percent for 
most of the benchmarks.  Furthermore, we used a 128-entry reorder buffer which never 
completely filled, and we experienced extremely low cache misses due to the recursive nature of 
our benchmarks. 
 
III. Experimental Methodology 
To model the different interconnect delays, we first modified SimpleScalar to execute integer 
instructions with specified latencies.  As SimpleScalar parses through a program’s machine code, 
it assigns a class to each instruction that specifies the latency and execution time of that type of 
instruction. To model the interconnect delays associated with receiving data from registers at 
different distances, we created four types of integer ALU classes, each with a different latency. 
 



 
 

Figure 3. 
Block diagram of the SimpleScalar simulator [taken from SS Hacker’s Guide7] 

 
For integer instructions, our modified version of SimpleScalar reassigns the instructions class 
before issuing.  Annotations inserted into the code indicate which class the simulator should 
reassign to the instruction. 
 
Because testing involved hand-reordering and annotating assembly code, small snippets of 
scientific code, each a few hundred lines, were used as micro-benchmarks.  Arguably, if the code 
can be optimized by hand, a compiler that accounts for interconnect delays specified in the ISA 
can optimize performance as well.  We decided to use mathematically-intensive C code that 
might be used in the scientific community as our micro-benchmarks. 
 
 

Benchmark Purpose 
mm.c Matrix Manipulation 
gray.c Gray Coding 
spigot.c Calculating Pi 
sub_lex.c Lexiographic Ordering 
perm.c “Short and Bewildering Recursive Method” 

 
Table 1. 

Microbenchmarks used for simulation 
 
For our base architecture, we executed the micro-benchmarks without any annotations.  When 
our simulator executes an instruction without an annotation, operands for that instruction take the 
worst-case number of cycles to arrive at the functional unit. These simulations represent a 
traditional architecture that issues to its functional units according to the worst case delay. 



For the second set of simulations, each instruction was annotated according to the spatial 
proximity of the operands assigned by the compiler.  For example, if an instruction has its 
operands in the same bank, then the instruction is assigned the shortest latency. If an instruction 
contains operands in separate banks, the annotation reflects the time necessary for both 
instructions to arrive at the functional unit.  This arguably is analogous to creating hardware to 
determine dynamically the necessary delay for instructions to arrive at their functional units. 
 
The third set of simulations involved moving operands to different registers and reordering 
instructions to achieve the best gain from exposing the interconnect delays to the ISA.  To 
achieve this performance, operands were moved to different banks to maximize the number of 
instructions that use registers from one bank.  The same code transformations should be possible 
with an ISA and a compiler that account for interconnect delay. 
 
Although our experiments involved only integer operations, we 
annotated load and store operations as well.  When the 
assembler translates a memory access instruction into machine 
code, it converts the instruction into an integer operation to 
compute the memory address and a memory operation to access 
that address. 
 
IV. Experimental Analysis 
Our experimental results show that we get a significant improvement through banking the 
register file and attempting to statically schedule the operands of individual instructions into the 
same bank.  Figure 4 displays the normalized execution results for each of our five micro-
benchmarks.   
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Figure 4. 

Relative execution times for micro-benchmarks 



The first bar for each benchmark represents the original execution time of the benchmark as 
compiled and assembled using SimpleScalar' s version of gcc.  For the second bar of each 
benchmark, each assembly instruction was annotated with its corresponding delay using the rules 
that we have described above.  No reordering or re-banking was done to the assembly to obtain 
the second result.  We believe that this is a fair representation of the performance increase that 
can be obtained by dynamically annotating the assembly instructions as they arrive at the 
processor, since it would be fairly easy to implement a register locality annotation scheme in 
hardware.  The third bar for each benchmark represents what a complier should be able to 
achieve by statically renaming registers so as to minimize the distance between an ALU and its 
source and destination registers.  Since a compiler is able to look at a much longer series of 
instructions, it should be able to group values that it knows will be used together in the future 
into the same register bank.  It is worth noting here that by long series of instructions does not 
mean thousands of instructions.  Doing the re-banking by hand, we were only able to look at 
twenty to thirty instructions at a time, so we believe that a complier will be able to achieve at 
least comparable results. 
 
 
Execution 
Cycles 

mm gray spigot sub_lex perm  

Original 1234159 3103385 4314160 2372470 1923770  
Dynamic 1219670 2963033 4000905 2359729 1804523  
Static 1195202 2764572 3957655 2216297 1757949  
 
Normalized 
Run 
Time(percent) 

mm gray spigot sub_lex perm Average 

Dynamic 98.8 95.5 92.7 99.4 93.8 96.1 
Static 96.8 89.1 91.7 93.4 91.3 92.5 
 
Percent 
Speedup 

mm gray spigot sub_lex perm Average 

Dynamic 1.17 4.52 7.26 0.54 6.20 3.94 
Static 3.16 10.92 8.26 6.58 8.62 7.51 

 
Table 2. 

Performance results 
 
 
Our results tell a multi-level story. In Table 2, we can see that with a 7.5% average performance 
increase, the static re-banking technique provides good improvement for relatively little compiler 
effort and basically no effort by the hardware. This improvement is achieved not through some 
overly complex technique, but simply by exposing a developing problem and having the 
compiler recognize and address the problem. The second level to our results is the average 4% 
speedup seen by simply dynamically annotating the instructions as they are produced by gcc. 
This is a surprising good result considering that it does not require a change in the ISA and can 
be done with very little hardware.  
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Figure 5. 

Percent speedup performance results 
 
 
We feel that the static method shows promise as a technique for addressing the issue of 
increasing interconnect delay, and that it is better overall than the dynamic method of optimizing 
for physical proximity between registers and ALUs.  There are however some individual 
exceptions. In the performance results for spigot, we see in figure 5 that there are situations 
where dynamic banking achieves the majority of the performance benefit that can be obtained.  
Dynamic banking is able to obtain such large portion of the potential gain because of the way 
that gcc uses registers.  Gcc assigns registers in increasing numerical order.  If a program uses 
very few registers, then they will tend to all be in the first bank.  If this was the only program that 
was used, then a dynamic banking method might be considered preferable since it would 
alleviate the need to change the ISA and thus the compiler.  The dynamic method can also be 
incorporated into the existing register renaming techniques used by modern processors.  
However, in the case of sub_lex, we see an example where dynamic banking does very little.  In 
this case, our static method is able to create more register locality by preventing values that will 
later be used locally from being stored into farther registers.  By taking this relatively easy step, 
we can obtain 12 times more improvement over the dynamic method.  Even with the constraints 
that static banking might pose, if sub_lex were an accurate representation of the code that is run 
on a machine, it would likely be worth the extra trouble for a 6.5% improvement.  
 
Another interesting result to note is the relatively poor improvement seen in mm.  This is due to 
the assembled code in mm having smaller amounts of code between each “function/jump”.  We 
did not try to schedule register through a segment jump since there are compiler conventions as 
to the registers used to pass each value.  Thus in general, there were fewer instructions that could 
be effectively banked and also fewer instructions with registers naturally occurring in the same 
bank.  As a result, both the dynamic and static methods suffered.  This is in contrast to gray 



which has a single large segment that it loops through.  The large segment allowed for a larger 
window of instructions in which we could reorder.  This property greatly benefited the static 
method, which was able to obtain an 11% improvement on gray.  The dynamic method also 
benefits from large continuous code segments, but once the code segments become too large and 
the compiler starts to use more registers, the amount of naturally occurring register locality may 
actually decrease.  This explains why the dynamic method actually did better on perm than gray 
whereas the static method achieved a larger performance increase on gray than it did on perm.  
 
For the latter three benchmarks (mm, gray, perm), we see a rather consistent and probably more 
representative trend.  In every case there is good speedup in the dynamic case.  With the static 
case, however, there is a substantial additional speedup.  We believe that this justifies our claim 
that implementing the static method is worth the additional hardware constraints. This is 
especially true in context of the current trend toward exposing more of the hardware architecture 
to the ISA/compiler.  We recognize that static banking has potential implementation problems if 
used in conjunction with register renaming hardware.  We believe that since this is a forward 
looking paper, it is fair for us to assume that the current trend towards exposing more of the 
hardware architecture will continue and thus the requirement for the static banking method that 
the register naming be exposed is a reasonable one. 
 
Although we limited the scope of our project to integer applications, there is no inherent reason 
that this technique would not also provide benefits for floating point operations. It might be 
interesting for a future group to explore the benefits and challenges of applying a register 
banking technique to floating-point instructions and ALUs. 
 
V. Conclusion 
We have demonstrated that in a future architecture where delay due to interconnect composes a 
significant portion of functional unit execution time, techniques to manage the use of 
interconnect are needed.  By banking the register file, combined with static optimization, we 
have achieved an average of 7.51 percent speedup.  Techniques like this can be useful in 
eliminating extra pipeline stages added simply for interconnect delay.  These techniques will 
only become more important in the future as feature scaling increases the relative importance of 
interconnect delay. 
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Appendix 
 
 

Instruction Fetch Queue Size -fetch:ifqsize 4 Instructions 
Branch Misprediction Latency   -fetch:mplat 3 Cycles 
Front-End Speed Relative to Core  -fetch:speed 1 
Branch Predictor Type -brpred Perfect/2lev 
Bimodal Predictor BTB Size -brpred:bimod 2048 
2-Level Predictor Config -brpred:2lev 1  1024  8  0 
BTB config -bpred:btb 512  4 
Instruction Decode -decode:width 4 per Cycle 
Instruction Issue Width -issue:width 4 per Cycle 
In-order Issue -issue:inorder False 
Issue Instructions Down Wrong Execution Paths -issue:wrongpath False 
Instruction Commit -commit:width 4 
Register Update Unit Size -ruu:size 32/128/256 
Load/Store Queue Size -lsq:size 16 
L1 Data Cache Config -cache:dl1 dl1:128  32  4  1 
L1 Data Cache Hit Latency -cache:dl1lat 1 Cycle 
L2 Data Cache Config -cache:dl2 ul2:1024  64  4  1 
L2 Data Cache Hit Latency -cache:dl2lat 6 
Flush Caches on System Calls -cache:flush False 
Convert 64 Bit Addresses to 32 Bit -cache:icompress False 
Memory Access Latency <first> <rest> -mem:lat 36   2 
Memory Access Bus Width -mem:width 8 Bytes 
Instruction TLB Configuration -tlb:itlb itlb:16:4096:4:1 
Data TLB Configuration -tlb:dtlb Dtlb:32:4096:4:1  
Instruction/Data TLB Miss Latency -tlb:lat 40 Cycles 
Number of Int ALUs -res:ialu 4 
Number of Int Multipliers -res:imult 1 
Number o fMemory Ports -res:memport 2 
Number of Floating Point ALU -res:fpalu 4 
Number of Floating Point Multiplier/Dividers -res:fpmult 1 
Operate in Backward-Compatible Bugs Mode -bugcompat false 

 
SimpleScalar Configuration Settings 

 
 
 
 
 
 
 


