Managing Interconnect Delay with
Architectural and Compiler Techniques

Walt Fish

Chris Flesher
David Suksumrit
Allen Wan

ELEC 525
20 April 2004

Introduction
I

e ITRS 2002 update “Design and layout
solutions are needed” to address increasing
Interconnect delay

e Delay between Register/ALU combinations
no longer equal

e By exposing interconnect delay to ISA, the
compiler can acknowledge that delay and
optimize for it

Hypothesis
-—

e \We believe we can address the issue of
Increasingly dominant interconnect delay by
statically scheduling instructions in FU’s that
are physically closer to their source and
destination registers

Motivation - Redux

e Increasing total
execution latency

e Linear increase in :,
delay results in
linear increase in
execution time

ji]

Millions

20

ORUU =32
W REULU =256

Cycle Count

e RUU not filling
e Few cache misses

1 2 3 4
IntALY Latency

Methodology Overview
-

e Hack SimpleScalar to execute instructions
with different latencies based on interconnect
delays between FU’s and registers

e Increase ALU/register proximity via banking
- Manually rename registers
- Hand reorder assembly

Architecture

e Partition register file

- Move registers
closer to FU’s

- Decrease
Interconnect delay

[nteger
ALTTs

7 U7 7 7

Register
Files

1 eycle delay

1 eycle delay

1 eycle delay

]

Integer
ALUs

7 S

/S

Cage] ———

Caged |

Cagsed |

Cased |

Configuration File
—

e Configuration file

— 4 wide Issue, 4 commit
— 128 entry reorder buffer
- Perfect branch prediction

— 16KB L1 D-cache, 16KB L1 I-cache, 256KB L2
unified cache

Hacking SimpleScalar
-—

e Modify SimpleScalar
dispatch functions

-~ Add FU classes with
differing latencies
- Change class of

Instruction according to
annotated assembly

Quit-of-Order Issue Simulatlor

Fetch

»Dispatch— Scheduler

—» Exec —™Writebackr—

Commit

Memory M
Scheduler e
f f
[-Cache D-Cache
(IL1) I-TLB (DL1) D-TLB
[-Cache D-Cache
(IL2) (DL2)

T~

Virtual Memory

© 2001 SimpleScalar LLC.

Annotated Instructions
I

e Annotate integer micro-
benchmarks

Matrix manipulation
Gray code

Pi

Lexicographic order

Perm.c — “Short and
bewildering recursive method”

=11k
lw "3
acldu bk
lw"3
lw- "=
=1l =
=11k
lw"3
lw- "=
acidu kb
acldu 3
=Nl

J

$0,3515,2
15 ,32(FFp)
$9,%9,F15
T, 00F9)
F16,16(%Fp)
F9,00F2)

T8 ,F16 , 2
15,32 FFp)
F16 ,16(EFp)
+3,358,F15
F15,%16,1
F15,00F5)
FLE

Results
g

o 4% average
Improvement through
annotating only

1

e /.5% average £
Improvement through <, || B e
annotating, ==

reordering, renaming

0.2 +—

mm qray spigot sub_lex perm

Results

e Annotations similar to
dynamic execution

e Annotations with
renaming and
reordering analogous
to static scheduling

Percent Improvement

mm qray spigot sub_lex perm

Conclusion
oo

e Issues raised in hypothesis valid

e Proposed solution demonstrates value of
addressing interconnect delay

e \We need architecture and compilers to take
advantage of exposed interconnect delays

- Expose delay to ISA
- RUU'’s can not always hide latency

e Hand-reordering code is not fun

