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Introduction
I

e ITRS 2002 update “Design and layout
solutions are needed” to address increasing
Interconnect delay

e Delay between Register/ALU combinations
no longer equal

e By exposing interconnect delay to ISA, the
compiler can acknowledge that delay and
optimize for it



Hypothesis
-—

e \We believe we can address the issue of
Increasingly dominant interconnect delay by
statically scheduling instructions in FU’s that
are physically closer to their source and
destination registers



Motivation - Redux

e Increasing total
execution latency

e Linear increase in :,
delay results in
linear increase in
execution time
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Methodology Overview
-

e Hack SimpleScalar to execute instructions
with different latencies based on interconnect
delays between FU’s and registers

e Increase ALU/register proximity via banking
- Manually rename registers
- Hand reorder assembly



Architecture

e Partition register file

- Move registers
closer to FU’s

- Decrease
Interconnect delay

[nteger
ALTTs

7 U7 7 7

Register
Files

1 eycle delay

1 eycle delay

1 eycle delay

]

Integer
ALUs

7 S

/S

Cage] ———

Caged |

Cagsed |

Cased |




Configuration File
—

e Configuration file

— 4 wide Issue, 4 commit
— 128 entry reorder buffer
- Perfect branch prediction

— 16KB L1 D-cache, 16KB L1 I-cache, 256KB L2
unified cache



Hacking SimpleScalar
-—

e Modify SimpleScalar
dispatch functions

-~ Add FU classes with
differing latencies
- Change class of

Instruction according to
annotated assembly
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Annotated Instructions
I

e Annotate integer micro-
benchmarks

Matrix manipulation
Gray code

Pi

Lexicographic order

Perm.c — “Short and
bewildering recursive method”
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Results
g
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Results

e Annotations similar to
dynamic execution

e Annotations with
renaming and
reordering analogous
to static scheduling
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Conclusion
oo

e Issues raised in hypothesis valid

e Proposed solution demonstrates value of
addressing interconnect delay

e \We need architecture and compilers to take
advantage of exposed interconnect delays

- Expose delay to ISA
- RUU'’s can not always hide latency

e Hand-reordering code is not fun



