
Managing Interconnect Delay with 
Architectural and Compiler Techniques

Walt Fish
Chris Flesher
David Suksumrit
Allen Wan

ELEC 525
20 April 2004



Introduction

l ITRS 2002 update “Design and layout 
solutions are needed” to address increasing 
interconnect delay

l Delay between Register/ALU combinations 
no longer equal

l By exposing interconnect delay to ISA, the 
compiler can acknowledge that delay and 
optimize for it



Hypothesis

l We believe we can address the issue of 
increasingly dominant interconnect delay by 
statically scheduling instructions in FU’s that 
are physically closer to their source and 
destination registers



Motivation - Redux

l Increasing total 
execution latency 

l Linear increase in 
delay results in 
linear increase in 
execution time

l RUU not filling
l Few cache misses



Methodology Overview

l Hack SimpleScalar to execute instructions 
with different latencies based on interconnect 
delays between FU’s and registers

l Increase ALU/register proximity via banking
– Manually rename registers
– Hand reorder assembly



Architecture

l Partition register file
– Move registers 

closer to FU’s
– Decrease 

interconnect delay



Configuration File

l Configuration file
– 4 wide issue, 4 commit
– 128 entry reorder buffer
– Perfect branch prediction
– 16KB L1 D-cache, 16KB L1 I-cache, 256KB L2 

unified cache



Hacking SimpleScalar

l Modify SimpleScalar 
dispatch functions

– Add FU classes with 
differing latencies

– Change class of 
instruction according to 
annotated assembly

© 2001 SimpleScalar LLC.



Annotated Instructions

l Annotate integer micro-
benchmarks

– Matrix manipulation
– Gray code
– Pi
– Lexicographic order
– Perm.c – “Short and 

bewildering recursive method”



Results

l 4% average 
improvement through 
annotating only

l 7.5% average 
improvement through 
annotating, 
reordering, renaming



Results

l Annotations similar to 
dynamic execution

l Annotations with 
renaming and 
reordering analogous
to static scheduling



Conclusion

l Issues raised in hypothesis valid
l Proposed solution demonstrates value of 

addressing interconnect delay
l We need architecture and compilers to take 

advantage of exposed interconnect delays
– Expose delay to ISA
– RUU’s can not always hide latency

l Hand-reordering code is not fun


