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Abstract – Here we present an 

architecture for improving data cache 

miss rate.  Our enhancement seeks to 

capture greater temporal locality than 

a standard cache by more efficiently 

using the area available.  Frequently 

used data ought to remain in the cache, 

while infrequently used data ought not 

to be admitted into the cache.  Policing 

entry into the cache leaves more room 

for useful data. 

 The Selective Fill Data Cache 

prevents rarely used data from 

entering the cache.  The Cache Fill 

Policy keeps record of data blocks that 

exhibit little temporal locality.  These 

data blocks must bypass the L1 cache 

before reaching the CPU. It is in the 

bypass path where we cache these 

values in a bypass buffer in order to 

decrease the penalty for mis-

predictions.  

 

Index Terms – Selective Fill Data 

Cache, SFDC, bypass buffer, Cache 

Fill Policy Table, CFPT, data cache 

 

I.  INTRODUCTION 

 

The gap between the 

performance of a superscalar processor 

and its memory subsystem is quickly 

increasing.  For many years computer 

architects have focused their efforts on 

improving processor architecture and 

have created enhancements such as 

speculative and out-of-order execution.  

Architects have also increased the issue 

width to improve performance.  It is 

important to realize that applications can 

only fully and effectively utilize these 

processor enhancements if the 

underlying memory subsystem can feed 

the processor with both instructions and 

data quickly enough. 

 

Researchers are constantly 

striving to mitigate the effects of long 

memory latencies.  Many modern 

processors implement techniques such as, 

“lockup-free caches, cache-conscious 

load scheduling, hardware and software 

prefetching, stream buffers, speculative 

loads and execution, multithreading, data 

value prediction, and instruction reuse 

[1]” to help reduce this latency.  

 

a. Motivation 

 

Expanding issue widths, 

aggressive software and hardware 

prefetching techniques, speculative 

execution, and a host of other modern 

techniques create a greater demand for 

data, straining caches more than 

previous generations of processors and 

creating more conflict and capacity 

misses.  These cache misses are 

becoming more and more costly because 

of the hundreds of cycles they take to 

satisfy.  Additionally, as superscalar 

clock frequencies continue to increase, 

data caches must adapt.  Small, fast 

caches continue to shrink in size to 

maintain their single cycle latency, while 

larger, slower caches cause longer access 

latencies.   

 

As access times take more cycles 

and caches grow smaller, their efficient 



use becomes more important.  New 

techniques are necessary in order to take 

full advantage of the entire cache and 

ensure that cycles are not wasted as a 

result of inefficient use of the cache. 

 

b. Hypothesis 

 

Increasing the line size or 

augmenting the associativity of a cache 

does not capture adequate spatial and 

temporal locality.  If frequently used 

data is given priority in a cache while 

infrequently used data is prevented from 

filling it, the effectiveness of a cache can 

be increased.   Data consistently evicted 

from the cache before a subsequent 

access ought not to enter if it is to evict 

useful data.  This scheme, collectively 

known as a Selective Fill Data Cache 

(SFDC), should keep more frequently 

used data in the cache and reduce 

conflict and capacity misses caused by 

useful data being evicted by infrequently 

used data.  Our implementation proposes 

two modifications to existing processors, 

both of which do no delay the critical 

path. The first is a Cache Fill Policy 

Table (CFPT) that records data which 

does not need to be cached. The other is 

a Bypass Buffer that is used to cache 

data that is not allowed in the data cache. 

 

c. Preliminary Findings 

 

Prior to the implementation of 

the SFDC, we closely examined cache 

miss and hit rates over different reuse 

distances for the 175.vpr SPEC2000 

integer benchmark in Figure 1.  For 

reuse distances from 1 to 10, the first 

two bars on the graph, the 8KB direct 

mapped cache sufficiently captures the 

temporal locality of the data.  As reuse 

distances grow, however, the miss rates 

grow substantially.  Initially, we 

projected the SFDC to eliminate half the 

misses for reuse distances of up to 

10,000, the first five bars on the graph. 
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Figure 1: Reuse Distance for 8KB 

Direct Mapped Cache 

 

The remainder of the paper is 

organized as follows.  Section II takes a 

closer look at the architectural specifics 

of the proposed SFDC.  Section III 

specifies the experimental methodology 

for the simulations.  Section IV 

examines the results of these simulations.  

Section V presents conclusions, and 

Section VI suggests possibilities for 

future work.   

 

II. ARCHITECTURE 

 

The architectural changes made 

to implement the SFDC are not overly 

complicated. Figure 2 shows the basic 

block diagram of our cache 

implementation, where changes include 

minor modifications to the L1 data cache, 

a direct mapped CFPT of tags and 

counters, and a two-way set associative 

bypass buffer. These alterations allow 

the cache to operate with a more 

sophisticated behavior in an attempt to 

reduce miss rate.  

 

 



 
 

Figure 2:  Selective Fill Data Cache Architecture 

 

a. L1 Data Cache 

 

 The only necessary modification 

to the L1 data cache is the addition of a 

“used” bit to each block. When a new 

block enters the cache, its used bit is 

cleared. If the block is ever accessed 

again for a read or write, the used bit is 

set. This is a variation of the “dirty” bit 

and should not require increased design 

or verification time.  

 

b. Cache Fill Policy Table 

 

 The CFPT is implemented as a 

direct mapped cache of tags.  The 

number of entries in the fill policy table 

is the same as the number of sets in the 

cache, reducing complexity. This 

configuration gives each set the ability to 

keep out one block that should not reside 

in it. Additionally, each entry in the 

CFPT contains a two bit saturating 

counter used to profile access patterns.  

 

 When a block is evicted from the 

cache, the CFPT checks the status of the 

used bit. A set used bit indicates that the 

processor accessed the block after it 

entered the cache and the CFPT does 

nothing. If, however, the block is never 

accessed, the CFPT compares the tag of 

that block with the content of the 

corresponding entry in the table. When 

these tags differ, the CFPT retains the 

tag of recently evicted block in the 

appropriate entry, overwriting whatever 

was present before. The CFPT also 

clears the counter associated with that 

entry. If the tags are the same, the CFPT 

increments the entry’s counter. Once in 

the table, tags remain there until 

replacement. This behavior determines 

the number of sequential occurrences in 

which a given address block is evicted 

from its appropriate set without having 

been used. A comparison of the counter 

and a threshold value determines 

whether or not a block with a given tag 

is allowed to enter the cache.  



 

c. Bypass Buffer 

 

 For blocks that are kept out of 

the L1 data cache, a bypass path is 

provided from the L2 cache. In this path 

exists a small cache called a bypass 

buffer. This structure is intended to 

alleviate some of the costs of 

mispredicting the usage of a data block. 

Data blocks remain in the bypass buffer 

until replacement. 

 

We performed initial tests to 

determine what sizes and configurations 

best suit these additional structures. 

Tests between associative and direct 

mapped fill policy tables showed that 

associativity causes the SFDC to 

perform worse than when using a direct-

mapped table. This is likely do to the 

fact that tags do not leave the table often 

enough. As later results show, we should 

have given more consideration to this 

fact. For the bypass buffer, larger sizes 

and associativities yield better results, 

albeit with diminishing returns. Later 

results elaborate on this and explain why 

the chosen configuration is two-way set 

associative, one sixteenth the size of the 

L1 cache.  

 

III. EXPERIMENTAL  

      METHODOLOGY 

 

a. SimpleScalar 

 

In order to test the efficacy of the 

proposed SFDC, we implemented it 

using the SimpleScalar 3.0 tool set, a 

“suite of powerful computer simulation 

tools that provide both detailed and high-

performance simulation of modern 

microprocessors [2]”.  The experiment 

utilized the latency independent cache 

simulator and focused solely in 

improving the effectiveness of the L1 

data cache miss rates.  Arguably, cache 

miss rates are the most important metric 

for determining the efficiency of a cache.  

A latency intrinsic model of our 

simulation would be valuable in the 

future (see Section VI). 

 

We used four different baseline 

cache configurations as a method for 

comparison to our enhancements: 8KB 

direct mapped, 8KB two-way set 

associative, 16KB direct mapped cache, 

and 16KB two-way set associative.  

Further details about these baseline 

configurations can be found in Table 1.  

These configurations are exemplary of 

modern primary level caches.   

 

The SFDC augments each 

baseline configuration for four additional 

implantations.  Moreover, the SFDC 

implementations are identical to the 

baseline implementation with three 

added improvements.  First, the data 

cache contains one extra used bit in each 

cache line.  Second, a variable sized, 

two-way set associative bypass buffer 

was added to the cache.  The size of the 

bypass buffer varies from 1/64 the size 

of the baseline data cache all the way to 

the full size of the baseline data cache.  

For example, a 1/16 size bypass buffer 

would be 512 bytes for the two 8KB 

configurations and 1024 bytes for the 

two 16KB configurations.  Finally, the 

direct mapped CFPT contains as many 

lines as sets in the baseline cache. 

 

In an effort to compare the 

effectiveness of the SFDC to another 

cache enhancement based on 

communication limitations, a victim 

cache supplements each of the four 

baseline configurations.  The victim 

cache is always fully associative, and the  



L1 Data Cache 8KB Direct Mapped, 8KB Two-Way Set 

Associative, 16KB Direct Mapped or 

16KB Two-Way Set Associative, all with 

32 byte blocks and a LRU replacement 

policy 

L2 Data Cache 256KB Four-Way Set Associative with 64 

byte blocks and a LRU replacement policy 

L1 Instruction Cache 8KB Direct Mapped with 32 byte blocks 

and a LRU replacement policy 

L2 Instruction Cache 256KB Four-Way Set Associative Cache 

with 64 byte blocks and a LRU 

replacement policy 

Cache Flush False 

Instruction TLB 256KB Four-Way Set Associative with 

4KB pages and a LRU replacement policy 

Data TLB 512KB Four-Way Set Associative with 

4KB pages and a LRU replacement policy 

 
Table 1:  Baseline Cache Configuration 

 

size of the victim cache equals the size 

of the bypass buffer.   

 

b. Benchmarks 

 

Four applications from the 

SPEC2000 benchmark suite were used 

to determine the value of the 

architectural modifications specified in 

Section 2.  All four benchmarks were 

members of the integer component of the 

SPEC2000 benchmark suite: 175.vpr 

(VPR) which is used for FPGA circuit 

placement and routing, 181.mcf (MCF) 

which is used for combinatorial 

optimization, 197.parser (PARSER) 

which is used for word processing, and 

164.gzip (GZIP) which is used for 

compression.   

 

IV. RESULTS 

 

a. Bypass Buffer 

 

 Shown in Figure 3 are the results 

of tests on differing bypass buffer sizes 

for the VPR benchmark. The buffer sizes 

are defined as a fraction of the total L1 

data cache size.  Small bypass buffer 

sizes have the most impact on miss rate.  

At around 1/16 of the L1 data cache size, 

the size of the bypass buffer is 

marginally significant, and further 

increases in size result in diminishing 

returns.  The final implementation of the 

SFDC makes use of a bypass buffer 

which is 1/16 the size of the L1 data 

cache.  The bypass buffer uses two-way 

associativity as it is a good compromise 

between direct mapped caches and four-

way caches. 

 

c. Reuse Distance 

 

 Figure 4 illustrates miss rates 

versus data reuse distance for the 

baseline, SFDC, and victim cache 

configurations using the VPR 

benchmark. SFDC outperforms the 

baseline configuration by eliminating 

essentially all misses for reuse distances 

of 11 to 100 and reducing misses for 

distances of 101 to 1000 and 1001 to 

10000 by half. The victim cache, when  
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Figure 3:  Bypass Buffer Size versus Miss Rate 

 

compared against the SFDC, also 

eliminates misses for reuse distances of 

11 to 100, further decreases misses for 

distances of 101 to 1000 and eliminates 

fewer misses for distances of 1001 to 

10000.  

 

 The victim cache is essentially a 

last-in first-out queue which forwards 

evicted data blocks to the processor. The 

last-in first-out nature of the cache 

eliminates misses with shorter reuse 

distances. Due to the small number of 

spaces available in the victim cache, 

misses with longer reuse distances 

cannot be prevented as effectively. The 

requested data will have already been 

replaced in the cache by the time the 

next miss occurs. The SFDC 

implementation is not subject to this 

problem because many of those same 

elements which were placed into the 

victim cache and later evicted are never 

forced to leave the cache. This allows 

useful elements to remain in the cache 

for a longer time then they would in a 

traditional cache.  

 

c. Benchmark Results 

  

 Figure 5 shows the resulting data 

cache miss rates for the four benchmarks 

chosen. Each graph shows the miss rates 

for 8KB and 16KB direct mapped caches, 

as well as 8KB and 16KB two-way set 

associative caches.  
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Figure 4:  Reuse Distance versus Hit/Miss 

Counts for SFDC and Victim Cache 

 

 The VPR benchmark shows a 

significant miss rate decrease from the 

baseline for the SFDC in all cases. 

However, in both of the 16KB caches 

the victim cache outperforms the SFDC. 

The resulting miss rate drops in all cases 

are due to the fact that the data in the 

VPR benchmark is highly cacheable 

with small reuse distances. 

 

 MCF is a benchmark which is 

not particularly cacheable. As a result 

the SFDC implementation only manages 

to reduce the miss rates from the 

baseline, though in all cases decreases 

are recorded. The SFDC outperforms the 

victim cache for both of the two-way 

implementations. 

 

 The results of the PARSER 

benchmark for the SFDC show a slight 

miss rate decreases for the 8KB two-way 

and both 16KB caches. However, for an 

8KB direct way configuration the SFDC 

increases the miss rate past the baseline 

rate because valuable blocks remain 

flagged in the CFPT and are not replaced.  

In this manner, the selective fill policy is 

too selective and does not allow the L1 

cache to be fully utilized.  

 

 The GZIP benchmark shows 

modest gains for all cache configurations. 

The two-way associative cache 

implementations provide ample 

associativity to eliminate nearly all 

conflict misses.  This indicates that 

GZIP has predominantly compulsory 

and capacity misses.  In this case, the 

victim cache outperforms the SFDC.   

  

V. CONCLUSIONS 

 

A SFDC improves the hit rate of 

standard caches for most benchmarks.  It 

does so by preventing data with little or 

no temporal locality from entering the 

cache, allowing more useful data to 

reside there. The architectural 

enhancements required to accomplish 

this are not prohibitively complex, yet 

there exists the possibility for this 

implementation to cause a decrease in 

performance when it incorrectly 

classifies access patterns. 

  

Using an unmodified cache for 

comparison does not take into account 

the additional complexity of the CFPT 

and bypass buffer. It is for this reason 

that we compared our results with a 

victim cache of the same size as the 

bypass buffer. Memory trace analysis 

showed that the victim cache and the 

SFDC reduced  
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Figure 5:  Results for VPR, MCF, PARSER, and GZIP 

 

misses for different reuse distances. 

Simulation of the benchmarks on the two 

cache configurations showed that these 

benchmarks have shorter reuse distances, 

favoring the victim cache. 

  

The results presented illustrate 

two important details about our 

implementation of the SFDC. Primarily, 

that it is a novel architectural 

improvement which reduces misses for 

large reuse distances. Additionally, the 

large dependence on bypass buffer size 

indicates that there are better metrics 

than that implemented in the CFPT for 

filtering the data allowed in the cache.  

  

While the SFDC was topped by a 

comparably sized victim cache in most 

cases, this does not mean that the topic 

should be forgotten altogether. It is a 

new idea and will require further 

investigation to obtain the optimum 

results. More concentrated work in this 

area should lead to better performing 

selective fill data caches.  

 

VI. FUTURE WORK 

 

There is still much to study about 

the SFDC. A latency intrinsic, cycle 

accurate simulation and comparison 

would show how the misses that the 

SFDC and victim cache eliminate affect 

overall performance.  Results from these 



simulations would also suggest whether 

or not the importance of a given miss 

correlates with reuse distance.  

 

Elaborating on the fact that 

victim caches only protect against small 

reuse distances and that the SFDC does 

better for larger reuse distances, a 

worthwhile experiment would simulate 

both of these optimizations 

simultaneously on the same cache to 

determine whether or not they are 

complementary techniques. It is possible 

that the performance increase could be 

more than additive. The victim cache 

could keep small reuse distance miss 

patterns out of the CFPT, allowing it to 

focus on preventing longer reuse 

distance misses. This could give the 

improvements of a traditional victim 

cache plus improvements better than 

those presented for the SFDC. 

  

 An investigation into the cycle 

times of the victim cache and the 

selective fill data caches similar to that 

in [3] would determine whether the 

assumptions used to compare the victim 

cache and bypass buffer are valid. As 

on-chip communication becomes more 

and more expensive, minimizing area is 

important, but perhaps not so much as to 

ignore the affects of a 2-way compare in 

the bypass buffer versus a 16 or 32-way 

compare in the victim cache. This data 

would only serve to shrink the victim 

cache against which we compare, and 

possibly show that the SFDC does 

perform better in more cases.  

 

 The increase in miss rate 

observed on the Parser benchmark for an 

8KB direct-mapped cache suggests that 

some sort of eviction policy from the 

CFPT should be implemented. Simple 

replacement is not good enough. One 

possibility is using an address’ access 

frequency in the bypass buffer to 

determine whether or not it should be 

there. If an address begins to frequently 

hit in the bypass buffer, it should be 

removed from the fill policy table and 

allowed into the cache until its behavior 

becomes detrimental again.  

 

 Another possible improvement to 

the SFDC would be to dynamically 

determine the threshold behavior used in 

the CFPT in order to filter bad addresses 

out of the cache. This could be done 

either by a hardware controlled 

performance metric, or by adding a 

software controlled register to contain 

the threshold. The hardware approach 

could keep track of the cache’s miss rate 

and change the threshold if too many 

misses over a given period. In software, 

the operating system could vary the 

threshold each time a program is run 

until the optimum threshold is found.  

 

 The concept of a selective fill 

data cache is a sound one, and will likely 

be one of the paths that architects chose 

as cache sizes decrease and their 

contents become increasingly important.  

More advanced cache architectures can 

always better exploit temporal locality, 

and we feel that this one shows much 

promise for the future. 
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