
Selective Fill Data Cache

Rice University – ELEC525 Final Report

Anuj Dharia, Paul Rodriguez, Ryan Verret

Abstract – Here we present an

architecture for improving data cache

miss rate. Our enhancement seeks to

capture greater temporal locality than

a standard cache by more efficiently

using the area available. Frequently

used data ought to remain in the cache,

while infrequently used data ought not

to be admitted into the cache. Policing

entry into the cache leaves more room

for useful data.

 The Selective Fill Data Cache

prevents rarely used data from

entering the cache. The Cache Fill

Policy keeps record of data blocks that

exhibit little temporal locality. These

data blocks must bypass the L1 cache

before reaching the CPU. It is in the

bypass path where we cache these

values in a bypass buffer in order to

decrease the penalty for mis-

predictions.

Index Terms – Selective Fill Data

Cache, SFDC, bypass buffer, Cache

Fill Policy Table, CFPT, data cache

I. INTRODUCTION

The gap between the

performance of a superscalar processor

and its memory subsystem is quickly

increasing. For many years computer

architects have focused their efforts on

improving processor architecture and

have created enhancements such as

speculative and out-of-order execution.

Architects have also increased the issue

width to improve performance. It is

important to realize that applications can

only fully and effectively utilize these

processor enhancements if the

underlying memory subsystem can feed

the processor with both instructions and

data quickly enough.

Researchers are constantly

striving to mitigate the effects of long

memory latencies. Many modern

processors implement techniques such as,

“lockup-free caches, cache-conscious

load scheduling, hardware and software

prefetching, stream buffers, speculative

loads and execution, multithreading, data

value prediction, and instruction reuse

[1]” to help reduce this latency.

a. Motivation

Expanding issue widths,

aggressive software and hardware

prefetching techniques, speculative

execution, and a host of other modern

techniques create a greater demand for

data, straining caches more than

previous generations of processors and

creating more conflict and capacity

misses. These cache misses are

becoming more and more costly because

of the hundreds of cycles they take to

satisfy. Additionally, as superscalar

clock frequencies continue to increase,

data caches must adapt. Small, fast

caches continue to shrink in size to

maintain their single cycle latency, while

larger, slower caches cause longer access

latencies.

As access times take more cycles

and caches grow smaller, their efficient

use becomes more important. New

techniques are necessary in order to take

full advantage of the entire cache and

ensure that cycles are not wasted as a

result of inefficient use of the cache.

b. Hypothesis

Increasing the line size or

augmenting the associativity of a cache

does not capture adequate spatial and

temporal locality. If frequently used

data is given priority in a cache while

infrequently used data is prevented from

filling it, the effectiveness of a cache can

be increased. Data consistently evicted

from the cache before a subsequent

access ought not to enter if it is to evict

useful data. This scheme, collectively

known as a Selective Fill Data Cache

(SFDC), should keep more frequently

used data in the cache and reduce

conflict and capacity misses caused by

useful data being evicted by infrequently

used data. Our implementation proposes

two modifications to existing processors,

both of which do no delay the critical

path. The first is a Cache Fill Policy

Table (CFPT) that records data which

does not need to be cached. The other is

a Bypass Buffer that is used to cache

data that is not allowed in the data cache.

c. Preliminary Findings

Prior to the implementation of

the SFDC, we closely examined cache

miss and hit rates over different reuse

distances for the 175.vpr SPEC2000

integer benchmark in Figure 1. For

reuse distances from 1 to 10, the first

two bars on the graph, the 8KB direct

mapped cache sufficiently captures the

temporal locality of the data. As reuse

distances grow, however, the miss rates

grow substantially. Initially, we

projected the SFDC to eliminate half the

misses for reuse distances of up to

10,000, the first five bars on the graph.

8k Direct Mapped (VPR)

0

500000

1000000

1500000

2000000

2500000

1 10 100 1000 10000 100000 1000000

Reuse Distance

N
u

m
b

e
r

o
f

A
c

c
e

s
s

e
s

Misses

Hits

Figure 1: Reuse Distance for 8KB

Direct Mapped Cache

The remainder of the paper is

organized as follows. Section II takes a

closer look at the architectural specifics

of the proposed SFDC. Section III

specifies the experimental methodology

for the simulations. Section IV

examines the results of these simulations.

Section V presents conclusions, and

Section VI suggests possibilities for

future work.

II. ARCHITECTURE

The architectural changes made

to implement the SFDC are not overly

complicated. Figure 2 shows the basic

block diagram of our cache

implementation, where changes include

minor modifications to the L1 data cache,

a direct mapped CFPT of tags and

counters, and a two-way set associative

bypass buffer. These alterations allow

the cache to operate with a more

sophisticated behavior in an attempt to

reduce miss rate.

Figure 2: Selective Fill Data Cache Architecture

a. L1 Data Cache

 The only necessary modification

to the L1 data cache is the addition of a

“used” bit to each block. When a new

block enters the cache, its used bit is

cleared. If the block is ever accessed

again for a read or write, the used bit is

set. This is a variation of the “dirty” bit

and should not require increased design

or verification time.

b. Cache Fill Policy Table

 The CFPT is implemented as a

direct mapped cache of tags. The

number of entries in the fill policy table

is the same as the number of sets in the

cache, reducing complexity. This

configuration gives each set the ability to

keep out one block that should not reside

in it. Additionally, each entry in the

CFPT contains a two bit saturating

counter used to profile access patterns.

 When a block is evicted from the

cache, the CFPT checks the status of the

used bit. A set used bit indicates that the

processor accessed the block after it

entered the cache and the CFPT does

nothing. If, however, the block is never

accessed, the CFPT compares the tag of

that block with the content of the

corresponding entry in the table. When

these tags differ, the CFPT retains the

tag of recently evicted block in the

appropriate entry, overwriting whatever

was present before. The CFPT also

clears the counter associated with that

entry. If the tags are the same, the CFPT

increments the entry’s counter. Once in

the table, tags remain there until

replacement. This behavior determines

the number of sequential occurrences in

which a given address block is evicted

from its appropriate set without having

been used. A comparison of the counter

and a threshold value determines

whether or not a block with a given tag

is allowed to enter the cache.

c. Bypass Buffer

 For blocks that are kept out of

the L1 data cache, a bypass path is

provided from the L2 cache. In this path

exists a small cache called a bypass

buffer. This structure is intended to

alleviate some of the costs of

mispredicting the usage of a data block.

Data blocks remain in the bypass buffer

until replacement.

We performed initial tests to

determine what sizes and configurations

best suit these additional structures.

Tests between associative and direct

mapped fill policy tables showed that

associativity causes the SFDC to

perform worse than when using a direct-

mapped table. This is likely do to the

fact that tags do not leave the table often

enough. As later results show, we should

have given more consideration to this

fact. For the bypass buffer, larger sizes

and associativities yield better results,

albeit with diminishing returns. Later

results elaborate on this and explain why

the chosen configuration is two-way set

associative, one sixteenth the size of the

L1 cache.

III. EXPERIMENTAL

 METHODOLOGY

a. SimpleScalar

In order to test the efficacy of the

proposed SFDC, we implemented it

using the SimpleScalar 3.0 tool set, a

“suite of powerful computer simulation

tools that provide both detailed and high-

performance simulation of modern

microprocessors [2]”. The experiment

utilized the latency independent cache

simulator and focused solely in

improving the effectiveness of the L1

data cache miss rates. Arguably, cache

miss rates are the most important metric

for determining the efficiency of a cache.

A latency intrinsic model of our

simulation would be valuable in the

future (see Section VI).

We used four different baseline

cache configurations as a method for

comparison to our enhancements: 8KB

direct mapped, 8KB two-way set

associative, 16KB direct mapped cache,

and 16KB two-way set associative.

Further details about these baseline

configurations can be found in Table 1.

These configurations are exemplary of

modern primary level caches.

The SFDC augments each

baseline configuration for four additional

implantations. Moreover, the SFDC

implementations are identical to the

baseline implementation with three

added improvements. First, the data

cache contains one extra used bit in each

cache line. Second, a variable sized,

two-way set associative bypass buffer

was added to the cache. The size of the

bypass buffer varies from 1/64 the size

of the baseline data cache all the way to

the full size of the baseline data cache.

For example, a 1/16 size bypass buffer

would be 512 bytes for the two 8KB

configurations and 1024 bytes for the

two 16KB configurations. Finally, the

direct mapped CFPT contains as many

lines as sets in the baseline cache.

In an effort to compare the

effectiveness of the SFDC to another

cache enhancement based on

communication limitations, a victim

cache supplements each of the four

baseline configurations. The victim

cache is always fully associative, and the

L1 Data Cache 8KB Direct Mapped, 8KB Two-Way Set

Associative, 16KB Direct Mapped or

16KB Two-Way Set Associative, all with

32 byte blocks and a LRU replacement

policy

L2 Data Cache 256KB Four-Way Set Associative with 64

byte blocks and a LRU replacement policy

L1 Instruction Cache 8KB Direct Mapped with 32 byte blocks

and a LRU replacement policy

L2 Instruction Cache 256KB Four-Way Set Associative Cache

with 64 byte blocks and a LRU

replacement policy

Cache Flush False

Instruction TLB 256KB Four-Way Set Associative with

4KB pages and a LRU replacement policy

Data TLB 512KB Four-Way Set Associative with

4KB pages and a LRU replacement policy

Table 1: Baseline Cache Configuration

size of the victim cache equals the size

of the bypass buffer.

b. Benchmarks

Four applications from the

SPEC2000 benchmark suite were used

to determine the value of the

architectural modifications specified in

Section 2. All four benchmarks were

members of the integer component of the

SPEC2000 benchmark suite: 175.vpr

(VPR) which is used for FPGA circuit

placement and routing, 181.mcf (MCF)

which is used for combinatorial

optimization, 197.parser (PARSER)

which is used for word processing, and

164.gzip (GZIP) which is used for

compression.

IV. RESULTS

a. Bypass Buffer

 Shown in Figure 3 are the results

of tests on differing bypass buffer sizes

for the VPR benchmark. The buffer sizes

are defined as a fraction of the total L1

data cache size. Small bypass buffer

sizes have the most impact on miss rate.

At around 1/16 of the L1 data cache size,

the size of the bypass buffer is

marginally significant, and further

increases in size result in diminishing

returns. The final implementation of the

SFDC makes use of a bypass buffer

which is 1/16 the size of the L1 data

cache. The bypass buffer uses two-way

associativity as it is a good compromise

between direct mapped caches and four-

way caches.

c. Reuse Distance

 Figure 4 illustrates miss rates

versus data reuse distance for the

baseline, SFDC, and victim cache

configurations using the VPR

benchmark. SFDC outperforms the

baseline configuration by eliminating

essentially all misses for reuse distances

of 11 to 100 and reducing misses for

distances of 101 to 1000 and 1001 to

10000 by half. The victim cache, when

Bypass Buffer Size Analysis (VPR)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1/64 1/32 1/16 1/8 1/4 1/2 1

Fraction of D1 Cache Size

M
is

s
 R

a
te

8k-direct

8k-2way

16k-direct

16k-2way

Figure 3: Bypass Buffer Size versus Miss Rate

compared against the SFDC, also

eliminates misses for reuse distances of

11 to 100, further decreases misses for

distances of 101 to 1000 and eliminates

fewer misses for distances of 1001 to

10000.

 The victim cache is essentially a

last-in first-out queue which forwards

evicted data blocks to the processor. The

last-in first-out nature of the cache

eliminates misses with shorter reuse

distances. Due to the small number of

spaces available in the victim cache,

misses with longer reuse distances

cannot be prevented as effectively. The

requested data will have already been

replaced in the cache by the time the

next miss occurs. The SFDC

implementation is not subject to this

problem because many of those same

elements which were placed into the

victim cache and later evicted are never

forced to leave the cache. This allows

useful elements to remain in the cache

for a longer time then they would in a

traditional cache.

c. Benchmark Results

 Figure 5 shows the resulting data

cache miss rates for the four benchmarks

chosen. Each graph shows the miss rates

for 8KB and 16KB direct mapped caches,

as well as 8KB and 16KB two-way set

associative caches.

8k Direct Mapped with SFDC (VPR)

0

500000

1000000

1500000

2000000

2500000

1 10 100 1000 10000 100000 1000000

Reuse Distance

N
u

m
b

e
r

o
f

A
c

c
e

s
s

e
s

Misses

Hits

8k Direct Mapped with Victim Cache (VPR)

0

500000

1000000

1500000

2000000

2500000

1 10 100 1000 10000 100000 1000000

Reuse Distance

N
u

m
b

e
r

o
f

A
c

c
e

s
s

e
s

Misses

Hits

Figure 4: Reuse Distance versus Hit/Miss

Counts for SFDC and Victim Cache

 The VPR benchmark shows a

significant miss rate decrease from the

baseline for the SFDC in all cases.

However, in both of the 16KB caches

the victim cache outperforms the SFDC.

The resulting miss rate drops in all cases

are due to the fact that the data in the

VPR benchmark is highly cacheable

with small reuse distances.

 MCF is a benchmark which is

not particularly cacheable. As a result

the SFDC implementation only manages

to reduce the miss rates from the

baseline, though in all cases decreases

are recorded. The SFDC outperforms the

victim cache for both of the two-way

implementations.

 The results of the PARSER

benchmark for the SFDC show a slight

miss rate decreases for the 8KB two-way

and both 16KB caches. However, for an

8KB direct way configuration the SFDC

increases the miss rate past the baseline

rate because valuable blocks remain

flagged in the CFPT and are not replaced.

In this manner, the selective fill policy is

too selective and does not allow the L1

cache to be fully utilized.

 The GZIP benchmark shows

modest gains for all cache configurations.

The two-way associative cache

implementations provide ample

associativity to eliminate nearly all

conflict misses. This indicates that

GZIP has predominantly compulsory

and capacity misses. In this case, the

victim cache outperforms the SFDC.

V. CONCLUSIONS

A SFDC improves the hit rate of

standard caches for most benchmarks. It

does so by preventing data with little or

no temporal locality from entering the

cache, allowing more useful data to

reside there. The architectural

enhancements required to accomplish

this are not prohibitively complex, yet

there exists the possibility for this

implementation to cause a decrease in

performance when it incorrectly

classifies access patterns.

Using an unmodified cache for

comparison does not take into account

the additional complexity of the CFPT

and bypass buffer. It is for this reason

that we compared our results with a

victim cache of the same size as the

bypass buffer. Memory trace analysis

showed that the victim cache and the

SFDC reduced

VPR Benchmark Results

0

0.01

0.02

0.03

0.04

0.05

0.06

8k-direct 8k-2way 16k-direct 16k-2way

Configuration

M
is

s
 R

a
te

Base Config.

SFDC

Victim Cache

MCF Benchmark Results

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

8k-direct 8k-2way 16k-direct 16k-2way

Configuration

M
is

s
 R

a
te

Base Config.

SFDC

Victim Cache

Parser Benchmark Results

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

8k-direct 8k-2way 16k-direct 16k-2way

Configuration

M
is

s
 R

a
te

Base Config.

SFDC

Victim Cache

GZIP Benchmark Results

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

8k-direct 8k-2way 16k-direct 16k-2way

Configuration

M
is

s
 R

a
te

Base Config.

SFDC

Victim Cache

Figure 5: Results for VPR, MCF, PARSER, and GZIP

misses for different reuse distances.

Simulation of the benchmarks on the two

cache configurations showed that these

benchmarks have shorter reuse distances,

favoring the victim cache.

The results presented illustrate

two important details about our

implementation of the SFDC. Primarily,

that it is a novel architectural

improvement which reduces misses for

large reuse distances. Additionally, the

large dependence on bypass buffer size

indicates that there are better metrics

than that implemented in the CFPT for

filtering the data allowed in the cache.

While the SFDC was topped by a

comparably sized victim cache in most

cases, this does not mean that the topic

should be forgotten altogether. It is a

new idea and will require further

investigation to obtain the optimum

results. More concentrated work in this

area should lead to better performing

selective fill data caches.

VI. FUTURE WORK

There is still much to study about

the SFDC. A latency intrinsic, cycle

accurate simulation and comparison

would show how the misses that the

SFDC and victim cache eliminate affect

overall performance. Results from these

simulations would also suggest whether

or not the importance of a given miss

correlates with reuse distance.

Elaborating on the fact that

victim caches only protect against small

reuse distances and that the SFDC does

better for larger reuse distances, a

worthwhile experiment would simulate

both of these optimizations

simultaneously on the same cache to

determine whether or not they are

complementary techniques. It is possible

that the performance increase could be

more than additive. The victim cache

could keep small reuse distance miss

patterns out of the CFPT, allowing it to

focus on preventing longer reuse

distance misses. This could give the

improvements of a traditional victim

cache plus improvements better than

those presented for the SFDC.

 An investigation into the cycle

times of the victim cache and the

selective fill data caches similar to that

in [3] would determine whether the

assumptions used to compare the victim

cache and bypass buffer are valid. As

on-chip communication becomes more

and more expensive, minimizing area is

important, but perhaps not so much as to

ignore the affects of a 2-way compare in

the bypass buffer versus a 16 or 32-way

compare in the victim cache. This data

would only serve to shrink the victim

cache against which we compare, and

possibly show that the SFDC does

perform better in more cases.

 The increase in miss rate

observed on the Parser benchmark for an

8KB direct-mapped cache suggests that

some sort of eviction policy from the

CFPT should be implemented. Simple

replacement is not good enough. One

possibility is using an address’ access

frequency in the bypass buffer to

determine whether or not it should be

there. If an address begins to frequently

hit in the bypass buffer, it should be

removed from the fill policy table and

allowed into the cache until its behavior

becomes detrimental again.

 Another possible improvement to

the SFDC would be to dynamically

determine the threshold behavior used in

the CFPT in order to filter bad addresses

out of the cache. This could be done

either by a hardware controlled

performance metric, or by adding a

software controlled register to contain

the threshold. The hardware approach

could keep track of the cache’s miss rate

and change the threshold if too many

misses over a given period. In software,

the operating system could vary the

threshold each time a program is run

until the optimum threshold is found.

 The concept of a selective fill

data cache is a sound one, and will likely

be one of the paths that architects chose

as cache sizes decrease and their

contents become increasingly important.

More advanced cache architectures can

always better exploit temporal locality,

and we feel that this one shows much

promise for the future.

REFERENCES

[1] Doug Burger, James R. Goodman, and Alain

 Kagi. “Limited Bandwidth to Affect

 Processor Design.” IEEE Micro.

 November/December 1997.

[2] Simple Scalar LLC: To Serve and Protect.

 http://www.simplescalar.com.

[3] Wilton, S.J.E.; Jouppi, N.P. “CACTI: an

 enhanced cache access and cycle

 time model.” Solid-State Circuits, IEEE

 Journal of. Volume: 31 , Issue: 5. May 1996.

