
Enhancing Data Cache Performance via Dynamic Allocation

George Murillo, Scott Noel, Joshua Robinson, Paul Willmann

Rice University
6100 Main Street

Houston, TX 77005, USA
{jmurillo, scnoel, jpr, willmann}@rice.edu

Abstract

As process technologies get smaller, the mounting prob-
lem of wire delay is becoming a pervasive challenge
in the microprocessor architecture community. In or-
der to not sacrifice the seemingly required benefits of a
larger, more associative level 1 (L1) data cache, archi-
tects have opted for an L1 data cache that has a mul-
tiple cycle latency. Largely overlooked, however, is the
data reference patterns of modern applications that ex-
hibit predictive, read-and-throw-away behavior and do
not benefit from traditional large, associative caches.
We examine a new cache hierarchy that achieves the
equivalent or better levels of data locality using lower-
delay elements that will scale better with new process
technologies. Furthermore, we show that our proposed
architecture achieves up to 16.7 % better performance
than existing architectures with structures of larger size
when real-world latency is applied, and it provides com-
parable miss rates with respect to much larger, more
complex and therefore slower architectures.

1 Introduction

Over the past few years the use of general purpose pro-
cessors to run computationally intense multimedia ap-
plications has increased. In addition to multimedia-only
applications, general purpose applications are starting
to include multimedia features. This led us to ana-
lyze multimedia processors and digital signal proces-
sors (DSPs) in order to identify features that could be
applied to general purpose processors and improve per-
formance. The inherent nature of media-only applica-
tions, however, is strikingly unique compared to gen-
eral purpose business and scientific programs. With
respect to the memory subsystem, media-only applica-
tions usually do not make good use of traditional caches
due to the limited amount of temporal locality and gen-
eral reuse that can be extracted from them. This is pri-

marily a result of repetitive read-and-throw-away algo-
rithms in which large amounts of data are processed
once and rarely, if ever, revisited. Such data rarely ben-
efits from a large, flexible cache. Media processors and
DSPs typically have small simple caches (if they have
caches at all) that are often software-managed [1] in or-
der to maximize their efficiency by controlling what is
actually cached, and to provide deterministic behavior.

1.1 Hypothesis

In this paper we propose a new cache management pol-
icy based on the algorithms and access patterns found in
many media processing streams. We propose a special
cache sidebuffer where we will place data that we antic-
ipate to have little temporal locality; this data will not
be allocated in the main L1 data cache. The architecture
will perform dynamic runtime analysis of loads to deter-
mine whether a load should be allocated in L1 or instead
placed in storage outside L1 (the sidebuffer.) The im-
plementation and careful management of the sidebuffer
and L1 data cache will reduce overall (cache and side-
buffer combined) L1 cache miss rates by removing re-
peating, read-only accesses that would otherwise pol-
lute the L1 cache through by evicting needed data. We
believe that our configuration will perform similarly to
unmodified configurations that have larger caches, but
when compared to configurations equal-sized caches
ours will perform better.

In Section 2, we review the background and moti-
vation for our work. In Section 3, we present the Dy-
namic Cache Allocation architecture. In Section 4, we
review our experimental implementation and evaluation
process. In Section 5, we present our results and analy-
sis. In Section 6, we discuss related work, and in Sec-
tion 7 we present our concluding remarks.

1



2 Background

Before proposing a solution to the hypothetical prob-
lem of inefficient cache management given the chang-
ing behavior of general purpose applications, we first
needed to establish the validity of the problem as posed.
If valid, we needed to derive a solution that could not
only outperform existing architectures but would scale
in the environment of increasing relative wire delay. It
would thus serve as a performance boost and a means
to deal with the growing scaling problems computer ar-
chitects currently face. We present the supposition of
the problems faced and our evaluation of their scientific
basis here.

2.1 Motivation

We believe that the use of general purpose processors to
process media applications and media-like workloads
will increase during the following years. One of the
current major problems that general purpose processors
suffer is data cache efficiency as expressed as a miss
rate; architects have tried to reduce cache misses by in-
creasing the size of cache and its associativity. How-
ever, some workloads (such as media workloads) make
very poor use of caches and thus may pollute the cache
by introducing large quantities of ’useless’ data (lack-
ing significant temporal locality) into the cache, evict-
ing more useful data. Data that is not reused does not
benefit from being in the cache, and moreover it is
harmful to the rest of the cached data to do so. How-
ever, we foresee that future microprocessors will in fact
have smaller, less associative caches because large as-
sociative caches are slower in absolute terms. Rela-
tive to processor clock speed (which continues to in-
crease), wire delay is increasing and thus evenexisting
caches are getting slower from one generation of pro-
cessor to the next. This is anecdotally exhibited in the
transition from IBM’s single-cycle POWER3-II L1 data
cache [11] to the four-cycle store, two-cycle load la-
tency in POWER4 [4]. Thus, increasing sizes and asso-
ciativity is an infeasible option. Rather, we believe that
researching and improving cache management policies
will yield designs that are more future-ready.

Analyzing and leveraging the behavior of media ap-
plications could increase performance in general pur-
pose processors both in media applications as well as
regular applications. Data that is allocated in the cache
that will only be read and thrown away can cause cache
pollution, because (if repeated across a wide range of
data addresses) it may evict data from the cache that
could be reused many times in the future. Since a large
portion of the data in some media applications tends

to fit this classification, data is constantly ejected from
general-purpose caches and miss rates increase. This
problem will be exacerbated as more workloads with
similar behavior are run on a general purpose proces-
sor.

2.2 Initial Verification Testing

In order to first determine that modern programs ac-
tually do exhibit the type of cache pollution that we
are suggesting in this paper we ran several memory
traces on benchmark programs. We wanted to deter-
mine what percentage of program memory accesses,
especially programs in the SPEC benchmark suite and
media programs, are a read once type of access with no
write back. Our tests determined if a memory access
was read once by noting if there was more than one
load to the same memory address in both the forward
and backwards direction in the trace without a store to
that address in between the loads

Figure 1 shows the percentage of memory references
expressed as a percentage of the total number of mem-
ory references including loads and stores that we would
like to target for special allocation. A reference quali-
fies if, during a given examination window, there are at
least two other loads from that cache line, and during
that window there are no writes to that line. Our re-
sults show that these types of accesses range anywhere
from 8 % for the equake benchmark to 50 % for the
mcf benchmark assuming a window size of 8 memory
accesses in each direction from the memory access that
we were analyzing. Note that on average 24 % of the
memory accesses over all of the memory traces that we
ran exhibited the read once behavior that we were look-
ing for. We felt that this was a high enough percent-
age to warrant targeting for allocation in our sidebuffer
rather than the L1 cache.

We not only wanted to test if we had a large num-
ber of memory accesses of this qualifying type, but we
also wanted to make sure that these type of accesses
were well dispersed throughout the cache. Wide distri-
bution would suggest cache pollution is more likely due
to more conflicting addresses and thus our sidebuffer
would be more effective in increasing performance (as-
suming there are memory references available to take
advantage of the less-polluted cache.) From a qualita-
tive look at plots (See Figure 2 for an example) of the
number of qualifying accesses vs. cache set addresses,
it appeared very promising. Figure 2 demonstrates that
if we were to target these qualifying accesses and not
allocate them in the cache, we would be affecting the
full spectrum of cache locations as opposed to only af-
fecting a small corner of the cache. As there are more

2



Figure 1: Percentage of Qualifying Accesses

addresses affected, it is more likely that these references
may conflict with something else, especially in a direct-
mapped cache. Though substantial spikes exist, there

Figure 2: gzip-log Window Size +-8

are well-dispersed accesses throughout the cache, and
the absolute numbers of these qualifying accesses (even
for the ’small’ entries in the graph) are nontrivial. Pro-
grams like gzip and MCF showed especially promising
results - the qualifying accesses occurred almost equally
on almost every set address. Thus the cache is probably
becoming widely polluted by allowing these accesses,
which do not need to go in the L1, to allocate in L1. (We
cannot guarantee a ’polluted’ state unless we can guar-
antee that useful data is being evicted.) Placing these
accesses in the sidebuffer rather than the L1 should ad-
dress the problem.

The last testing that we did was to verify that these

qualifying accesses were predictable. It is not benefi-
cial to know that the accesses are polluting the cache if
we cannot dynamically predict that they are occurring
and can remove them from the cache. To check this
we looked at the dispersion of the static instructions by
program counter (PC) for all of the memory accesses.
We noted from graphing the number of qualifying ac-
cesses versus the PC that most of the traces that we ran
mapped the memory accesses to very few PCs. In most
cases, there were around 700 distinct PCs. Also there
were even fewer numbers of PCs that had most of these
memory accesses, so we noted that memory access tend
to clump around certain PCs. Thus if we know which
PCs the qualifying accesses occur at, then we can use
the PC to predict when we have a qualifying memory
access that should not be allocated in the cache. See
Figure 3 for an example of this PC behavior.

Figure 3: equake PC Analysis, +-128 References

3



3 Architecture

Through extensive analysis of the runtime memory ref-
erence patterns of SPEC2000 benchmarks, we estab-
lished that there exists significant opportunity to use
runtime-available information to classify load instruc-
tions into two classes: those that should be allocated a
line in the regular cache, and those that should be held
aside due to state information that suggests the particu-
lar line will not be rewritten. Here, we present an archi-
tecture that implements this runtime analysis in such a
way as to not lengthen the critical data path.

3.1 Mapping a Solution

Our analysis suggests that the references that classify
as ’read-only’ (e.g. no writes are encountered within a
span of plus or minus 32 memory references) and repet-
itive (at least three loads from that line) are generated by
only a very few static instructions as established in Sec-
tion 2. This suggests that a simple finite state machine
(FSM) can be used to make a prediction about whether
a given load instruction is part of a large read-only ref-
erence pattern. This FSM is implemented in ourLoad
History Table(LHT.) Furthermore, our analysis sug-
gests that increasing the number of distinct cache lines
that can be outstanding in a read-only reference pattern
reduces early eviction before a line is finished being
used. These lines are stored in thesidebuffer, which
attempts to capture read-only spatial locality. These
structures are laid out with the rest of the processor core
in Figure 4. Throughout our architecture, we focus on
simplicity as defined by wire-delay imposed access time
rather than raw transistor count. As technology trends
continue to scale smaller, transistor availability will in-
creasingly become a non-issue and performance will be
dominated by the wire-delay effects.

3.2 Load History Table

The Load History Table in part works analagously to
a traditional branch history table. Upon encountering
a load memory reference, the PC of that instruction is
used to index a direct-mapped table of history bits. The
history bits function as threshhold counters. Since, in
this case, the instruction is a load, the count is increased.
When there is a store, all that is taken into consider-
ation as input to the LHT is the reference destination
address. Stores follow a different path to update state as
described below - the result is that the history bits as-
sociated with the load to the line now being stored are
decremented. Once the threshhold value is met (which
we set to eight with four history bits), any new load data

for that PC is filled from L2 into the sidebuffer rather
than into the L1 cache. However, if the cache line being
referenced is already in L1 (that is, we did not cross a
cache line boundary since the previous load), the cache
line staysin L1 and is not moved. Only newly allocated
lines are steered by the LHT for simplicity. In a direct-
mapped L1, there would be no benefit for evicting a line
from L1 to the sidebuffer. However, in an associative
L1, it may be beneficial in corner cases to move the line
to the sidebuffer in order to prevent the later eviction of
’normal’ read-write L1 data.

In order to maintain correct history information, the
LHT must also be responsible for maintaining an asso-
ciation between each cache line in the L1 data cache
and the PC that ’owns’ that cache line. A PC owns a
cache line if it was the most recent instruction to load
that line. This maintenance is used solely for mapping
cache lines to PCs so that, in the case of a store, the
LHT can look up the correct history entry to decrement.
So, unlike a load, the LHT uses only the store address as
input and then calculates the relationship of that address
to a PC. For simplicity and presumed speed in physical
implementation, we used direct-mapped L1 data caches
for our implementation so that the mapping from ref-
erence address to PC is a simple table lookup (where
the table is the size of the number of L1 data cache
lines.) Support for associativity is straightforward to
implement but deviates from our goal of reducing la-
tency wherever possible. The LHT layout is pictured in
Figure 5.

3.3 Sidebuffer

The sidebuffer serves as storage for read-only lines. It’s
implemented as a small (8 to 32 lines) fully associative
cache with first-in-first-out (FIFO) replacement. Least-
recently-used (LRU) would be desirable to evaluate, but
the simulation tools we used (Simplescalar 3.0) do not
implement a LRU policy. However, due to the nontra-
ditional locality behavior (e.g. spatial locality with very
little temporal locality) of the references we are target-
ing for storage in the sidebuffer, using a simpler replace-
ment policy (such as FIFO) may prove just as effective.

The sidebuffer receives data from the L2 cache upon
a fill (when steered by the LHT according to history
data.) The sidebuffer is also read-only. Thus, there is no
outgoing path to L2 from the sidebuffer. When the side-
buffer encounters a store reference that matches one of
the lines inside it, the sidebuffer invalidates that line au-
tomatically. The sidebuffer always reports a miss upon
store references, and since the data is not in L1, the L2
is triggered as if there was an L1 miss. The LHT then
steers the fill data to L1 after the L2 access latency has

4



Figure 4: Dynamic Cache Allocation Architecture

expired. We could have optimized the datapath to sup-
port transfer of lines from the sidebuffer to L1 to avoid
the L2 access penalty, but for simplicity in this initial
implementation, we did not. A side effect of this is that
the data in L1 and the sidebuffer are mutually exclusive.
The only overhead required to maintain this condition
is the requirement that the sidebuffer invalidates a line
if a write goes to it. If a line in the sidebuffer is in-
validated, we say it has beenmisallocated. Due to the
mutually exclusive relationship between data in L1 and
the sidebuffer, the selection logic for the mux in Figure
4 is extraordinarily simple - after a cache miss and upon
completion of the line fill, the data will hit in one and
only one of those memories.

4 Implementation

We developed two new architectural structures, the load
history table (LHT) and sidebuffer, in order to exploit
the memory behavior we identified. In order to deter-
mine the effectiveness of these additions, we integrated
them into the superscalar architecture simulated by sim-
plescalar. We evaluated cache miss rates and IPC num-
bers using sim-outorder. By varying the parameters of
both these structures using convenient command line

options, we explored the design space to pinpoint the
most effective use of transistor resources (i.e. the points
of diminishing returns) within the realistic bounds of
the desired single-cycle delay. Once we determined the
optimal LHT and sidebuffer parameters, we compared
simulated results using these configurations with results
from an unmodified architecture.

4.1 Applications

The memory reference behavior we targeted in our ex-
periments shows up to varying degrees in all programs.
In some programs, such as media processing applica-
tions, the pattern is very pronounced, while in general
purpose programs the patterns appear less predictably.
We ran simulations using both general purpose applica-
tions (i.e. SPECint and SPECfp) and multimedia appli-
cations from the MediaBench suite.

4.2 Exploring the Design Space

Before comparing our modified architecture to an un-
modified architecture, we first evaluated how to opti-
mally configure our new structures. We determined
the most effective design in terms of transistor count
and latency before doing a full performance analysis.

5



Figure 5: Internal LHT Architecture

Since we intended the inclusion of our changes to af-
fect the hit rate of the level 1 data cache system, we
adjusted our parameters with the single goal of mini-
mizing the miss rate. To do this part, we integrated our
proposed changes into sim-cache to quickly evaluate L1
data cache miss rates.

Between the two structures (the LHT and sidebuffer),
there were four parameters which influence the com-
bined level one miss rates. The LHT hasN direct-
mapped entries, each withB bits. IncreasingN has
the effect of reducing the number of conflicts in the ta-
ble and thereby reducing the number of misallocations
to the sidebuffer due to aliasing. The other LHT pa-
rameter isB, the number of bits per entry, which cor-
responds to the granularity of the confidence counters.
More bits correspond to the ability to capture more his-
tory for a particular PC, which eventually relates to bet-
ter prediction and fewer combined L1 misses due to
fewer misallocations in the sidebuffer. Figure 6 shows
the effect of different numbers of history bits on the
combined L1/Sidebuffer miss rate for the gzip-graphic
benchmark. This uses a fixed sidebuffer size of 16 en-
tries.

For each data point, the threshhold is set to be the
value at which the most significant bit flips. If the
threshhold is too high, our allocation policy into the
cache may be too conservative. Therefore, fewer lines
will be allocated into the sidebuffer, and we will limit

Figure 6: Effect of History Size on Combined
L1/Sidebuffer Miss Rate (gzip-graphic)

6



the benefits of our architecture. This is exhibited in Fig-
ure 6 with five history bits. Too few history bits (and
thus overly aggressive allocation into the sidebuffer) is
detrimental when sidebuffer invalidation happens too
often and the L2 load penalty is incurred.

The sidebuffer is implemented as a standard cache
structure in simplescalar so it has the standard cache
parameters. To maximize the hit rate in the sidebuffer,
we decided early on to make it a fully-associative struc-
ture. If wire latencies continue to constrain perfor-
mance, we will eventually want to explore making the
sidebuffer set-associative to decrease the access latency.
We examined implementations with few (4 to 32) lines
in the sidebuffer, so a fully-associative implementation
seemed achievable. We assumed a base LRU replace-
ment policy in Simplescalar, though this is currently im-
plemented as FIFO in the Simplescalar 3.0 tools. Evalu-
ating a simpler replacement policy, as discussed above,
may be valuable.

Other than the associativity and replacement policy,
we are left with two cache parameters for the sidebuffer
to examine. First we varied the sidebuffer block size
(line size) and found that doubling the L1 block size
gave us a small benefit in reducing the miss rate (pre-
sumably because of spatial locality). The benefit was
small enough so that we decided to avoid the hardware
complexity of working with two different L1 line sizes
and instead matched the sidebuffer block size with the
L1 block size.

The last sidebuffer parameter is the number of lines.
Obviously, the greater the number of lines, the better the
hit rate of the sidebuffer. But we were not free to make
this structure unreasonably large due to our requirement
that it be accessible in one cycle. This is crucial since
the sidebuffer, like the L1 data cache, is on the criti-
cal path of all load instructions (albeit in parallel with
the L1 data cache.) Keeping this in mind, we only ex-
plored values that we feel would result in a sidebuffer
with a 1 cycle access time. Figure 7 shows the effect of
varying the number of sidebuffer entries when running
the gzip-graphic benchmark with four history bits and a
threshhold value of eight.

4.3 Experimental Parameters

We examined a variety of applications from different
computing domains on a base architecture simulated by
Simplescalar 3.0.

4.3.1 Host Architecture

The final values we chose as optimal for the LHT is a
1024 entry table with four bits per entry, resulting in a

Figure 7: Effect of Sidebuffer Size on Combined
L1/Sidebuffer Miss Rate (gzip-graphic)

512 byte structure. For the sidebuffer parameters, we
determined a 16 line, 32 byte block size cache to be
optimal - this corresponds to our estimate at an upper
bound for a one-cycle accessible structure. As wire
delay effects increasingly dominate in the future and
the sidebuffer becomes too slow, our preliminary data
suggests we should first reduce associativity and then
reduce capacity. The Simplescalar 3.0 sim-outorder
defaults we used (when integrated with our changes)
are as depicted in Figure 8. It is noteworthy that
in following with Simplescalar defaults, all cache
latencies are fully pipelined, and cache operations
are lockup-free with infinite outstanding references
allowed. Unless otherwise specified, the following
parameters are constant for all simulations.

Figure 8: Base Architecture Parameters

7



4.3.2 Applications Examined

We simulated our modified architecture versus sev-
eral comparable, non- modified architectures on a wide
range of applications. We ran a subset of the SPEC2000
[2] suite including integer applications mcf, vpr, and
gzip on a graphic image. We also ran one program
from the SPECfp suite: equake. All of these programs
were run using the reduced input datasets because of
limited computation resources. We also fast-forwarded
the simulations past the first million instructions be-
cause we are not interested in the performance of the
programs while they are initializing. The integer appli-
cations were chosen to represent the domain of general
purpose applications, while the two floating-point appli-
cations were chosen to represent scientific applications.

In addition to SPEC programs, we also ran simula-
tions on a set applications from the MediaBench [6]
suite. These programs included a PCM audio com-
pressor and decompressor, EPIC (image compression),
a G721 compression and decompression program, and
an MPEG2 encoder and decoder. The MediaBench sim-
ulations used standard datasets because they were small
enough to make the run-time of our simulations rea-
sonable. This time we fast-forwarded through the first
hundred thousand instructions. The duration of these
benchmarks was considerably shorter than SPEC.

4.4 Effectiveness of LHT and Sidebuffer

With an optimal LHT and sidebuffer size, we then be-
gan cycle accurate performance simulations using sim-
outorder in the simplescalar suite. We were interested
in how well our system performed against the baseline
with different sizes of L1 data cache. We ran our ex-
periments over a range of small cache sizes because we
believe that as wire delays continue to increase relative
to transistor switching time, more and more micropro-
cessors will go to a smaller L1 cache to maintain a one-
cycle hit time. As part of our hypothesis, we expect our
modified architecture to perform better and better as the
L1 data cache is scaled down in size and associativity.

4.5 Comparison Architectures

For baseline comparisons, we compare against a data
cache hierarchy with that is identical to Dynamic Allo-
cation in size, latency, and associativity, but lacks a side-
buffer and dynamic management. This should provide
some insight into the benefit Dynamic Allocation alone
provides, but such a comparison is slightly in our advan-
tage because it ignores the disparity in transistor count.
In emerging architectures with larger and larger transis-

tor budgets, we are far less concerned with transistor
count than latency, which we have worked to minimize
through the use of small structures. Thus, the Dynamic
Allocation overhead to latency should be minimal.

The current choice among some architects for use of
the increasing transistor budget is to increase the size of
the L1 while accepting the two cycle access time and
hoping the increased hit rate will offset the loss. State-
of-the-art processors currently are forced to deal with
this tradeoff. As such, we compared against data cache
hierarchies similar to those in current high-performance
computers. For ourmediumconfiguration, we used size,
associativity, and latency parameters similar to those in
the Intel Itanium [5]. For thelarge configuration, we
used parameters similar to those in the IBM POWER4
[4]. We assumed a one-cycle access time for our con-
figuration due to the careful analyzation of our datapath
for bottlenecks and the simplification of all serial-access
long-delay units in our architecture.

5 Experimental Results

5.1 SPEC2000 Performance

Figure 9 shows the combined L1 miss rate of Dynamic

Figure 9: SPEC2000 L1 Data Cache Miss Rates

Allocation versus that of the traditional configurations.
Miss rate here refers to the total miss rate between the
sidebuffer and the L1 data cache. Dynamic Allocation
mostly achieves miss rates comparable to those of far
larger (8 and 16 times larger for themediumand large
configurations, respectively) caches with much more as-
sociativity, and it drastically outperforms the miss rate
of the baseline configuration with the same L1 cache
size. While the overall cache size for Dynamic Allo-
cation is larger by 16 cache lines (the size of the side-

8



buffer), this does not account for such a pronounced dif-
ference in miss rate. These benchmarks clearly benefit
from the isolation and separation of the types of local-
ity that Dynamic Allocation demarcates. Isolating the
references with approximately little temporal locality in
the sidebuffer leaves the main L1 free for use by the
rest of the application. There are enoughusefulnon-
sidebuffer references to benefit from the decreased con-
tention in the main L1 data cache such that miss rates
with this much smaller yet fast architecture are compet-
itive. Of particular note here is that Dynamic Allocation
manages to get ”in the ballpark” of the miss rates of sig-
nificantly more complex and larger memory structures
for these general-purpose applications.

Figure 10 shows the performance numbers of Dy-

Figure 10: SPEC2000 Performance Results

namic Allocation versus configurations similar to cur-
rent designs when latency is taken into consideration.
Due to latency-hiding techniques in our baseline con-
figuration such as out-of-order issue, it is not a given
that performance will suffer directly according to miss
rate [3]. Dynamic Allocation outperforms all other con-
figurations, sometimes by wide margins. Though we
did not complete results under all configurations for
other SPEC benchmarks, Dynamic Allocation also out-
performed all other configurations for ammp, which
was the only other SPEC benchmark we ran against
the fully-configured modified simulator. Clearly, these
benchmarks are sensitive to memory access latency.
The smallest speedup we see is 2.4 % for gzip-graphic
versus themedium traditionalconfiguration, while the
largest was 16.7 % for equake versus a cache 16 times as
large. The arithmetic mean speedup was 8.66 %. While
these numbers are impressive by themselves, the impor-

tant aspect of these results is future scalability. As wire
delay becomes even more of an issue, the disparity be-
tween the large, associative structures and Dynamic Al-
location will be even more pronounced.

Figures 11 and 12 plot the miss rate of GZIP-graphic
and equake, respectively, as the size of the L1 cache
is reduced for varying sidebuffer sizes and configura-
tions. The ’32’ and ’64’ bytes refers to the size of the
cache lines for those plots. As L1 becomes smaller
and smaller, the miss rates for Dynamic Allocation
configurations do increase. However, they do not in-
crease as quickly as unmodified configurations, even for
Dynamic Allocation with very small sidebuffer sizes.
Thus, as L1 data caches get smaller, Dynamic Alloca-
tion is even more beneficial.

Figure 11: Miss Rate as L1 Decreases - GZIP-graphic

Figure 12: Miss Rate as L1 Decreases - equake

9



5.2 MediaBench Results

Figure 13 shows the combined (as previously defined)
L1 miss rates of Dynamic Allocation versus the tradi-
tional configurations described above for the Media-
Bench suite. Most noteworty is that miss rate does

Figure 13: MediaBench L1 Data Cache Miss Rates

not vary significantly with increased cache size past the
small configuration. This suggests that these types of
applications do not benefit greatly from any cache due
to their access patterns and typically large working sets,
though they have a minimum amount of locality that
must be captured. Dynamic Allocation helps meet this
minimum and get in the neighborhood of miss rates of
the larger, more complex configurations for some appli-
cations, such as MPEG2 decode and encode, and G721
encode and decode. However, since most of these ap-
plications are in fact small computation kernels that op-
erate only on their incoming and outgoing data, there
may be very few (if any) memory references that would
not be targeted by the sidebuffer and thus there may be
very few available references to take advantage of the
less-conflicted main L1 data cache. While sidebuffer
access rates for these benchmarks are higher than for
SPEC, that does not imply that the regular L1 accesses
are well-distributed or that they will benefit from the
less-conflicted cache. Furthermore, some applications
clearly do not benefit at all from caching (after a certain
bound) as continuing to increase cache size and associa-
tivity does not show an improvement in miss rate. Epic
has some unique behavior and is described below.

Figure 14 presents the performance of the Media-
Bench suite with latencies applied as before. As sug-
gested by the miss rate numbers, many MediaBench
applications do not benefit greatly from Dynamic Al-
location. The arithmetic mean speedup was 4.11 %.

Figure 14: MediaBench Performance Results

Unlike the SPEC results, the baselinesmall traditional
configuration with its single-cycle latency performs al-
most identically to Dynamic Allocation. It is notewor-
thy to compare MPEG2 decode with MPEG2 encode.
MPEG2 decode experiencescacheablebehavior where
adding a larger cache helps decrease misses thus in-
creasing performance. Furthermore, it is quite obvious
from the miss rate graph that MPEG2 decode experi-
ences a dramatic improvement in miss rate with Dy-
namic Allocation. MPEG2 encode, however, has fairly
good behavior with respect to miss rate even with the
smallest cache, and does not get substantially better as
decode does. Thus, for applications where miss rate is
nontrivial, Dynamic Allocation provides better perfor-
mance when latencies are applied to the larger, slower
memory hierarchies.

Also of particular note is the Epic benchmark. While
Dynamic Allocation did help to reduce the miss rate for
equal-size caches, it is still a capacity-bound problem
even though Dynamic Allocation attempts to alleviate
the capacity-filling effects of many read-only, striding
applications. 44.8 % of the memory accesses in Epic
are to the sidebuffer, but among the references to reg-
ular (including flushes incurred by the sidebuffer), the
miss rate is a significant 29.98 %. Epic uses a huff-
man encoding algorithm that has a large internal sym-
bol tree that is sorted in a read-write manner, and more-
over is not in contiguous memory (e.g. it is represented
as a node-based structure.) Thus, it is likely that this
large read-write structure is organized and referenced
in such a way as to make it unwieldy in a very small
direct-mapped L1 cache even after conflicts introduced

10



by read-only data streams are removed. Increasing the
associativity of the small cache reduced miss rates to
levels comparable with both the larger configurations.

6 Related Work

The field of intelligent cache management for the pur-
poses of improving overall performance and efficiency
has been explored in parallel, yet different and some-
times complimentary ways. Jouppi [7] proposed reduc-
ing conflicts in direct-mapped caches by adding small
associative caches such as victim caches. However, vic-
tim caches do not address the problem of large work-
ing sets of the kind targeted by Dynamic Allocation that
may be larger than the size of the victim cache.

Jouppi also proposed stream buffering on misses,
while Baer and Chen [8] extended the idea to use an
FSM to predict the references to be filled in the stream
buffer. In this vein, the stream buffer can be com-
pared to the functionality provided by the separate stor-
age of the sidebuffer, but there are important distinc-
tions: previous predictive measures were by expected
data stride and ran ahead of the program rather than
Dynamic Allocation’s per-PC analysis of the current
instruction, and these were methods of guessing what
should be fetched thus increasing L1-to-L2 bandwidth
consumed and pressure on branch prediction accuracy.
This is often at the expense of wasted bandwidth. Dy-
namic Allocation does not address main memory la-
tency, and while it may increase bandwidth consumed
in rare corner cases when sidebuffer entries must be
refetched from L2 if the L2 entry has been evicted (e.g.
during an L1 allocation following an attempted write to
a sidbuffer line), but this is almost certainly less com-
mon than prefetching waste. Analysis of sidebuffer
access and L1 reload patterns show this is in fact ex-
tremely rare. Compiler algorithms [9] for prefetching
work complimentarily to the efforts of Dynamic Allo-
cation since they map to specific instructions in appli-
cations.

McFarling [10] proposed an FSM approach to ex-
cluding specific lines from allocation in a direct-
mapped cache in order to reduce conflicts in direct-
mapped caches. His work focuses almost entirely on
instruction caching, and the FSM he uses examines state
on a per-cache-line basis; it does not consider the static
instruction that generated that reference. Furthermore,
Dynamic Allocation provides specific management of
the ’excluded’ (sidebuffer) cache lines and gains perfor-
mance from the flexibility and the size of the sidebuffer.
Most significantly, however, is that dynamic exclusion
gives weight to the data pre-existing in the cache by

recording the previous hits on given cache lines. While
this may have the same effect as Dynamic Allocation
in some cases, in others it may be overly pessimistic
about the usefulness of incoming data. Dynamic Al-
location instead profiles the locality of specific instruc-
tions rather than relying on specific cache line state. The
Dynamic Allocation FSM is also considerably simpler
than McFarling’s and does not allow quick thrashing be-
tween the sidebuffer and main L1.

Gonźalez et. al. [12] proposed splitting the L1 data
cache into two separate structures, adual data cache,
to capture spatial and temporal locality separately. This
design is significantly more complex than Dynamic Al-
location because it allows a cache line to be valid in
both caches at once and allows both to be read-write.
Furthermore, the locality prediction table they use is
very accurate, but is far more complex than our simple
threshhold counting mechanism - it keeps history data
about strides, length, last-address-accessed, and state;
updating this is nontrivial in hardware. The overall ar-
chitecture is unlikely to scale well. Dynamic Alloca-
tion, in contrast, makes a much looser approximation
about the type of locality and achieves reasonable per-
formance with a much simpler design.

7 Concluding Remarks

Dynamic Cache Allocation is a scalable mechanism for
enhancing the performance of small, simple data caches
in a wide array of applications. Dynamic Cache Alloca-
tion improves data cache miss rates substantially over a
direct-mapped cache. It also outperforms the data cache
hierarchies of modern day processors when real-world
latencies are applied. Most importantly, as cache size
and associativity are reduced in order to keep up with
the latency requirements of increasing clock rates, Dy-
namic Cache Allocation’s cache miss rate diverges from
the miss rate of standard cache configurations by wider
and wider margins. This suggests the benefit of Dy-
namic Allocation will increase as wire delay in memo-
ries continues to increase latency. Dynamic Allocation
offers a lower-latency alternative to achieving miss rates
comparable to those of larger, more complex caches.

Acknowledgements

We would like to thank Mike Brogioli for directing us
to MediaBench and helping us get started with it.

11



References

[1] Keith D. Cooper and Timothy J. Harvey,
”Compiler-Controlled Memory”,Proceedings of
the 8th International Conference on Architectural
Support for Programming Languages and Oper-
ating Systems, October 1998.

[2] John L. Henning, ”SPEC CPU2000: Measuring
CPU Performance in the New Millenium”,Com-
puter, July 2000.

[3] John Hennessey and David Patterson,Computer
Architecture: A Quantitative Approach. Third
Edition, Morgan Kaufman Publishers, San Fran-
cisco, California, 2002.

[4] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H.
Le, and B. Sinharoy, ”POWER4 System Archi-
tecture”,IBM Journal of Research and Develop-
ment, January 2002.

[5] Harsh Sharangpani and Ken Arora, ”Ita-
nium Processor Microarchitecture”,IEEE Micro,
September/October 2000.

[6] Chunho Lee, Miodrag Potkonjak, and William
H. Mangione-Smith, ”MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and
Communications Systems”,Proceedings of the
30th International Symposium on Microarchitec-
ture, December 1997.

[7] Noman P. Jouppi, ”Improving Direct-Mapped
Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers”,
Proceedings of the 17th International Symposium
on Computer Architecture, May 1990.

[8] Jean-Loup Baer and Tien-Fu Chen, ”An Effec-
tive On-Chip Preloading Scheme to Reduce Data
Access Penalty”,Proceedings of Supercomput-
ing, November 1991.

[9] Todd C. Mowry, Monica S. Lam, and Anoop
Gupta, ”Design and Evaluation of a Compiler Al-
gorithm for Prefetching”,Proceedings of the 5th

International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems, October 1992.

[10] Scott McFarling, ”Cache Replacement with Dy-
namic Exclusion”,Proceedings of the 19th Inter-
national Symposium on Computer Architecture,
April 1992.

[11] Bob Amos, Sanjay Deshpande, Mike May-
field, and Frank O’Connell, ”RS/6000 SP
375 MHz POWER3 SMP High Node,IBM
Online Whitepaper Respository, http://www-
1.ibm.com/servers/eserver/pseries/hardware/
whitepapers/nighthawk.html, August 2001.

[12] Antonio Gonźalez, Carlos Aliagas, Mateo
Valero, ”A Data Cache with Multiple Caching
Strategies Tuned to Different Types of Locality”,
Proceedings of the 9th International Conference
on Supercomputing, July 1995.

12


