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Introduction

m Increased use of media programs on the desktop

m [dentify features of media processors
m Typically constrained in cache size and complexity
m Instructions that provide greater control over cache

m [arge working sets of read-once, read-only data

m Apply features to general purpose processors




Hypothesis

® Proposal
= New cache management policy
® Side buffer and load history table
® Perform dynamic runtime analysis to predict read-only loads

= Keep read-only data out of the cache, preventing pollution

m DPxpected results of our configuration
B Perform better than unmodified same size caches

m Perform similarly to unmodified larger caches




Motivation

m The problem with general purpose cache
® Cache pollution is a major problem
®m Increase cache size to reduce cache misses

m [arge cache increase wire delay and overall latency

m Read-only data can cause cache pollution

® Read-only data usually has less temporal locality

® Forces important data out of the cache




Initial testing

m Percentage of memory references, read-only refs in a window
m Wide distribution, dispersion of accesses throughout the cache

m Predicable, dispersion by program counter
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Architecture overview

m Read-only references
= No writes within a span of + - 32 references

m Repetitive, at least 3 loads from that line

m [.oad history table
® Simple finite state machine

® Predict if a load 1s part of read-only reference pattern

m Side buffer

m Captures read-only spatial locality
® Simplicity based on reduced wire delay




Architecture block diagram
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Experimental Methodology

m [irst test to design the side buffer
= [ind out optimal configuration to minimize L1 hit rate

= Compare vs. unmodified configurations

B Second test to compare against other architectures
® Our configurations vs. state of the art

B [tanium and Power 4

m Compared general purpose vs. media applications




Experimental Parameters

m SimpleScalar 3.0 simulator
® Integrated our changes into sim-outorder
® Ran SPEC 2000 reduced data sets
= Ran MediaBench+

m Our optimal configuration
m LHT 1024 entries with 4 bits, 512 byte structure
® Side Buffer 16 lines, 32 byte block size




Impact on Miss Rate
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Impact on Miss Rate
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SPEC 2000 Results

GZIP MCF VPR EQUAKE

[ Small Modified*, Small configuration + Side Buffer

B Small: 64 entries, 32 byte blocks, direct-mapped, 1 cycle latency
B Medium: 128 entries, 32 byte blocks, 4-way, 2 cycle latency

M Large: 512 entries, 32 byte blocks, 2-way, 3 cycle latency




SPEC 2000 Results
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MediaBench+ Results
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SPEC vs. MediaBench+

m We hypothesized that Media applications would
get more benefit

® Some don’t benefit from our configuration

® Pollution 1s not a problem with some media apps

m General purpose applications have more
uniform benefits from our configuration

m Up to 16.7% increase in performance for SPEC
and MediaBench applications




Our Results

m We perform better than larger caches
®m Increased hit rate cannot offset increased access time

® Our scheme maintains high hit rates and low latency

m Scales better with increasing wire delay

m Relative performance increases as caches shrink

= More intelligent use of cache




Conclusion

m Benefits of adding the side buffer
m Better use of transistors than a larger cache
® Maintain low latency cache with a higher hit rate

® Very little impact on critical path

m Simplicity of implementation

® Simple design and few transistors

® Similar to branch history tables




Questions and Answers




Additional MediaBench+ Results
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