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1 Introduction

In a wide superscalar processor, the amount of time it takes to execute an application depends on the
instruction latency and the amount of instruction level parallelism (ILP) that can be extracted from the
application. One important factor which influences the instruction latency is the number of cycles it takes
to access the register file. Whether it is a CISC architecture or a RISC architecture, practically every
instruction accesses the register file for one or more operands. Therefore, its hardly surprising that processor
architects have over the years designed architectures which enabled a one cycle read/write access to the
register file. Single-cycle accesses are also preferred because larger access times require deeper pipelines,
and deeper pipelines induce more hazards, larger branch penalties, and more complex hardware for hazard
detection and data forwarding.

Studies have shown that many of the ILP increasing techniques employed in wide-issue superscalar
processors increase the demand for registers [3]. At the same time, an increased issue width of the processor
requires additional register ports. Typically, a 4-wide superscalar processor needs to have at least 8 read
ports and 4 write ports on its register file. Both of these affect the register file not only by making it much
bigger but also much slower.

The access time of a register file consists of two distinct components: the wire propagation delay and
the fan-in/fan-out delay. Register files typically contain long word-lines and bit-lines, which can take a long
time to propagate a signal across their length. For the kind of register file structures considered here, the
wire propagation delay is far greater than the fan-in/fan-out delay. Bigger register file and an increased
number of ports result in a taller register file layout, which translates to longer word-lines and bit-lines [7],
thereby increasing wire propagation delay. Also, wire delays do not at all scale with the silicon technology
improvements. Thus as register files grow in size, with faster transistors (smaller feature sizes), its only
exacerbates their delay problem.

Over the past decade, researchers have suggested a number of techniques for alleviating the problem of
increased wire delay. Whenever a large block of silicon takes up a large fraction of the cycle time, it usually
common to split the block up into smaller and more importantly faster pieces [6]. In the past, precious
silicon area dictated logic reuse, but these days designers frequently duplicate logic to reduce wire lengths.
We believe that these couple of ideas could be applied to the register files as well.

1.1 Hypothesis

We hypothesize that splitting up the register file would not only reduce its delay but also make it scale
better with technology. At the same time the functional units could be duplicated to limit wire lengths from
the register partitions to them. This effectively provides every partition of the register file with its own set
of functional units. Obviously, inter-cluster communication would be costly, and this technique would be
beneficial only if inter-cluster communication is rare. From the register usage patterns that are obtained
from a few benchmarks programs, we conclude that this is indeed the case.

The extent of performance improvement that can be expected from our architecture is dependent directly
upon this cluster locality in the instruction stream. It also depends upon how many cycles we attribute to
accessing a monolithic register file. But we believe that there is room for some significant improvement by
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Figure 1: Instruction breakdown of register accesses for a 2-way split of the register file.

Figure 2: Instruction breakdown of register accesses for a 4-way split of the register file.

our technique. Our architecture would scale much better with process improvements, when the monolithic
register file would become slower.

Figure 1 shows the register usage pattern of a few SPEC CPU2000 integer benchmarks for a two-way
split of the register file. We split up the register file such that each half of the registers form a cluster
(registers 0–15 in one cluster and registers 16–31 in the other). We then use the SimpleScalar tool set to
obtain the register usage statistics. From the figure, it is apparent that almost 90% of the instructions,
in these benchmarks, show high locality in their register accesses. In other words, almost 90% of the time
we are likely to complete the instruction in just one cluster and would not need to pay the inter-cluster
communication penalty. Figure 2 shows similar data for a four-way split of the register file in which each
cluster has one quater of the registers.

Based on these preliminary findings, we hypothesize that splitting up the register file and clustering the
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Figure 3: Overview of the Architecture

architecture would indeed be a performance win. Also, as the size of the register file grows, and the latency
of wires increases, we expect our technique to perform even better.

In our project we are targeting mainly the integer register file. At the same time however there is
absolutely nothing in our architecture that will prevent it from being applied to the floating point registers as
well. In other words, we expect almost all applications to benefit from our scheme, but we show performance
results for only SPEC integer benchmarks.

2 Architecture

Our design is based on a modified SimpleScalar architecture [2]. Unlike the standard SimpleScalar archi-
tecture, our design does not contain a register update unit (RUU). Our baseline architecture replaces the
RUU with reservation stations, a limited reorder buffer, and a single register file. While functionally similar,
the differences in the baseline are important for comparing parallel structures with our proposed architec-
ture. The overall structure of our processor is shown in Figure 3. SimpleScalar parameters for the baseline
architecture are shown in Table 2.

Our proposal is to partition elements of the architecture into clusters, splitting some of the resources
and duplicating others. Figure 4 depicts the pipeline with detail as to which stages are divided. A single
instruction stream is fetched and decoded as in a conventional architecture. The decode stage renames
registers uniquely, but is slightly restricted. For a two cluster implementation (which will be assumed here
for explanation purposes), register names in the lower half of the architected register file must be renamed
in the lower half of the physical register file, and likewise for those in the upper half. An entry is then
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allocated in a simplified reorder buffer. This buffer keeps the renamed and original register names and bits
for tracking completion of execution and exceptions, as depicted in Figure 5. This buffer uses pointers for
the head and the tail to insert entries in order and remove them in order when instructions commit. The
decoded and renamed instructions are then sent to both clusters identically along with their corresponding
address in the reorder buffer. This address must be kept with the instructions to properly match them with
their entry again when they are ready to commit.

Issue logic in each cluster independently, but identically, determines the proper action for that instruction.
If the destination (or only) register accessed by the instruction is in that cluster and no source registers are
in another cluster, that instruction may be issued. Issued instructions go into reservation stations for the
functional units in that cluster, reading values from the register file appropriately as in a conventional
system. If the instruction requires one or two sources from another cluster, a special table entry is allocated
to coordinate the data forwarding. This table, the inter-cluster forwarding table (IFT), is described in detail
below.

Similarly, if a cluster contains only sources, but not the destination of the instruction, it must either
forward the needed data or allocate a table entry in the IFT and forward the data when it is available. If
the cluster contains none of the registers used by the instruction, the instruction is discarded. For special
instructions that do not use registers (e.g., absolute jump), the first cluster will execute the instruction and
all others will discard it.

Once instructions are issued to a reservation station, they read their operands from the register file and
proceed through the execution units in that cluster as available. Execution units are fully duplicated in
the two clusters, as per the motivating principle that this logic is small and easily duplicated. Once an
instruction completes, it sets a bit in the reorder buffer to indicate that it has completed. At this point, the
cluster’s work is complete. Commit logic reads instructions from the tail of the reorder buffer and commits
them in order by changing the mapping in the rename logic to indicate the location of the new value of the
result register. Exceptions are detected and handled as in any processor; in-flight instructions are flushed,
and the rename logic maintains a map of the correct location of all register values.

Gains in register file latency are due to a decrease in the number of registers in each file. In order to
achieve this gain, it is important that design changes do not require additional ports, which contribute to
access latency more than additional. Because instructions are sent to all clusters, issue logic will consider
instructions that other clusters are to execute. Issue logic must decide whether to issue an instruction to one
of its reservation stations, send one or two source operands to another cluster, or discard the instruction.
Register ports are available for the full issue width, as in the baseline architecture. If operands need to be
forwarded for an instruction, the read ports that could have been used to issue that instruction are instead
used to read the operands for forwarding. The other situation where inter-cluster communication is needed
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Figure 6: Inter-cluster Forwarding Table

occurs when data needs to be forwarded from the result of a calculation to a waiting instruction in another
cluster. In this case, data is directly forwarded from the output of the ALU as controlled by a special table.

This table for forwarding operands between clusters is an additional hardware structure required for this
partitioning scheme. When a needed operand is ready at the time an instruction is sent to the issue stage, it
is immediately sent from the source cluster. After the inter-cluster communication delay, the correct cluster
receives the operand and can issue the instruction to a reservation station. When the needed operand is
the result of an instruction that has not completed, an entry is allocated on both sides in an inter-cluster
forwarding table (IFT). This table contains entries as depicted in Figure 6. Each entry contains the entire
instruction, including the name of the register(s) to be forwarded for a specific instruction; two register
name locations are needed, as it is possible to have to forward both source registers. Each table entry also
contains the index of the reorder buffer where the corresponding instruction is located. When the operand
is available, the value and the name of the register are sent to the destination cluster. When the operand (or
both operands, if two needed) has been sent, the entry is deallocated and available for another instruction to
use. Likewise, when the last operand has been received by the cluster executing the instruction, the entry on
that side is deallocated, and the instruction consuming the operands may be issued. This occurs a number
of cycles after the operand has been sent equal to the inter-cluster communication delay.

Because only instructions that are not local to a single cluster and require a source not yet calculated
need an entry in the IFT, IFT usage will be quite low, especially in a two cluster implementation. Because
a realistic table size would be quite small, the control for the IFT should be simple, and the table should be
fast enough not to impact the cycle time. In an actual implementation, the processor would stall if space
were not available for an IFT allocation; in our simulation, this rare case is not modeled.

Extending this design to a larger number of clusters should be possible with little modification. IFT
interaction will complicate because communication must be directed to the correct path. Each cluster must
have a dedicated connection in each direction to every other cluster because they cannot arbitrate usage
of a bus in a single cycle. Divisions between the lower and upper halves of the register file extend to
quarters or eighths easily. Extending beyond this point is probably not reasonable without changing other
major elements of the architecture; dividing an architecture with 32 architected registers even eight ways
eliminates most locality with only four registers in each cluster.

3 Experimental Methodology

3.1 SimpleScalar Simulator

A modified SimpleScalar version 2.0 models both the baseline and the proposed architectures described in
Section 2. This section briefly describes operations of both the original and modified versions of SimpleScalar.

As mentioned earlier, SimpleScalar uses the RUU in order to handle out-of-order issue and in-order com-
mit. During the dispatch stage, SimpleScalar allocates one RUU entry per instruction. Then, it decodes
instructions, updates the register rename table, and executes instructions. During the issue stage, Sim-
pleScalar consults the RUU to determine ready instructions, allocates hardware resources such as ALU, and
schedules an event to occur when instructions are supposed to complete execution. By executing instructions
in the dispatch stage and modeling functional unit latencies through events, SimpleScalar implicitly models
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the execution stage. During the writeback stage, SimpleScalar checks completed instructions and modifies
the RUU in order to wake up dependent instructions. During the commit stage, it retires instructions in order
through the RUU and updates the register rename table to reflect that results are stored in the architected
register file. The commit stage also flushes pipeline upon branch mispredictions.

The baseline architecture described in Section 2 differs from the SimpleScalar architecture in two sig-
nificant ways. First, the baseline architecture has one physical register file that stores values produced by
both committed instructions and instructions in flight. Second, it has the simplified reorder buffer that
stores neither source nor result values. Hence, the number of physical registers can be arbitrarily greater
than the architected registers. Since the purpose of the simplified reorder buffer is to maintain instruction
dependencies and ensure in-order commit of instructions, the modified SimpleScalar reuses the RUU in the
original SimpleScalar in order to model the reorder buffer. To model one physical register file, the modified
SimpleScalar has a register rename table, separate from the rename table associated with the RUU that is
only used to handle instruction dependencies. During the dispatch stage, the modified SimpleScalar explic-
itly renames registers through this new rename table and stalls pipeline if there is no free register. During
the issue stage, register access time is simulated by delaying execution completion events by register access
time. So, the modified SimpleScalar can model arbitrary register access times. During the commit stage,
the modified SimpleScalar updates the rename table to reflect the most recent locations of the architected
registers in the physical register file.

To model the proposed architecture with multiple clusters described in Section 2, SimpleScalar is further
modified as follows. The dispatch stage now renames registers such that logical register names that map
to the same cluster are assigned physical registers that also belong to the same cluster. Also, the dispatch
stage determines which cluster is going to execute each instruction. In the proposed architecture, each
cluster independently determines whether to execute a given instruction. This logic is moved to the dispatch
stage in SimpleScalar only for the ease of programming and does not alter the architecture. The issue
stage delays instructions that require operands from remote clusters to model inter-cluster communication
delays. Hardware resources per cluster are modeled by allocating data structures specific to cluster during
the initialization of the simulator. Finally, the commit stage postpones retiring instructions to model a
multiple-cycle commit stage.

3.2 Benchmarks

Three applications from the SPEC CPU2000 [4] integer benchmark suite are used to evaluate the impact of
partitioning register file on overall processor performance. The three applications are 175.vpr (FPGA circuit
placement and routing), 181.mcf (minimum cost network flow solver), and 197.parser (natural language pro-
cessing). For each input, 175.vpr executes twice. It first produces circuit placements without routing. Then,
the same program reads the placement results, determines routing, and generates final circuit placements.
175.vpr exhibits very different characteristics during these two stages, and the program in each stage is
considered a distinct application. For brevity, the subsequent sections use VPR, VPR2, MCF, and PARSER
to refer to 175.vpr (the first stage), 175.vpr (the second stage), 181.mcf, and 197.parser benchmarks. All
benchmarks use the reduced input data sets [5].

3.3 Processor Configurations

Table 1 shows the processor configurations used for evaluation. All configurations have 64-entry simplified
reorder buffer and 128 physical registers. BASE configurations model the baseline architectures with one
and two-cycle register access time. BASE(1) represents the ideal baseline architecture that pays no extra
cycle for register access. These are used to measure performance impact of increasing register access time.
BASE(C) is same as BASE(1) except the two-cycle commit stage. The purpose of BASE(C) is to assess
the impact of multi-cyle commit stage on processor performance. PROPOSED configurations model the
proposed architectures with two or four clusters with intercluster communication delays varying from one to
four cycles. PROPOSED2(1) and PROPOSED4(1) configurations represent ideal versions of the proposed
architecture with only one-cycle intercluster communication delay. These configurations are used to show
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Configuration Clusters Register Intercluster Commit
Latency Latency Latency

BASE(1) 1 1 N/A 1
BASE(2) 1 2 N/A 1
BASE(C) 1 1 N/A 2

PROPOSED2(1) 2 1 1 2
PROPOSED2(2) 2 1 2 2
PROPOSED2(3) 2 1 3 2
PROPOSED2(4) 2 1 4 2
PROPOSED4(1) 4 1 1 2
PROPOSED4(2) 4 1 2 2
PROPOSED4(3) 4 1 3 2
PROPOSED4(4) 4 1 4 2

Table 1: Processor configurations used for evaluation of both the baseline and the proposed architectures.

Parameter Value Parameter Value

-fetch:ifqsize 4 -bpred bimod
-fetch:mplat 3 -bpred:bimod 2048
-fetch:speed 1 -bpred:btb 512 4

-decode:width 4 -issue:width 4
-commit:width 4 -issue:inorder false

-issue:wrongpath true

-ruu:size 64 (the number of entries in the sim-
plified reorder buffer)

-lsq:size 8

-cache:dl1 dl1:128:32:4:l -cache:dl1lat 1
-cache:dl2 ul2:1024:64:4:l -cache:dl2lat 6
-cache:il1 il1:512:32:1:l -cache:il1lat 1
-cache:il2 dl2 -cache:il2lat 6
-cache:flush false -cache:icompress false

-mem:lat 18 2 -mem:width 8

-tlb:itlb itlb:16:4096:4:l -tlb:dtlb dtlb:32:4096:4:l
-tlb:lat 30

-res:ialu 4 (per cluster) -res:imult 1 (per cluster)
-res:memport 2 -res:fpalu 4 (per cluster)
-res:fpmult 1 (per cluster)
-bugcompat false

Table 2: Processor configuration parameters common to all configurations shown in Table 1
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Figure 7: Instruction throughputs achieved by
BASE(1), BASE(2), BASE(C), PROPOSED2(1),
PROPOSED2(2), PROPOSED2(3), and PRO-
POSED2(4) configurations shown in Table 1. In-
struction throughputs are normalized to that of
BASE(2).

Figure 8: Instruction throughputs achieved by
BASE(1), BASE(2), BASE(C), PROPOSED4(1),
PROPOSED4(2), PROPOSED4(3), and PRO-
POSED4(4) configurations shown in Table 1. In-
struction throughputs are normalized to that of
BASE(2).

the upper bound of performance of the proposed architecture. PROPOSED configurations have two-cycle
commit stage to account for increased access times of the global structures that must be updated during the
commit stage.

Table 2 shows SimpleScalar parameters common to all configurations shown in Table 1. The parameters
have default values of SimpleScalar version 2.0. For descriptions of each parameter, refer to the SimpleScalar
manual [1].

4 Experimental Results

The experimental results show that reducing register access time through partitioning can improve instruction
throughput measured in instructions per cycle. As predicted by Figures 1 and 2 in Section 1.1, performance
penalty due to intercluster communication does not offset benefits from reduced register access time.

Figure 7 shows the instruction throughputs achieved by the baseline architecture and the proposed
architecture with two clusters. The X axis shows the names of benchmarks (refer to Section 3.2 for their de-
scriptions). For each benchmark, seven bars show instruction throughputs achieved by BASE(1), BASE(2),
BASE(C), PROPOSED2(1), PROPOSED2(2), PROPOSED2(3), and PROPOSED2(4) configurations. The
Y axis shows instructions per cycle normalized to that of BASE(2). As described in the previous section,
BASE(1) represents the ideal baseline architecture with one-cycle register access time. Instruction through-
puts of BASE(1) are about 38–72% higher than those of BASE(2), showing that increased register access time
can significantly degrade instruction throughput. All of PROPOSED2 configurations outperform BASE(2).
PROPOSED2(2) achieves 15–45% improvement over BASE(2). PROPOSED2(3) and PROPOSED2(4) show
that instruction throughput decreases as intercluster communication delay increases. This result is expected
since the number of cycles spent waiting for remote register accesses increases proportional to intercluster
communication delay. Table 3 shows actual instruction throughputs and the ratio of remote and total register
accesses. Remote register accesses acount for only 9–15% of all register accesses, as predicted by Figures 1
and 2. Instruction throughput of PROPOSED2(2) is within 7–25% of BASE(1)’s instruction throughput.
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The upper bound of instruction throughput of the proposed architecture, shown by PROPOSED2(1), is
only about 5–14% higher than that of PROPOSED2(4). This result shows that the proposed architecture
can effectively tolerate intercluster communication delays. However, the instruction throughput of PRO-
POSED2(1) is up to 24% worse than BASE(1), while BASE(C)’s instruction throughput is almost identical
to that of PROPOSED2(1). When a mispredicted branch is detected, both baseline and proposed archi-
tectures update branch prediction table during the commit stage. The two-cycle commit stage adversely
affects the branch prediction accuracy, and the prediction accuracy of jump register instruction decreases by
roughly 5%.

The proposed architecture with four clusters also achieves higher instruction throughput than the base-
line architecture. Figure 8 shows the instruction throughputs achieved by BASE(1), BASE(2), BASE(C),
PROPOSED4(2), PROPOSED4(3), and PROPOSED4(4) configurations. The figure is in the same format
as Figure 7. PROPOSED4(2) improves instruction throughput by 10–41% over BASE(2). These improve-
ments are lower than the improvements achieved by PROPOSED2(2) due to the increased remote register
accesses. Table 3 shows that with four clusters, remote register accesses acount for 14–17% of all register
accesses, as opposed to 9–15% with two clusters. Despite the increased performance penalty due to re-
mote register accesses, all of the PROPOSED4 configurations still outperform BASE(2). PROPOSED4(1)
again achieves only about 6–14% higher instruction throughput than PROPOSED4(4), showing that the
proposed architecture can tolerate various intercluster communication delays. The proposed architecture
assumes two-cycle commit stage to account for the need to update global structures during the stage. As
mentioned earlier, the two-cycle commit stage and its adverse impact on branch prediction accuracy, rather
than multi-cycle intercluster communication delays, account for most of the performance penalty of the pro-
posed architecture. Earlier detection of branch misprediction and updates of branch prediction table would
bring the performance of the proposed architecture close to the ideal baseline architecture.

5 Conclusion

We have investigated a novel technique to alleviate increasing register file access latencies. We hypothesize
that splitting up the register file and duplicating execution resources can gain us a performance win over
architectures which employ multi-cycle register files.

Our results show that our hypothesis is indeed correct. For the benchmarks we simulated, we were able
to get a performance improvement ranging from 14-45% with two clusters, depending upon the intercluster
communication delay that we attribute to our architecture. We have simulated our proposed architecture
with intercluster communication delays of two, three and four cycles. Our results show that even with a
4-way split of the register file, our technique still improves processor performance over the multi-cycle register
file. In this case, however, the improvement is less as compared to the two cluster case. This is reasonable
since with four clusters, the locality obtained in instructions is reduced and hence there is more inter-cluster
communication penalty.

As architects try to come up with techniques to counter wire delay, a clustering approach has been
proposed by many. Our architecture exposes a different approach to clustered architectures. As the register
files grow in size, and wire delay becomes more of a problem, we believe the merits of an architecture such
as ours will become even more apparent.
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