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Abstract 
 
There were several hypotheses that motivated this 
research project. First, we proposed that running multiple 
processes pollutes the history in branch predictors due to 
aliasing. This pollution decreases accuracy.  Second, we 
argued that branch prediction accuracy can be improved 
over existing techniques by removing this aliasing. 
Specifically, the history table can be partitioned to allow 
each process, or a subset of the most frequently executed 
processes, to have their own history. 
 
This project successfully shows that aliasing in the branch 
predictor history does occur due to multiple processes 
executing, and quantifies the frequency of that problem. 
The accuracy of existing predictors can be improved, and 
adding separate history tables is an effective method of 
removing the aliasing problem. Specifically, a prediction 
improvement of 0.5 – 3% can be obtained through this 
technique, and this improvement is always in addition to 
any prediction algorithm that suffers from aliasing.  The 
actual accuracy penalty due to aliasing is much higher 
than this improvement would seem to suggest. The 
relative infrequency of process switches, however, and 
the short time of approximately 2000 branches to “repair” 
the destructive aliasing in the branch history table after a 
process switch, both combine to significantly limit the 
potential for improvement via this technique. When the 
hardware overhead of multiple history tables is taken into 
account, this technique is not recommended for general-
purpose applications 
 
 
1. Introduction 
 
The branch predictor accuracy is a significant component 
of overall performance in modern deeply pipelined 
superscalar machines. The penalty of a mispredicted 
branch can be quite high [6]. Most existing research into 
branch predictors, however, examines their performance 
in single-process programs only. As computation moves 
increasingly to multi-threaded applications, it is unclear if 
the existing research is applicable. Do multiple threads 
compete over the branch predictor and interfere with each 
other? How severe is this effect? Does a method exist to 
alleviate this problem? 

2. Existing Work 
 
Previous research into branch predictors defines some 
useful terminology. First, aliasing, as described by [9], is 
central to this research project. Analogous to memory 
caches, aliasing in branch prediction occurs when 
different branches are assigned to the same history 
counter. These instruction streams can be from the same 
process or different processes altogether.  
 
Aliasing is not a permanent effect. If one branch executes 
for a thousand times, and then another branch aliases to 
its same spot in the history table and also executes a 
thousand times, the overall effect on prediction accuracy 
will be very limited, as it will only take a few cycles 
(depending on the depth of the history) for the new branch 
to “train” the predictor with the new pattern. 
 
This aliasing can either be constructive, destructive, or 
neutral, depending if the new pattern alters the final 
prediction of branch taken or branch not taken. [9] 
showed that destructive aliasing is significantly more 
common than constructive aliasing, particularly if the 
instruction stream is large or the branch history table is 
small. However, this analysis was not performed for 
independent processes. Rather, it was done on different 
segments of the instruction stream from the same process, 
so it is unclear if the behavior will be similar.  
 
Related to aliasing, [2] defined training overhead. This 
overhead refers to the fact that history counters must be 
“primed” to deliver the correct prediction by first 
observing a few repetitions of the branch. This concept is 
relevant because each process switch incurs a new 
training overhead for the branch predictor.  
 
Branch predictor configurations for simultaneous 
multithreaded processors were explored in [5]. In addition 
to a traditional shared predictor, they examined providing 
separate history registers or branch history tables for each 
thread. They concluded that providing only a separate 
history register for each thread increased the prediction 
accuracy by eliminating harmful aliasing between 
execution threads, and minimized the increase in 
hardware requirements that completely independent 
predictors would require. Further, this configuration with 
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independent predictors increased performance even when 
the threads were executing the same code. Unfortunately, 
while the branch prediction accuracy was increased, the 
overall system performance was only marginally affected, 
because the thread-level parallelism inherent in the SMT 
design was effective in hiding the negative effects of 
branch misprediction.  
 
[2] found that including kernel references increased the 
branch predictor history aliasing. This effect could alter 
the conclusions of past studies of prediction accuracy, 
such that algorithms with short branch histories would 
now performance better than algorithms with long 
histories, so that the effect of aliasing would be more 
rapidly overcome through training.  
 
 
3. Multiple Process Instruction Traces 
 
Because most existing literature on branch predictors only 
used single-process instruction traces, this study was 
conducted with multi-process instruction traces. To obtain 
the desired instruction traces of multi-process applications 
and the host operating system, the Simics simulator from 
Virtuatech was used. Simics is a detailed functional 
simulator for multiple processor architectures, including 
x86, PowerPC, Alpha, and Itanium. In addition to 
simulating the microprocessor, Simics also emulates a 
core subset of peripheral devices, such as the BIOS, video 
card, network card, and disk drive. Thus, it is possible to 
install and run unmodified operating systems such as 
Linux or Windows on Simics. Because the entire system 
is simulated, and thus the simulation rate can be 
dynamically altered, Simics enables non-intrusive 
profiling of the instruction stream and memory access 
stream without concern that the monitoring overhead will 
distort the data capture [3]. 
 
Simics includes a standard module that can capture an 
instruction stream during program execution. This stream 
mixes both user-level and kernel-level code, as well as 
multiple processes. For this project, the goal was to 
extend Simics to capture process IDs so we can clearly 
distinguish between multiple processes and study the 
immediate impact of a process switch on branch 
prediction accuracy. Because Simics functions as a 
hardware execution platform, it has no native 
understanding of a software concept such as a “process.” 
 
A prebuilt operating system disk image from Virtutech 
was used. This image contained RedHat Linux 7.3 with 
the KDE GUI.  Both the operating system and Simics 
were modified to obtain trace files with process IDs. 
 
In the Linux kernel, we modified the schedule() function 
in the sched.c file. As a task switch occurs, a “magic 

function” is called into Simics which passed the new 
process ID as a parameter.  The kernel was compiled and 
loaded into the simulated machine. 
 
In the Simics source code, the trace.c file of the 
instruction trace module was modified. Here, an event 
handler was added to run whenever the magic instruction 
is called within the Linux kernel. When the event handler 
is called, it prints the new process ID to the instruction 
trace file.  It is important to have the process ID inline in 
the instruction trace so that they can be analyzed at the 
same time by the custom branch predictor simulator. 
 
Inside the simulated operating system, a suite of 
applications was installed from which memory traces 
were obtained. A wide selection was used because it was 
unclear as to which application types would produce 
aliasing, and whether the application type would 
determine whether the aliasing is constructive or 
destructive. The applications include the MySQL 
database, Apache web server, and SPEC 2000 CPU 
benchmark [4,1,7]. In addition, many common Linux 
utilities were also present in the system, such as the VI 
text editor and Pine email viewer.  
 
Traces of 10 million+ instructions were taken of all 
applications. Traces of the web server and database server 
were captured during the period of time when the server 
was actively servicing multiple end user requests in 
parallel. Traces of the SPEC benchmarks were taken 
during the execution of the core benchmark functions, and 
do not include the compilation or configuration of the 
benchmarks that happens prior to execution. The VI text 
editor trace was taken when the editor was opening an 
existing file and searching for text, and the Pine email 
viewer trace was taken when the client was opening a new 
mailbox and displaying the first message on screen.  
 
Each trace was parsed to determine the number of process 
switches that occurred in the instruction stream. The 
purpose of this project is to examine the effect of process 
switches on the branch predictor accuracy. Thus, traces 
with a minimal number of switches (less than 8) were 
rejected and not analyzed because their potential for 
performance improvement was minimal. Unfortunately, 
this rejected nearly all of the SPEC benchmarks as 
unsuitable for this experiment. The SPEC programs were 
not useful because their tight execution kernels make few, 
if any, blocking calls to the operation system that require 
immediate process switches. Two benchmarks (Gzip and 
Mgrid) were left in the collection of traces to evaluate 
their performance despite the lack of process switches, 
and as expected these traces turned in the worst accuracy 
improvement.  
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4. Branch Prediction Simulator 
 
In order to model the behavior of common branch 
predictors, we have picked the best two performing 
predictors, namely, a global gshare predictor with a global 
pattern history table (Gag) and a global gshare predictor 
with per-process pattern history tables (a variation of Gas) 
suggested in [8]. 
 
Our original plan was to abstract the branch predictor 
module from the SimpleScalar toolset However, upon 
examining the SimpleScalar source code, we discovered 
that it was not feasible to separate the branch predictor 
module as there were too many dependencies across 
different modules, making it difficult to isolate the branch 
predictor from the rest of the program. 
 
We therefore decided to write our own branch predictor 
algorithm using Perl. One big advantage of writing our 
own branch predictor was that we could customize and 
interface the branch predictor to our trace parser a lot 
easier. We also added extra features into the branch 
predictors. For example, our branch predictor can 
calculate the utilization of the pattern history table and 
compare the pattern history tables and more importantly, 
the prediction accuracy of the two different branch 
predictors at run-time. These additions to our branch 
predictor algorithm were essential for efficient data 
analysis on the predictors. Our branch prediction 
simulator is composed of two units: the trace parser and 
the branch prediction module. 
 
4.1 Trace Parser 
 
In order to get the traces from the user-level and system-
level programs, our branch predictors were fed with a 
trace parser that reads instructions one by one from the 
trace files created by Simics. The instructions were 
decoded and identified as branch and non-branch 
instructions. The way the branch predictor decides 
whether a branch instruction was taken is as follows: 
First, the branch predictor will read the branch target 
address from the branch instruction. At the same time, the 
trace parser will also record the instruction length for the 
current branch instruction in order to compute the fall-
through address for the current branch instruction. 
Second, the trace parser will read the next instruction 
from the trace parser. The address of the next instruction 
was extracted and then compared to the branch target 
address of the last branch instruction. If the address of the 
next instruction matched the target address of the last 
branch instruction, the branch was taken; otherwise, the 
branch was not taken and the address of the instruction 
would be exactly the fall-through address of the branch 
instruction. 
 

4.2 Branch Prediction Module 
 
Coupled with the trace parser is our branch prediction 
module that runs in back to back with the trace parser. In 
our experiment, we implemented two different branch 
predictors. The first, as shown in Figure 1, was a global 
branch predictor with global pattern history table. The 
branch history register on the left on the figure was an n-
bit shift-left register used to store the direction (Taken / 
Not taken) of the last n branches, n being an adjustable 
value. The program counter contained the address of the 
current branch instruction. The global pattern history table 
contained a total of 2n entries of 2-bit saturation counters 
used for branch prediction. The saturation counter value 
ranged from 0-3. The values of the 2-bit saturation 
counter, 0, 1, 2 and 3 represented a prediction of “strongly 
not taken”, “weakly not taken”, “weakly taken” and 
“strongly taken” respectively. Whenever the program 
encountered a branch instruction, the n-bit value in the 
branch history register would be XORed with the last n-
bits of the program counter, which is the address of the 
current branch instruction. The result from the XOR 
operation would then be used to index into the global 
pattern history table. The value of the saturation counter 
from that specific index location was read and a 
prediction (strongly not taken, weakly not taken etc.) 
would be made based on that value. When the parser 
fetched the next instruction and determined whether the 
branch was really taken or not, the same saturation 
counter that made the prediction was updated with the 
result. If the branch was taken, the saturation counter 
would be incremented by 1 subject to the maximum value 
of 3. Otherwise, the counter would be decremented 
subject to the minimum value of 0. Finally, the branch 
history register would be shifted left in order to record the 
branch direction. 
 
The second branch predictor, as shown in Figure 2, is a 
global branch predictor with a per-process pattern history 
table. The only difference from the first predictor is that 
instead of one global pattern history table, every process 
in the program has a separate set of 2n entries of saturation 
counter values. This allows more adaptive predictions to 
different processes in the program and thus better 
prediction accuracy. After the XOR operation, the results 
of the XOR operation are used to index the pattern history 
table corresponding to the running process. 
 
After some experiments with different configurations of 
the branch predictor, we decided to use a 12-bit history 
register and a 4096-entry (212) pattern history table. This 
configuration provided the best relative performance over 
a range of programs. Therefore, we built both our branch 
predictors with this configuration. 
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Figure 1: Global Branch Predictor with Global History 
Table 
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Figure 2: Global Branch Predictor with Per-process 
History Table 
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Figure 3: Branch Predictor Aliasing 

 
 
 
 
 
 

Among the customizations and additions to our branch 
predictors, the functionality to compare and contrast the 
run-time accuracy of the branch predictors was very 
helpful to our analysis. The convergence graph of 
accuracy of the two branch predictors shed light into how 
the two branch predictors performed relative to each other 
over time. 
 
 
5. Experimental Results 
 
After obtaining instruction traces of multi-process 
systems and constructing a branch predictor simulator, a 
sequence of experiments was conducted. The purpose of 
these experiments was to determine if aliasing exists, if 
this aliasing degrades accuracy, to quantify precisely 
where this behavior occurs, and to propose solutions for 
eliminating aliasing.   
 
Figure 3 illustrates how aliasing might occur between 
multiple processes. The first column represents the 
currently executing process. The second column 
represents a branch predictor that has a separate history 
table per process. Thus, when a process switch occurs, a 
new table is used, and when original process “A” returns 
to execution (perhaps several process switches later), the 
original history table is also reloaded. The third column 
represents a standard branch predictor with a single 
history table. Thus, when the original process “A” is 
replaced by process “B”, the second process naturally 
starts to overwrite some elements of the history table with 
its own history. This is called aliasing. Thus, the state of 
the history table when process “A” returns to execution 
some time later is different from the state of the history 
table when “A” was originally executing.  
 
The first objective in this research project was to 
determine if aliasing exists in real-world programs and 
branch predictors. A collection of instruction traces was 
run through the branch predictor to compare the original 
GShare algorithm with the modified predictor with 
separate history tables by ID. A representative 
comparison is shown in Figure 4. 
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Figure 4: History Table Aliasing (MySQL trace) 

 
This figure was created by comparing the ID branch 
predictor history file with the global branch predictor 
history file immediately after it enters and exits a new 
process. For purposes of visualization, this graph was 
restricted to only show when process 2736 (a MySQL 
server thread) enters and exits. The two lines should be 
examined independently, as each line uses a different 
method to compare the two different predictors used in 
this study. The top shows the percentage of the history 
table that was considered “partially” unchanged between 
the standard predictor and the ID-enabled predictor. A 
“partial” match indicates that the branch prediction result 
of taken or not taken was the same, but the exact value of 
the saturating counter in the history table was different. In 
contrast, the “exact” match in the bottom line indicates 
that the counters in the history table were exactly the 
same. 
 
At instruction count zero, it is clear that both empty 
history tables would have the exact same contents, and 
thus be 100% unchanged. When the simulation starts, 
process 2736 has just finished and another process (or 
processes) is executing. When the MySQL process 
resumes execution at the next data point, there is a 
substantially lower similarity between the two branch 
predictors compared to when they last left the process. 
The only possible cause for this divergence is aliasing in 
the global predictor caused by other processes overwriting 
portions of the history table.  
 
Note that some processes have higher aliasing rates than 
others. The amount of aliasing a process causes is 
independent of its length of execution time. If a process 
has a very short duration, however, the aliasing (as shown 
in Figure 4) will be minimal because the process executed 
very few instructions and branches. In this project, the 
emphasis is on processes that execute enough branches to 
produce a significant amount of aliasing. 

Clearly, aliasing exists and is caused by competition for 
history table resources between multiple processes.  It is 
not clear, however, if this aliasing is constructive, 
destructive, or neutral. To examine this issue, all the 
instruction traces were run through both branch predictors 
and compared, as shown in Table 1. 
 

Table 1: Predictor Accuracy With and Without Aliasing 

Trace 
Source 
(Primary 
Program) 

GShare 
Predictor 
Accuracy 
(%) 

ID 
Predictor 
Accuracy 
(%) 

Accuracy 
Difference 
(%) 

Apache 1 88.48 88.68 0.20 
Apache 2 87.92 88.18 0.26 
Apache 3 87.79 88.20 0.41 
KDE 1 86.10 86.85 0.75 
KDE 2 88.99 90.48 1.49 
KDE 3 89.70 90.34 0.68 
KDE 4 90.73 91.16 0.43 
MySQL 84.76 87.62 2.86 
Pine 85.77 86.33 0.56 
SPEC2000 
(Gzip) 

86.93 87.04 0.11 

SPEC2000 
(Mgrid) 

86.16 86.31 0.15 

VI 86.04 87.94 1.90 
Average: 0.81% 

 
The standard GShare predictor has aliasing because it 
only uses a single history table. The ID predictor uses the 
same algorithm, but has a separate history table per 
process. Thus, the only difference between the two 
systems is the removal of aliasing in the ID predictor, 
which produces an average accuracy improvement of 
0.81%. Thus, because the predictor performance 
improved overall, the aliasing in all of the instruction 
traces must have been destructive on average. 
 
Having learned that aliasing does occur and that it is 
destructive overall, the next question probed in this 
project was to determine the extent of the aliasing 
problem and show both where it occurs and how 
removing it improves predictor performance.  
 
Figure 5 shows a sample performance comparison 
between the two predictor systems on the MySQL 
database trace. Although only one figure is included in 
this paper, the behaviors described are present in all of the 
instruction traces. 
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Figure 5: Accuracy Comparison (MySQL trace) 
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Figure 6: Accuracy Comparison (MySQL trace) 



- 7 - 

This graph extends for the entire duration of the 
instruction trace. The top two lines (mostly overlapping) 
centered about 80-90% represent the predictor accuracy 
for the standard and by-ID GShare algorithms. The 
bottom line centered near 0% represents the performance 
difference between the two predictors. Values above zero 
signify that the ID predictor improved accuracy, while 
values below zero signify that the ID predictor was less 
accurate than the global predictor.  
 
It is important to note that the bottom line is more sparse 
than the graph above would seem to indicate, as the lines 
can only be plotted with a minimum thickness, and as 
they overlap they tend to obscure near-zero values in 
between. Looking at the bottom line at a higher zoom 
level, we notices pauses and spikes. This suggests that 
there are periods where both predictors behave the same, 
and other periods where the predictor accuracy differs 
significantly. Figure 6 is a close-up view of Figure 5 over 
a limited time frame during the instruction stream. 
 
This figure clearly shows lengthy periods of high 
convergence where the difference between the two 
predictors is essentially zero. But, at approximately the 
1735th (hundred) branch, the predictors wildly diverge. 
The ID predictor accuracy increases to near 100 percent, 
while the standard predictor accuracy remains roughly 
constant. At some later point in time, the two predictor’s 
accuracy grows closer together and the difference again is 
near zero percent.  
 
The next logic question to answer is: why does this 
behavior occur? The original instruction trace file was 
examined, and it was observed that these divergence 
points coincided exactly with the process switches. This is 
highlighted in Figure 7. Thus, the “new” process must 
incur a performance penalty as the history table learns its 
new execution pattern. After the new process executes for 
a period of time (i.e. the “training time” as discussed by 
[2]), the accuracy of the original global predictor 
improves to the point that it matches the by-ID predictor. 
The by-ID predictor, however, does not need to pay this 
performance penalty, as it already has a fully trained 
history table ready for prediction based on the last time 
this process executed.  
 
The time that it takes for the accuracy of the aliased 
predictor to improve and match the performance of the 
non-aliased predictor is referred to as the convergence 
time. This concept is labeled in Figure 8.  
 

 
Figure 7: Process Switches (MySQL trace) 

 

 
Figure 8: Convergence Time (MySQL trace) 

 
The longer the convergence time is, the greater the 
potential for accuracy improvement is by eliminating the 
penalty incurred by aliasing when other processes 
execute. The duration of convergence is necessarily 
dependent on the specific processes that were executing, 
the time each process spent in execution, and the degree 
of aliasing each process produced. As an example of how 
the convergence varies by process, a breakdown of the 
KDE trace is shown in Figure 9. 
 
The purpose of this figure is to show that, although 
convergence time varies, the property occurs in the 
general case at the beginning of all processes, and is not 
limited to a few rare cases in specific trace files. To obtain 
this graph, a special parser was written to analyze the data 
points shown in Figure 6, which provided the relative 
performance between the two competing predictors (e.g. 
with and without aliasing). We average the accuracy of 
the first 2000 branches each time the machine enters a 
specific process. This average was taken in increments of 
100 branches so that the convergence can be observed 
with respect to time. This was repeated for all processes.  
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Accuracy Comparison by Processs (KDE Trace) 
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Figure 9: Convergence Times by Process ID (KDE 
Trace) 
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Figure 10: Average Convergence (KDE Trace) 

 
 

Average Accuracy Comparison (MySQL trace)
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Figure 11: Average Convergence (MySQL trace) 

 
 

Averaging the predictor performance in Figure 9 reveals a 
clear overall performance trend for all of the processes in 
that trace, as shown in Figure 10. In this figure, it is clear 
that all processes in the KDE trace converge to within 1% 
accuracy in approximately 2000 branches. Thus, aliasing 
occurs regularly in modern systems after every process 
switch. This convergence behavior held true for most 
instruction traces analyzed. For example, Figure 9 shows 
the convergence average for the MySQL trace, which 
indicates that it also converges to within 1% accuracy 
within 2000 branches, and may even achieve a reasonable 
level in less than 1000 branches. 
 
A few instruction traces did not show a clear convergence 
pattern after averaging the performance of the individual 
processes. An example of this behavior is shown in Figure 
12 for all of the processes and in Figure 13 for the process 
average.  
 
In the by-process figure, it is clear that some processes 
exhibited very erratic branch predictor performance. 
Clearly, an irregularly performing process is difficult for 
any predictor algorithm to handle, and this behavior is 
independent of the aliasing effect that this project set out 
to study. Thus, simply for the purposes of illustration, the 
three most erratic processes from Figure 12 were 
removed, and a new average computed, as shown in 
Figure 14. Removing these from the average better 
illustrates the convergence behavior.  It is important to 
note that, although the erratic processes were removed 
when creating this specific figure only, all process 
(regular or irregular) were included in Table 1 when 
computing the overall accuracy improvements after 
removing aliasing. 
 
 
 

Accuracy Comparison by Processes (VI Trace)
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Figure 12: Convergence Times by Process ID (VI trace) 
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Average Accuracy Comparison (VI Trace)
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Figure 13: “Convergence” Average (VI trace) 

 
Average Accuracy Comparsion - Adjusted (VI Trace)
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Figure 14: VI Trace Convergence (Adjusted Average) 

 
 
6. Conclusions 
 
All of the original hypotheses in this project were shown 
to be correct.  Modern machines do frequent process 
switches, and traditional global branch prediction 
accuracy suffers after each switch. This accuracy penalty 
is due to aliasing in the history table, which can be 
eliminated by having a separate history table per process. 
By eliminating the aliasing penalty, the accuracy of any 
predictor that shares history between processes can be 
improved regardless of the efficiency of that algorithm. 
 
Even with this costly solution in place, however, the 
overall accuracy improvement of 0.5 – 3% is quite small. 
The reason the improvement is so limited is not due to the 
actual difference in prediction accuracy, which can 
exhibit a large gap after a process switch. Rather, the 
convergence period, or the time it takes the history table 

to relearn the prediction patterns of the current process, is 
quite short at around 2000 branches. Thus, the overall 
accuracy improvement is highly limited by the rate of 
process switches in the current program set. 
 
The results in this paper clearly indicate that, for general 
purpose applications, this proposed system provides both 
a limited benefit and comes with a high hardware cost due 
to the large number of parallel history tables that must be 
implemented and quickly accessed. Future research could 
identify if a separate history table is in fact needed for 
each and every process, or if some less-frequent or less-
destructive processes could be assigned to share a history 
table. Although this project did use a variety of instruction 
traces, the data sets used were far from exhaustive. Thus, 
if a specific application category was found that had 
particularly frequent aliasing problems, this technique or a 
variant that only uses a limited number of history tables 
might be useful in improving prediction accuracy. 
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