
- 1 -

Process Switches and Branch Prediction Accuracy

David Chen, Bennett Lau, Jeffrey Shafer

Department of Electrical and Computer Engineering
Rice University

Abstract

There were several hypotheses that motivated this
research project. First, we proposed that running multiple
processes pollutes the history in branch predictors due to
aliasing. This pollution decreases accuracy. Second, we
argued that branch prediction accuracy can be improved
over existing techniques by removing this aliasing.
Specifically, the history table can be partitioned to allow
each process, or a subset of the most frequently executed
processes, to have their own history.

This project successfully shows that aliasing in the branch
predictor history does occur due to multiple processes
executing, and quantifies the frequency of that problem.
The accuracy of existing predictors can be improved, and
adding separate history tables is an effective method of
removing the aliasing problem. Specifically, a prediction
improvement of 0.5 – 3% can be obtained through this
technique, and this improvement is always in addition to
any prediction algorithm that suffers from aliasing. The
actual accuracy penalty due to aliasing is much higher
than this improvement would seem to suggest. The
relative infrequency of process switches, however, and
the short time of approximately 2000 branches to “repair”
the destructive aliasing in the branch history table after a
process switch, both combine to significantly limit the
potential for improvement via this technique. When the
hardware overhead of multiple history tables is taken into
account, this technique is not recommended for general-
purpose applications

1. Introduction

The branch predictor accuracy is a significant component
of overall performance in modern deeply pipelined
superscalar machines. The penalty of a mispredicted
branch can be quite high [6]. Most existing research into
branch predictors, however, examines their performance
in single-process programs only. As computation moves
increasingly to multi-threaded applications, it is unclear if
the existing research is applicable. Do multiple threads
compete over the branch predictor and interfere with each
other? How severe is this effect? Does a method exist to
alleviate this problem?

2. Existing Work

Previous research into branch predictors defines some
useful terminology. First, aliasing, as described by [9], is
central to this research project. Analogous to memory
caches, aliasing in branch prediction occurs when
different branches are assigned to the same history
counter. These instruction streams can be from the same
process or different processes altogether.

Aliasing is not a permanent effect. If one branch executes
for a thousand times, and then another branch aliases to
its same spot in the history table and also executes a
thousand times, the overall effect on prediction accuracy
will be very limited, as it will only take a few cycles
(depending on the depth of the history) for the new branch
to “train” the predictor with the new pattern.

This aliasing can either be constructive, destructive, or
neutral, depending if the new pattern alters the final
prediction of branch taken or branch not taken. [9]
showed that destructive aliasing is significantly more
common than constructive aliasing, particularly if the
instruction stream is large or the branch history table is
small. However, this analysis was not performed for
independent processes. Rather, it was done on different
segments of the instruction stream from the same process,
so it is unclear if the behavior will be similar.

Related to aliasing, [2] defined training overhead. This
overhead refers to the fact that history counters must be
“primed” to deliver the correct prediction by first
observing a few repetitions of the branch. This concept is
relevant because each process switch incurs a new
training overhead for the branch predictor.

Branch predictor configurations for simultaneous
multithreaded processors were explored in [5]. In addition
to a traditional shared predictor, they examined providing
separate history registers or branch history tables for each
thread. They concluded that providing only a separate
history register for each thread increased the prediction
accuracy by eliminating harmful aliasing between
execution threads, and minimized the increase in
hardware requirements that completely independent
predictors would require. Further, this configuration with

- 2 -

independent predictors increased performance even when
the threads were executing the same code. Unfortunately,
while the branch prediction accuracy was increased, the
overall system performance was only marginally affected,
because the thread-level parallelism inherent in the SMT
design was effective in hiding the negative effects of
branch misprediction.

[2] found that including kernel references increased the
branch predictor history aliasing. This effect could alter
the conclusions of past studies of prediction accuracy,
such that algorithms with short branch histories would
now performance better than algorithms with long
histories, so that the effect of aliasing would be more
rapidly overcome through training.

3. Multiple Process Instruction Traces

Because most existing literature on branch predictors only
used single-process instruction traces, this study was
conducted with multi-process instruction traces. To obtain
the desired instruction traces of multi-process applications
and the host operating system, the Simics simulator from
Virtuatech was used. Simics is a detailed functional
simulator for multiple processor architectures, including
x86, PowerPC, Alpha, and Itanium. In addition to
simulating the microprocessor, Simics also emulates a
core subset of peripheral devices, such as the BIOS, video
card, network card, and disk drive. Thus, it is possible to
install and run unmodified operating systems such as
Linux or Windows on Simics. Because the entire system
is simulated, and thus the simulation rate can be
dynamically altered, Simics enables non-intrusive
profiling of the instruction stream and memory access
stream without concern that the monitoring overhead will
distort the data capture [3].

Simics includes a standard module that can capture an
instruction stream during program execution. This stream
mixes both user-level and kernel-level code, as well as
multiple processes. For this project, the goal was to
extend Simics to capture process IDs so we can clearly
distinguish between multiple processes and study the
immediate impact of a process switch on branch
prediction accuracy. Because Simics functions as a
hardware execution platform, it has no native
understanding of a software concept such as a “process.”

A prebuilt operating system disk image from Virtutech
was used. This image contained RedHat Linux 7.3 with
the KDE GUI. Both the operating system and Simics
were modified to obtain trace files with process IDs.

In the Linux kernel, we modified the schedule() function
in the sched.c file. As a task switch occurs, a “magic

function” is called into Simics which passed the new
process ID as a parameter. The kernel was compiled and
loaded into the simulated machine.

In the Simics source code, the trace.c file of the
instruction trace module was modified. Here, an event
handler was added to run whenever the magic instruction
is called within the Linux kernel. When the event handler
is called, it prints the new process ID to the instruction
trace file. It is important to have the process ID inline in
the instruction trace so that they can be analyzed at the
same time by the custom branch predictor simulator.

Inside the simulated operating system, a suite of
applications was installed from which memory traces
were obtained. A wide selection was used because it was
unclear as to which application types would produce
aliasing, and whether the application type would
determine whether the aliasing is constructive or
destructive. The applications include the MySQL
database, Apache web server, and SPEC 2000 CPU
benchmark [4,1,7]. In addition, many common Linux
utilities were also present in the system, such as the VI
text editor and Pine email viewer.

Traces of 10 million+ instructions were taken of all
applications. Traces of the web server and database server
were captured during the period of time when the server
was actively servicing multiple end user requests in
parallel. Traces of the SPEC benchmarks were taken
during the execution of the core benchmark functions, and
do not include the compilation or configuration of the
benchmarks that happens prior to execution. The VI text
editor trace was taken when the editor was opening an
existing file and searching for text, and the Pine email
viewer trace was taken when the client was opening a new
mailbox and displaying the first message on screen.

Each trace was parsed to determine the number of process
switches that occurred in the instruction stream. The
purpose of this project is to examine the effect of process
switches on the branch predictor accuracy. Thus, traces
with a minimal number of switches (less than 8) were
rejected and not analyzed because their potential for
performance improvement was minimal. Unfortunately,
this rejected nearly all of the SPEC benchmarks as
unsuitable for this experiment. The SPEC programs were
not useful because their tight execution kernels make few,
if any, blocking calls to the operation system that require
immediate process switches. Two benchmarks (Gzip and
Mgrid) were left in the collection of traces to evaluate
their performance despite the lack of process switches,
and as expected these traces turned in the worst accuracy
improvement.

- 3 -

4. Branch Prediction Simulator

In order to model the behavior of common branch
predictors, we have picked the best two performing
predictors, namely, a global gshare predictor with a global
pattern history table (Gag) and a global gshare predictor
with per-process pattern history tables (a variation of Gas)
suggested in [8].

Our original plan was to abstract the branch predictor
module from the SimpleScalar toolset However, upon
examining the SimpleScalar source code, we discovered
that it was not feasible to separate the branch predictor
module as there were too many dependencies across
different modules, making it difficult to isolate the branch
predictor from the rest of the program.

We therefore decided to write our own branch predictor
algorithm using Perl. One big advantage of writing our
own branch predictor was that we could customize and
interface the branch predictor to our trace parser a lot
easier. We also added extra features into the branch
predictors. For example, our branch predictor can
calculate the utilization of the pattern history table and
compare the pattern history tables and more importantly,
the prediction accuracy of the two different branch
predictors at run-time. These additions to our branch
predictor algorithm were essential for efficient data
analysis on the predictors. Our branch prediction
simulator is composed of two units: the trace parser and
the branch prediction module.

4.1 Trace Parser

In order to get the traces from the user-level and system-
level programs, our branch predictors were fed with a
trace parser that reads instructions one by one from the
trace files created by Simics. The instructions were
decoded and identified as branch and non-branch
instructions. The way the branch predictor decides
whether a branch instruction was taken is as follows:
First, the branch predictor will read the branch target
address from the branch instruction. At the same time, the
trace parser will also record the instruction length for the
current branch instruction in order to compute the fall-
through address for the current branch instruction.
Second, the trace parser will read the next instruction
from the trace parser. The address of the next instruction
was extracted and then compared to the branch target
address of the last branch instruction. If the address of the
next instruction matched the target address of the last
branch instruction, the branch was taken; otherwise, the
branch was not taken and the address of the instruction
would be exactly the fall-through address of the branch
instruction.

4.2 Branch Prediction Module

Coupled with the trace parser is our branch prediction
module that runs in back to back with the trace parser. In
our experiment, we implemented two different branch
predictors. The first, as shown in Figure 1, was a global
branch predictor with global pattern history table. The
branch history register on the left on the figure was an n-
bit shift-left register used to store the direction (Taken /
Not taken) of the last n branches, n being an adjustable
value. The program counter contained the address of the
current branch instruction. The global pattern history table
contained a total of 2n entries of 2-bit saturation counters
used for branch prediction. The saturation counter value
ranged from 0-3. The values of the 2-bit saturation
counter, 0, 1, 2 and 3 represented a prediction of “strongly
not taken”, “weakly not taken”, “weakly taken” and
“strongly taken” respectively. Whenever the program
encountered a branch instruction, the n-bit value in the
branch history register would be XORed with the last n-
bits of the program counter, which is the address of the
current branch instruction. The result from the XOR
operation would then be used to index into the global
pattern history table. The value of the saturation counter
from that specific index location was read and a
prediction (strongly not taken, weakly not taken etc.)
would be made based on that value. When the parser
fetched the next instruction and determined whether the
branch was really taken or not, the same saturation
counter that made the prediction was updated with the
result. If the branch was taken, the saturation counter
would be incremented by 1 subject to the maximum value
of 3. Otherwise, the counter would be decremented
subject to the minimum value of 0. Finally, the branch
history register would be shifted left in order to record the
branch direction.

The second branch predictor, as shown in Figure 2, is a
global branch predictor with a per-process pattern history
table. The only difference from the first predictor is that
instead of one global pattern history table, every process
in the program has a separate set of 2n entries of saturation
counter values. This allows more adaptive predictions to
different processes in the program and thus better
prediction accuracy. After the XOR operation, the results
of the XOR operation are used to index the pattern history
table corresponding to the running process.

After some experiments with different configurations of
the branch predictor, we decided to use a 12-bit history
register and a 4096-entry (212) pattern history table. This
configuration provided the best relative performance over
a range of programs. Therefore, we built both our branch
predictors with this configuration.

- 4 -

XORXOR

Program CounterProgram Counter

Branch History Register

NN NT NT ……

Global
Pattern
History
Table

01

10

11

00

01

10

…
…

.…

Strongly
Taken

Strongly
Taken

XORXOR

Program CounterProgram Counter

Branch History Register

NN NT NT ……

Global
Pattern
History
Table

01

10

11

00

01

10

…
…

.…

Strongly
Taken

Strongly
Taken

Figure 1: Global Branch Predictor with Global History
Table

XORXOR

Program CounterProgram Counter

Branch History Register

NN NT NT ……

Per-Process Pattern
History Table

Weakly
Taken

Weakly
Taken

01

11

10
11

01

00

…
…

.…

01

10

11
00

01

10

…
…

.…

10

00

01
11

11

01

…
…

.…

……

XORXOR

Program CounterProgram Counter

Branch History Register

NN NT NT ……

Per-Process Pattern
History Table

Weakly
Taken

Weakly
Taken

01

11

10
11

01

00

…
…

.…

01

10

11
00

01

10

…
…

.…

10

00

01
11

11

01

…
…

.…

……

Figure 2: Global Branch Predictor with Per-process
History Table

A

B

A

…

Process GShare by Process GShare

Aliasing!

… …

In
st

ru
ct

io
n

St
re

am

Figure 3: Branch Predictor Aliasing

Among the customizations and additions to our branch
predictors, the functionality to compare and contrast the
run-time accuracy of the branch predictors was very
helpful to our analysis. The convergence graph of
accuracy of the two branch predictors shed light into how
the two branch predictors performed relative to each other
over time.

5. Experimental Results

After obtaining instruction traces of multi-process
systems and constructing a branch predictor simulator, a
sequence of experiments was conducted. The purpose of
these experiments was to determine if aliasing exists, if
this aliasing degrades accuracy, to quantify precisely
where this behavior occurs, and to propose solutions for
eliminating aliasing.

Figure 3 illustrates how aliasing might occur between
multiple processes. The first column represents the
currently executing process. The second column
represents a branch predictor that has a separate history
table per process. Thus, when a process switch occurs, a
new table is used, and when original process “A” returns
to execution (perhaps several process switches later), the
original history table is also reloaded. The third column
represents a standard branch predictor with a single
history table. Thus, when the original process “A” is
replaced by process “B”, the second process naturally
starts to overwrite some elements of the history table with
its own history. This is called aliasing. Thus, the state of
the history table when process “A” returns to execution
some time later is different from the state of the history
table when “A” was originally executing.

The first objective in this research project was to
determine if aliasing exists in real-world programs and
branch predictors. A collection of instruction traces was
run through the branch predictor to compare the original
GShare algorithm with the modified predictor with
separate history tables by ID. A representative
comparison is shown in Figure 4.

- 5 -

History Table Aliasing

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100000 200000 300000 400000 500000 600000 700000

Instruction Count

Pe
rc

en
ta

ge
 U

nc
ha

ng
ed

Exact Partial

Figure 4: History Table Aliasing (MySQL trace)

This figure was created by comparing the ID branch
predictor history file with the global branch predictor
history file immediately after it enters and exits a new
process. For purposes of visualization, this graph was
restricted to only show when process 2736 (a MySQL
server thread) enters and exits. The two lines should be
examined independently, as each line uses a different
method to compare the two different predictors used in
this study. The top shows the percentage of the history
table that was considered “partially” unchanged between
the standard predictor and the ID-enabled predictor. A
“partial” match indicates that the branch prediction result
of taken or not taken was the same, but the exact value of
the saturating counter in the history table was different. In
contrast, the “exact” match in the bottom line indicates
that the counters in the history table were exactly the
same.

At instruction count zero, it is clear that both empty
history tables would have the exact same contents, and
thus be 100% unchanged. When the simulation starts,
process 2736 has just finished and another process (or
processes) is executing. When the MySQL process
resumes execution at the next data point, there is a
substantially lower similarity between the two branch
predictors compared to when they last left the process.
The only possible cause for this divergence is aliasing in
the global predictor caused by other processes overwriting
portions of the history table.

Note that some processes have higher aliasing rates than
others. The amount of aliasing a process causes is
independent of its length of execution time. If a process
has a very short duration, however, the aliasing (as shown
in Figure 4) will be minimal because the process executed
very few instructions and branches. In this project, the
emphasis is on processes that execute enough branches to
produce a significant amount of aliasing.

Clearly, aliasing exists and is caused by competition for
history table resources between multiple processes. It is
not clear, however, if this aliasing is constructive,
destructive, or neutral. To examine this issue, all the
instruction traces were run through both branch predictors
and compared, as shown in Table 1.

Table 1: Predictor Accuracy With and Without Aliasing

Trace
Source
(Primary
Program)

GShare
Predictor
Accuracy
(%)

ID
Predictor
Accuracy
(%)

Accuracy
Difference
(%)

Apache 1 88.48 88.68 0.20
Apache 2 87.92 88.18 0.26
Apache 3 87.79 88.20 0.41
KDE 1 86.10 86.85 0.75
KDE 2 88.99 90.48 1.49
KDE 3 89.70 90.34 0.68
KDE 4 90.73 91.16 0.43
MySQL 84.76 87.62 2.86
Pine 85.77 86.33 0.56
SPEC2000
(Gzip)

86.93 87.04 0.11

SPEC2000
(Mgrid)

86.16 86.31 0.15

VI 86.04 87.94 1.90
Average: 0.81%

The standard GShare predictor has aliasing because it
only uses a single history table. The ID predictor uses the
same algorithm, but has a separate history table per
process. Thus, the only difference between the two
systems is the removal of aliasing in the ID predictor,
which produces an average accuracy improvement of
0.81%. Thus, because the predictor performance
improved overall, the aliasing in all of the instruction
traces must have been destructive on average.

Having learned that aliasing does occur and that it is
destructive overall, the next question probed in this
project was to determine the extent of the aliasing
problem and show both where it occurs and how
removing it improves predictor performance.

Figure 5 shows a sample performance comparison
between the two predictor systems on the MySQL
database trace. Although only one figure is included in
this paper, the behaviors described are present in all of the
instruction traces.

- 6 -

MySQL Accuracy Graph

-40

-20

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Branch Count (in 100s)

A
cc

ur
ac

y
(%

)

ID GShare Difference

Figure 5: Accuracy Comparison (MySQL trace)

MySQL Accuracy Graph

-40

-20

0

20

40

60

80

100

1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

Branch Count (in 100s)

A
cc

ur
ac

y
(%

)

ID GShare Difference

Figure 6: Accuracy Comparison (MySQL trace)

- 7 -

This graph extends for the entire duration of the
instruction trace. The top two lines (mostly overlapping)
centered about 80-90% represent the predictor accuracy
for the standard and by-ID GShare algorithms. The
bottom line centered near 0% represents the performance
difference between the two predictors. Values above zero
signify that the ID predictor improved accuracy, while
values below zero signify that the ID predictor was less
accurate than the global predictor.

It is important to note that the bottom line is more sparse
than the graph above would seem to indicate, as the lines
can only be plotted with a minimum thickness, and as
they overlap they tend to obscure near-zero values in
between. Looking at the bottom line at a higher zoom
level, we notices pauses and spikes. This suggests that
there are periods where both predictors behave the same,
and other periods where the predictor accuracy differs
significantly. Figure 6 is a close-up view of Figure 5 over
a limited time frame during the instruction stream.

This figure clearly shows lengthy periods of high
convergence where the difference between the two
predictors is essentially zero. But, at approximately the
1735th (hundred) branch, the predictors wildly diverge.
The ID predictor accuracy increases to near 100 percent,
while the standard predictor accuracy remains roughly
constant. At some later point in time, the two predictor’s
accuracy grows closer together and the difference again is
near zero percent.

The next logic question to answer is: why does this
behavior occur? The original instruction trace file was
examined, and it was observed that these divergence
points coincided exactly with the process switches. This is
highlighted in Figure 7. Thus, the “new” process must
incur a performance penalty as the history table learns its
new execution pattern. After the new process executes for
a period of time (i.e. the “training time” as discussed by
[2]), the accuracy of the original global predictor
improves to the point that it matches the by-ID predictor.
The by-ID predictor, however, does not need to pay this
performance penalty, as it already has a fully trained
history table ready for prediction based on the last time
this process executed.

The time that it takes for the accuracy of the aliased
predictor to improve and match the performance of the
non-aliased predictor is referred to as the convergence
time. This concept is labeled in Figure 8.

Figure 7: Process Switches (MySQL trace)

Figure 8: Convergence Time (MySQL trace)

The longer the convergence time is, the greater the
potential for accuracy improvement is by eliminating the
penalty incurred by aliasing when other processes
execute. The duration of convergence is necessarily
dependent on the specific processes that were executing,
the time each process spent in execution, and the degree
of aliasing each process produced. As an example of how
the convergence varies by process, a breakdown of the
KDE trace is shown in Figure 9.

The purpose of this figure is to show that, although
convergence time varies, the property occurs in the
general case at the beginning of all processes, and is not
limited to a few rare cases in specific trace files. To obtain
this graph, a special parser was written to analyze the data
points shown in Figure 6, which provided the relative
performance between the two competing predictors (e.g.
with and without aliasing). We average the accuracy of
the first 2000 branches each time the machine enters a
specific process. This average was taken in increments of
100 branches so that the convergence can be observed
with respect to time. This was repeated for all processes.

MySQL Accuracy Graph

-40

-20

0

20

40

60

80

100

1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

Branch Count (in 100s)

A
cc

ur
ac

y
(%

)

ID GShare Difference

Convergence
Time

MySQL Accuracy Graph

-40

-20

0

20

40

60

80

100

1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

Branch Count (in 100s)

A
cc

ur
ac

y
(%

)

ID GShare Difference

Process
Switch

- 8 -

Accuracy Comparison by Processs (KDE Trace)

-15

-10

-5

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20

Branch Count (in 100s)

Di
ffe

re
nc

e
in

 A
cc

ur
ac

y
(in

 b
ra

nc
he

s)

Process2794 Process2830 Process2831 Process2812
Process2734 Process2814 Process2817 Process1106

Figure 9: Convergence Times by Process ID (KDE
Trace)

Average Accuracy Comparison (KDE Trace)

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20

Branch Count (in 100s)

D
iff

er
en

ce
 in

 A
cc

ur
ac

y
(in

 b
ra

nc
he

s)

Figure 10: Average Convergence (KDE Trace)

Average Accuracy Comparison (MySQL trace)

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20

Branch Count (in 100s)

Di
ffe

re
nc

e
in

 A
cc

ur
ac

y
(in

 b
ra

nc
he

s)

Figure 11: Average Convergence (MySQL trace)

Averaging the predictor performance in Figure 9 reveals a
clear overall performance trend for all of the processes in
that trace, as shown in Figure 10. In this figure, it is clear
that all processes in the KDE trace converge to within 1%
accuracy in approximately 2000 branches. Thus, aliasing
occurs regularly in modern systems after every process
switch. This convergence behavior held true for most
instruction traces analyzed. For example, Figure 9 shows
the convergence average for the MySQL trace, which
indicates that it also converges to within 1% accuracy
within 2000 branches, and may even achieve a reasonable
level in less than 1000 branches.

A few instruction traces did not show a clear convergence
pattern after averaging the performance of the individual
processes. An example of this behavior is shown in Figure
12 for all of the processes and in Figure 13 for the process
average.

In the by-process figure, it is clear that some processes
exhibited very erratic branch predictor performance.
Clearly, an irregularly performing process is difficult for
any predictor algorithm to handle, and this behavior is
independent of the aliasing effect that this project set out
to study. Thus, simply for the purposes of illustration, the
three most erratic processes from Figure 12 were
removed, and a new average computed, as shown in
Figure 14. Removing these from the average better
illustrates the convergence behavior. It is important to
note that, although the erratic processes were removed
when creating this specific figure only, all process
(regular or irregular) were included in Table 1 when
computing the overall accuracy improvements after
removing aliasing.

Accuracy Comparison by Processes (VI Trace)

-25

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20

Branch Count (in 100s)

D
iff

er
en

ce
 in

 A
cc

ur
ac

y
(in

 b
ra

nc
he

s)

Process6150 Process2 Process1119
Process6138 Process6156 Process6152
Process1106 Process1 Process6154

Figure 12: Convergence Times by Process ID (VI trace)

- 9 -

Average Accuracy Comparison (VI Trace)

-3

-2

-1

0

1

2

3

4

0 5 10 15 20

Branch Count (in 100s)

Di
ffe

re
nc

e
in

 A
cc

ur
ac

y
(in

 b
ra

nc
he

s)

Figure 13: “Convergence” Average (VI trace)

Average Accuracy Comparsion - Adjusted (VI Trace)

-3

-2

-1

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20

Branch Count (in 100s)

D
iff

er
en

ce
 in

 A
cc

ur
ac

y
(in

 b
ra

nc
he

s)

Figure 14: VI Trace Convergence (Adjusted Average)

6. Conclusions

All of the original hypotheses in this project were shown
to be correct. Modern machines do frequent process
switches, and traditional global branch prediction
accuracy suffers after each switch. This accuracy penalty
is due to aliasing in the history table, which can be
eliminated by having a separate history table per process.
By eliminating the aliasing penalty, the accuracy of any
predictor that shares history between processes can be
improved regardless of the efficiency of that algorithm.

Even with this costly solution in place, however, the
overall accuracy improvement of 0.5 – 3% is quite small.
The reason the improvement is so limited is not due to the
actual difference in prediction accuracy, which can
exhibit a large gap after a process switch. Rather, the
convergence period, or the time it takes the history table

to relearn the prediction patterns of the current process, is
quite short at around 2000 branches. Thus, the overall
accuracy improvement is highly limited by the rate of
process switches in the current program set.

The results in this paper clearly indicate that, for general
purpose applications, this proposed system provides both
a limited benefit and comes with a high hardware cost due
to the large number of parallel history tables that must be
implemented and quickly accessed. Future research could
identify if a separate history table is in fact needed for
each and every process, or if some less-frequent or less-
destructive processes could be assigned to share a history
table. Although this project did use a variety of instruction
traces, the data sets used were far from exhaustive. Thus,
if a specific application category was found that had
particularly frequent aliasing problems, this technique or a
variant that only uses a limited number of history tables
might be useful in improving prediction accuracy.

7. References

[1] Apache Software Foundation, “Apahce HTTPD
Server Project”, http://httpd.apache.org/

[2] Gloy, N, Young, C., Chen, B. and M. Smith, “An
Analysis of Dynamic Branch Prediction Schemes
on System Workloads,” Proceedings of the 23rd
International Symposium on Computer
Architecture, May 1996

[3] Magnusson, P. et. Al, “Simics: A Full System
Simulation Platform”, IEEE Computer, pp. 50-58,
February 2002

[4] MySQL AB, http://www.mysql.com/
[5] Ramsay, M, Feucht, C. and M. Lipasti,

“Exploring Efficient SMT Branch Predictor
Design”, Workshop on Complexity-Effective
Design, in conjunction with the International
Symposium on Computer Architecture, June, 2003

[6] Sharangpani, H. and K. Arora, “Itanium
Processor Microarchitecture”, IEEE Micro,
September/October 2000

[7] SPEC, http://www.spec.org/
[8] Yeh, T. and Y. Patt, “A Comparison of Dynamic

Branch Predictors that use Two Levels of Branch
History”, Proceedings of the 20th International
Symposium on Computer Architecture, May 1993

[9] Young, C., Gloy, N. and M. Smith, “A
Comparative Analysis of Schemes for Correlated
Branch Prediction”, In Proceedings of the 22nd
Annual International Symposium on Computer
Architecture, pp 276-286, June 1995

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

