
Analysis and Improvement of Cache performance for
Multimedia Applications

Bo Zhang, Guohui Wang, Jesus Jason Sedano*
Dept. of Computer Science, *Dept. of Electrical &Computer Engineering,

Rice University, Houston, Tx
{bozhang, ghwang, jjsedano} @ rice.edu

Abstract

Multimedia applications are among the
quickly growing areas in computer
systems and becoming more and more
important in people’s daily life. They are
essentially memory-intensive and time-
critical applications. Previous results and
our analysis both confirm that media
applications have some special properties
like predictable data access patterns. These
properties make them relatively easy to be
optimized on general-purpose processors
using data prefetching techniques.

In this paper, we first systematically study
the cache performance of multimedia
applications to characterize their behaviors
so that we can have deeper insights into
media applications characteristics. Then
based on our understanding, we use
prefetching schemes, under different
memory access models, to improve cache
performance. Our simulation results show
that prefetching is an effective way to
improve cache performance in terms of
miss rate.

1. Introduction
Multimedia applications are fast becoming
one of the dominant workloads for modern
computer systems [3]. The dependency of
Internet use and the demand by the
majority of users for graphically based
programs will continue to trend upward. It
can be seen that even the simplest tasks
now use a complex graphical interface to
make it more user friendly and will many

times contain many bells and whistles
usually being videos, sounds and fancy
graphical pictures.

The real-time constraint of media
applications demands a high level of
performance density. To meet the high
performance requirement, special purpose
media processors, such as Imagine [4],
were designed to run media processing
efficiently. The media processor is
expensive and less flexible, which can
only be used effectively for special
purpose systems. However, with the
development of the Internet and the
graphical interface, far more media
applications are running on general
purpose processors. General purpose
processors offer increased flexibility but
achieve performance levels two or three
orders of magnitude worse than special
purpose processors [4].

A common belief for this huge
performance gap is that conventional
general purpose architectures are poorly
matched to the specific properties of
media applications including little data
reuse, high data parallelism, large data sets
and computationally intensive processing.
The memory systems of general-purpose
architectures depend on caches optimized
for reducing latency and data reuse, and
don’t efficiently exploit the available data
parallelism in media applications [4]. So,
it is interesting to study the cache
performance when given media
applications and in turn, try to improve the

performance of media applications on
general purpose processors.

In this project, we give a thorough analysis
of cache performance for media
applications on general purpose
processors. We try to answer the following
questions: how is media applications’
cache performance? How does cache
configurations impact the cache
performance of media application? What
is the memory access pattern for media
application? Based on our analysis, we
will be able to use a simple prefetch
scheme to improve cache performance of
media applications. The remainder of this
paper is organized as follows: section 2
introduces our methodology to study cache
performance of media applications.
Section 3 discusses the analytical results
of cache performance. Section 4
introduces our simulation of a desired
prefetch scheme to improve cache
performance of media applications.
Section 5 give a discussion of simulation
results for prefetching. Section 6
summarizes the paper.

2. Methodology
2.1 Simulation environment
Our study of cache performance is based
on SimpleScalar simulator [1]. We use
SimpleScalar Toolset version 3.0, PISA
architecture. The simulation is run on
SPARC system, with Solaris OS.

2.2 Benchmarks
2.2.1 MediaBench
MediaBench [2] consists of complete
applications coded in high level languages.
It includes core algorithms for most
widely used multimedia applications. All
the applications are publicly available and
widely used on general purpose
processors. We choose a subset from the
MediaBench, including JPEG, MPEG,

ADPCM, MESA, GHOSTSCRIPT, and
EPIC. We choose these applications
because they cover different types of
media application, such as an image,
video, audio, 3D graph, document and
compression.

 JPEG: JPEG is a standardized image
compression mechanism for both full-
color and gray-scale images. It has the
ability to compress an image with
little or no noticeable degradation in
image quality. We use JPEG
decompression, the input file is a 5KB
jpg file and the output .ppm file is
100KB.

 MPEG2: MPEG2 is a standard for
digital video transmission. We use
mpeg2 decoder in our simulation with
a 34KB input file.

 EPIC: EPIC is an experimental image
compression utility. The compression
algorithms are based on a bi-
orthogonal, critically sampled dyadic
wavelet decomposition and a
combined run-length/Huffman
entropy encoder. We use a 65KB pgm
file for compression with EPIC
program.

 ADPCM: ADPCM stands for
Adaptive Differential Pulse Code
Modulation. It is a family of speech
compression and decompression
a l g o r i t h m s . A c o m m o n
implementation takes 16bit linear
PCM samples and converts them to 4-
bit samples. We use the program
“rawdaudio” with a 72KB input
adpcm file.

 GhostScript: An interpreter for the
PostScript language. We use the
program “gs” with a 78KB input file
tiger.ps

 Mesa: Mesa is a clone of OpenGL, a
commonly used 3-D graphics library.

We use a demo program “mipmap” in
our simulation, which demonstrate
using mipmaps for texture maps.

2.2.2 SPEC2000 Applications
We choose the SPEC2000 [5] benchmark
to represent traditional programs. It is not
easy to collect all the binary and input files
of SPEC2000 programs. In our simulation,
we use Compress, Go and GCC.

3. Cache Performance of
media applications
It is important to quantitatively
characterize the cache behavior of
multimedia applications in order to
provide insights for people’s future
research on this area. In this section, the
cache performance and memory access
patterns of a set of representative
multimedia benchmarks are analyzed first.
We present a clear picture of the memory
reference characteristics of multimedia
applications with regards to their cache
performances and memory access patterns.
Cache performance of different
multimedia applications under different
parameters settings are studied in order to
gain a better understanding of their
memory access characteristics. For
comparison purpose, three benchmarks
from SPEC2000 are also studied to show
the differences between multimedia and
general-purpose applications.
3.1 Simulation Setting
Three factors are highly related to cache
performance: cache size, associativity, and
line size. Therefore, we conducted four
sets of simulations to study how these
three factors influence L-1 data cache
performance. All four sets of simulations
use LRU as their cache replacement
algorithms. The configurations of the four
sets of simulations are:

1) Varying cache size from 4k to
256k while keeping line size 32B
constant and using directly
mapping policy.
2) Varying cache size from 4k to
256k while keeping line size 32B
constant and using 2-way mapping.
3) Varying associativity from 1 to
8 while keeping line size 32B and
cache size 16KB.
4) Varying line size from 8 bytes to
64 bytes while keeping cache size
16 KB and 2-way mapping.

3.2 Simulation results and analysis
In this section, results for each above
simulation are presented and detailed
analysis is also provided. . In this section
we only use L-1 data cache miss rate to
represent cache performance.

Figure 1. L1 D-cache performance (one-
way, line size: 32Bytes)

Figure 1 compares the L-1 data cache miss
rate of different media benchmarks and
SPEC benchmarks by varying cache sizes
from 4k to 256K, as we describe above,
we keep other cache-related parameters
constant, that is to say, we use 32B line
size, directly mapping and LRU cache
replacements algorithms. A couple of
observations from Figure 1 are:

1) Miss rate decreases with the
increase of cache size

2) Generally speaking, multimedia
applications have better cache
performance compared to
SPEC2000 benchmarks, which is
different from our expectations.
3) Different media applications
show very different cache
performance. The miss rates of
ADPCM and MPEG are very low
(miss rate ~ 0.1% at 16KB cache),
while Mesa, EPIC and GhostScript
perform much worse.
4) Within 6 media benchmarks,
EPIC and MESA are different from
others because their miss rate
seems not very sensitive to cache
size. That is to say, by only
increasing cache size, it is hard to
improve their miss rate.

Figure 2. L1 D-cache performance (2-
way, line_size: 32Bytes)

Figure 2 shows similar results using miss
rate comparison results generated by
simulation set 2. Same observations can
be seen in Figure 2 too. The miss rates in
Figure 2 are relatively lower than what
was found in Figure 1, which is not
surprising.

Figure 3. L1 D-cache performance
(varying associativity)

Now we fix cache size and continue to
study how other factors like associativity
and line size can affect cache
performances significantly so that we can
get some deeper insights on how to
improve the cache performance of
multimedia applications. Figure 3 shows
the results for simulation set 3. Big miss
rate drop is observed when associativity
increase from 1 to 2. But after that even
we continue to increase associativity, we
can’t gain much benefit any more, which
implies that associativity is not an
effective factor to influence cache
performance.

Figure 4. L1 D-cache performance
varying line size
Then we switch to line size. Figure 4
presents the results of simulation set 4. As
we can see, miss rates of all media

benchmarks except GhostScript drop
almost by half when we double line size.
Of course, larger line size means more
memory bandwidth usage. The fact that
increasing line size can improve miss rate
significantly implies that media
applications have good locality and
sequential memory access property.
GhostScript ‘s miss rate doesn’t decrease a
lot with increase of line size, so
GhostScript may not have strong
sequential property.

 Figure5 Memory Access Patterns
In order to verify our conjecture, we
collected simulation traces of different
benchmarks and study their memory
access patterns. Basically we plotted the
address deviation of adjacent memory
access. Figure 5 shows memory access
patterns of different benchmarks under the
cache configuration: 16KB, 32B line size
and 2-way associativity. X axis is time (in
cycle), Y axis is the address deviation. It
can be observed that multimedia
applications have more regular memory
access pattern than spec2000 benchmarks.
As we can see, Ghostscript’s memory
access pattern is pretty random. That is
why we can’t improve its cache
performance by simply increasing cache
sizes.

In summary, media applications have
lower miss rate than traditional programs.

But the cache performance for different
media applications can be very different.
ADPCM and MPEG have very low miss
rate, while the miss rate of EPIC and Mesa
is much higher. All the media application
except GhostScript have regular memory
access pattern. And we believe that this is
due to the following reasons [3]:

1) Most multimedia applications
apply block-partitioning algorithms
to the input data and work on small
blocks of data that easily fit in the
cache.
2) Within these blocks, there is
significant data reuse as well as
spatial locality.
3) Third, a large number of
re fe rences genera ted by
multimedia applications are to their
internal data structures, which are
relatively small and can easily fit
in reasonably sized caches.

These results inspire us to believe that
prefetching should be a very promising
technique to improve performance of
media applications, such as Mesa and
EPIC, due to their regular memory access
patterns
So we hypothesize that by implementing
appropriate prefetching schemes in general
purpose processors, we can better leverage
the properties of media applications to
provide better cache performance. In next
section we will introduce our experience
of using prefetch to improve cache
performance for media application.

4. Prefetch Simulation
4.1 One block look-ahead
prefetching
We first try simple one-block-look-ahead
prefetch[6] on the general purpose
processor. One-block-look-ahead means
that, once there is a cache miss, we
prefetch the next block into cache. One-
block-look-ahead prefetch seems to be

very simple, but our intuition is that, this
scheme could be a good choice for media
applications. We know that, media
applications have relatively regular
memory access stride, but not constant
stride. It is very hard to accurately predict
the stride dynamically during running
time. On the other hand, because of the
streaming property of media applications,
if one memory block is accessed, it is
highly possible that the next block is going
to be accessed in future.

4.2 Simulation assumptions
We implemented the one block look-ahead
in SimpleScalar Version 3.0. In our
simulation, different assumptions of
memory access model are used:

(1) Pipeline memory model: the pipeline
memory model is adopted by SimpleScalar
simulation. In this model, processor can
issue memory requests in a pipelined
manner, and fetch multiple data blocks in
parallel. The pipeline memory model
implies unlimited memory bandwidth. In
this model, the benefit of prefetch is
actually overrated.

(2) Sequential memory model [7]: The
pipeline memory model is obviously
impractical in real system, so we
implemented a sequential memory model
in SimpleScalar. This model is the most
restrictive one since it implies that no
memory requests can be initiated until
previous request is completed. This means
that, if we place a memory request while
another memory request is still
outstanding, we have to wait until data of
the outstanding request arrives from
memory before the new request starts to be
served. Another issue needs to be
considered in this model is: what is
priority of data fetching after cache

misses? In our simulation, we use two
policies: The first one is FIFO policy,
which means we treat missed block and
prefetching block at the same priority, first
come first served. Second, missed block
first policy, which means if there is a
missed block request, we first serve this
request. Only when there is no missed
request and the memory bus is free, we
can process the prefetching blocks in the
request queue.

4.3 Simulation settings
We performed three sets of simulations. In
the first set, we measured the cache
performance with and without prefetching
under a pipeline memory model. Second,
we ran simulations under a sequential
memory model and a FIFO policy.
Thirdly, we use a sequential memory
model and missed block first policy. In our
experiments, the simulation settings we
used are:

 Cahce line size: 32 Bytes
 Associativity: 2 way
 Cache size: 8KB, 16KB, 32KB
 L1 hit latency = 1 cycle
 L2 hit latency = 6 cycle
 L2 cache: 256KB 4-way set

associative cache with 64
bytes line

 Memory access latency = 26
cycle

 Cache replacement policy:
LRU

4.4 Simulation metrics
(1) L1 cache miss rate
This metric is used to reflect the success
rate of prefetching schemes on the
reducing cache misses. In our results, an
access is considered a hit even if the data
request for this access has been issued but
has not yet completed.

(2) Cycles Per Instruction (CPI)

CPI represents the average number of
cycles every instruction takes when
running. This metrics is used to evaluate
how the running performance of
benchmarks is impacted by prefetching.

5. Results and Discussion
5.1 Results for pipelined memory
model
Figure 6 shows the results under the
pipeline memory model, in which Figure
6(a), (c), (e) show the miss rates of
different benchmark programs with
different cache sizes. We can see that, for
all the media applications, the prefetch
scheme can reduce cache miss rate over no
prefetch scheme. For an 8KB cache, the
miss rate of Mesa is decreased from 3.0%
to 2.2%, Epic’s is decreased from 1.93%
to 1.07%. The only exception is the
GhostScript program for a cache size of
8KB. We believe the reason is that, the
memory access pattern for Ghostscript is
far messier compared to other media
applications, when the cache size is small,
the data pollution leads to more cache
misses. For SPEC2000 benchmarks,
because the memory access pattern is not
as regular as media applications, the result
is not so good. But we can still see that,
the miss rates for Compress and Go are
reduced, whereas the miss rate of GCC at
8KB cache increased.

Figure 6(b), (d), (f) show the CPI results
for different benchmark programs. The
CPIs of all media applications except
GhostScript are reduced slightly (~1%).
The impact of pre-fetch scheme on CPI is
not very obvious. The reason is, first, CPI
can be impacted by many factors, such as

pipeline and memory latency, cache
performance is only one of them. Second,
the miss rate of media applications is
already very low, so there is no much
room to improve the overall performance
by reducing cache misses.

5.2 Results for sequential memory
model
The results of the sequential memory
model are showed in Figure 7. Let’s first
see the results for the FIFO priority policy.
In Figure 7(a), (c), (e), we can see that, the
miss rate of media applications can be
reduced. However, in terms of CPI results
in Figure 7(b), (d), (f), we can see that, the
CPI for Mesa and GhostScript increased a
little bit over no prefetch scheme. The
reason is because we give the same
priority to missed block request and pre-
fetching. The data fetching after cache
misses can be delayed by prefetching, and
the pipeline is unnecessarily stalled in this
case.

In missed block first policy, we give miss
block a higher priority. The pre-fetch
requests can be served only when there is
no missed block request. From the results
we can see that, the reduction of miss rates
is not as good as FIFO policy. The reason
is if we give pre-fetching a low priority,
some pre-fetch requests can be invalidated
because the data has already been missed
and fetched before the pre-fetching is
really served. However, with the missed
block first policy, the CPI for every
benchmark becomes better than FIFO
policy. This is because unnecessary
pipeline stall caused by pre-fetch is
eliminated.

(a) (b)

(c) (d)

(e) (f)
Figure 6. Prefetching results for pipelined memory: (a) Miss rate for 8k cache, (b)
CPI result for 8k cache, (c) Miss rate for 16k cache, (d) CPI result for 16k cache, (e)
Miss rate for 32k cache, (f) CPI result for 32k cache

(a) (b)

(c) (d)

(e) (f)
Figure 6. Prefetching results for sequential memory: (a) Miss rate for 8k cache, (b)
CPI result for 8k cache, (c) Miss rate for 16k cache, (d) CPI result for 16k cache, (e)
Miss rate for 32k cache, (f) CPI result for 32k cache

6. Conclusion and future
work Multimedia has become one of dominant

applications on general-purpose
processors. Since these applications

normally have special properties, it is
generally assumed that they have poor
memory performances compared to
traditional applications. In this paper, we
performed a comprehensive study of
memory performance on a subset
representative media benchmarks and we
found that:

1) Multimedia applications have lower L-1
data cache miss rate compared to general-
purpose applications.

2) Some multimedia applications’
performances are hard to get improved by
only increasing cache sizes.

3) Media applications have regular
memory access patterns that make it easier
to be optimized by using data prefetching
techniques.

We implemented one-block-look-ahead
prefetching techniques under two different
memory access models. The simulation
results show the prefetch scheme can
effectively improve L1 data cache miss
rate of multimedia applications. However,
because the miss rate of media
applications is very low, the benefit of
prefetch on CPI is not very significant.

There are some interesting future works.
First, it is interesting to continue study on
the memory access patterns of different
applications. Secondly more intelligent or
adaptive prefetching schemes should be
further exploited. At last, more specific
and advanced computational unit for
multimedia applications should be studied
to improve performance of media
applications.

Acknowledgement
We would like to thank Prof. Rixner and
Paul for their helpful feedbacks and

comments through the entire process of
the project.

7. References
[1] SimpleScalar Tool Set Version 3.0:
http://www.cs.wisc.edu/mscalar/simplesca
lar.html

[2] C. Lee, M. Potkonjak, W.Mangione
Smith, “MediaBench: A Tool for
Evaluating and Synthesizing Multimedia
and Communications Systems”, Proc. 30th

Ann. Int’l Symp. Microarchitecture,
pp.330-335, 1997

[3] S. Sohoni, Z.Xu, R. Min, and Y. Hu,
“A Study of Memory System Performance
of Multimedia Applications”, in
Proceedings of the ACM Joint
International Conference on Measurement
& Modeling of Computer Systems
(SIGMETRICS 2001), Cambridge,
Massachusetts, pp.206-215, June 2001

[4] B. Khailany, W. J. Dally, S. Rixner, U.
J. Kapasi, P. Mattson, J. Namkoong, J. D.
Owens, B. Towles, and A. Chang,
"Imagine: Media processing with
streams," IEEE Micro, pp. 34--46, April
2001.

[5] SPEC2000: http://www.spec.org/cpu/

[6] A. J. Smith, “Cache Memories”, ACM
Computing Surveys, Vol.14, No 3,
pp.473-530, 1982

[7] Tien-Fu Chen and Jean-Loup Baer,
“Effective Hardware-Based Data
Prefetching for High Performance
Processors”, IEEE Transactions on
Computers, Vol. 44, No. 5, pp. 609-623,
May 1995

