Improve Media Processing on General-Purpose Processor

Bo Zhang, Guohui Wang, Jason Sedano Rice University

Motivation

Background

- General-purpose processors execute a larger fraction of media processing applications today.
- Media processing applications have significantly different characteristics from other general applications.
 - Little data reuse, low data dependence, high data parallelism
- General-purpose processors show much worse performance on media applications compared against special media processors
- Problem: Can we leverage the features of media applications in data access, and run them on general purpose processor more efficiently by modifying ^{Bo}memory subsystem?

 Quantitatively characterize the media application behaviors with respect to cache usage.

 Based on analytical understanding of media applications behaviors, we try to improve its performance by prefetch mechanism.

Mothodology

- Simulation
 - SimpleScalar version 3.0, PISA
 - On SPARC host machine
- Benchmarks used:
 - Media: ADPCM, JPEG MPEG2, Mesa, Ghostscript, Epic

- Spec2000: GCC, Go, Compress

- We took into account the following variables and all possible combinations of varying sizes:
 - -Number of sets: 64, 128, 256, 512, 1024, 2048, 4096, 8192
 - -Block size(Bytes): 8, 16, 32, 64
 - Associativity: 1,2,4,8

^{Bo} – Simulation combinations run : 144 per benchmark

32B Line Size directly mapping varving cache sizes

32B Line Size, 2-way, varying cache sizes

RICE

16KB: 32B Block Size, varying associativity

16KB: 2-way, varying line sizes

Memory Access Pattern

Ghostscript

Mesa

Gcc

ĊЕ

Summary of Cache Performance

- Generally, media applications have better cache performance than SPEC 2000 programs.
- L-1 Cache performance of media applications is sensitive to line size: the bigger, the better
- Different media applications have significantly different cache performances
 - Image, video and audio applications have lower cache miss rate than 3D and document applications.
- Compared with SPEC programs, media applications have simpler memory access pattern.

Hypothesis

 By using pre-fetch, we can improve the cache performance of media application due to their regular memory access pattern.

Prefetch

- One block look-ahead
- Different memory access model
 - -Pipelined Memory: adopted originally by SimpleScalar
 - Sequential Memory Access: Modify Simplescalar
- Different priority policies in Sequential Memory Access model
 - -FIFO
 - Missed Block First

Simulation setting

- 8KB, 16KB, 32KB Data L1 cache, 2 way, Line size: 32 byte
- 256KB L2 cache, 4 way with 64 bytes line
- L1 hit latency: 1 cycle
- L2 hit latency: 6 cycles
- Memory access latency: 26 cycles
- Cache replacement: LRU

Evaluation: Pipelined Memory Model

8KB: 32 Bytes Block, 2-way, Pipelined Memory

Evaluation: Pipelined Memory Model

16KB: 32 Byte Block, 2-way, Pipelined Memory

Evaluation: Pipelined Memory Model

32KB:32 Byte Block, 2-way, Pipelined Memory

Summary-prefetch with pipelined memory

- Miss rates of Epic, Mpeg, Jpeg, ADPCM decrease by using the simple one-block-look-ahead prefetching.
 - Due to their regular memory access patterns.
- The miss rate of Ghostscript increases slightly.
 - -Its memory access pattern is not very regular.
- CPI of media applications also decrease slightly

Evaluation: Sequential Memory Access

8KB: 32 Bytes Block, 2-way, Sequential Memory

Evaluation: Sequential Memory Access

16KB:32 Bytes Block, 2-way, Sequential Memory

Evaluation: Sequential Memory Access

32KB: 32 Bytes Block, 2-way, Sequential Memory

Summary-prefetch with sequential memory

- For applications with regular memory access pattern, miss rate decreases.
- For applications without regular pattern, the simple prefetch scheme can bring more cache missing (data pollution).
- CPI can be increased because prefetching defers the data fetching after cache miss.

Conclusion

- Cache performance of media applications is not as bad as the common belief.
- Media applications demonstrate very different memory access pattern and cache performance.
- Using simple pre-fetch can decrease the miss rate for media applications, but there isn't big benefit in terms of CPI.

Future Work

- Deeply understanding of memory access pattern of media applications.
- Smart hardware and software prefetching techniques.
- Improving media application performance from computational unit.

