

Abstract — In this paper we explore methods for
hiding memory latency. We analyzed the memory
traces of several applications and determined that
patterns exist with little spatial locality. Therefore,
these patterns will perform poorly in the L1 data
cache. With increasing memory latency, it is
important to capture and store these patterns in
order to feed data to wide-issue superscalar
processors.

To exploit these patterns, we propose a novel
architecture, the Memory Address Trace CacHe
(MATCH), that captures and stores recurring
memory access patterns. The architecture is
composed of three primary structures located off the
critical path: the Pattern Generator, Pattern Buffer
and MATCH Cache. Using SimpleScalar, we
simulated 5 SPEC2000 benchmarks on our
architecture to gauge performance relative to
standard cache structures. Our results indicate that
MATCH significantly improves performance on
Ammp, which has speedups ranging from 24 to 43
percent. These results demonstrate that MATCH
has potential but requires further refinement.

Index Terms — memory traces, trace cache, MATCH,
prefetching

I. INTRODUCTION

As companies continue to introduce higher speed
processors into the market, the disparity between
transistor switching times and memory access latency
increases. To continue the performance improvement
defined by Moore’s Law, one must analyze and improve
the system as a whole in order to obtain the desired
result. To this end, steps must be taken to narrow the
gap between memory latencies and processor
frequencies. The relative increase in memory access
times plays a key role in several major functions of the
microprocessor.

In order to feed wide-issue the superscalar

implementations prevalent toady, computer architects
must deal with in memory latency in both the instruction
and data realms. In short, a the processor must be able
to fetch, decode, and issue enough instructions and
access the appropriate data every cycle to utilize all of
its available functional units.

 In order to combat increasing instruction memory
latency, researchers have focused on improving the
cache structure of the microprocessor in an effort to hide
some of the memory latency. Deeper and more complex
cache structures have been implemented and proposed
over the past few years. In addition, large issue buffers,
more physical registers, and speculative fetch engines
have all been examined in order to supply the execution
core with the necessary, continuous-stream of
instructions and the data on which the instructions
operate.

After effectively creating a continuous supply of
instructions to the core, one must next make sure that
the instructions can access the necessary data in order to
efficiently utilize the processor’s functional units. We
continue to see that, while speculation efforts have
improved dramatically, the large data memory latency is
increasingly the major bottleneck for modern computer
systems. While the memory latencies at the supply side
of the execution core have been decreased through a
wide variety of new techniques, the latency to main
memory during the execution of instructions has
remained mainly dependent on brute-force
improvements, such as improved DRAMs to provide
faster buses and higher clocked chips or caches that are
limited in size by increasing wire delay.

The remainder of the paper is organized as follows. In
Section II we provide more insight into the motivation
behind our memory address trace cache and discuss our
hypothesis. In Section III we present the architecture for
MATCH. Section IV focuses on our experimental
methods. Information will be given on the simulations
performed and the critical parameters examined.
Section V will present our results, which include the
performance and analysis of our simulations. We
conclude in Section VI with an overview of our key
results along with a discussion of the limitations in our

MATCH: Memory Address Trace CacHe
Rice University – ELEC 525 Final Report

Noah Deneau, Michael Haag, David Leal, and Arthur Nieuwoudt

ELEC 525 FINAL REPORT

2

study and possible future work.

II. MOTIVATION AND HYPOTHESIS

A. Motivation

To continue enhancing processor performance, the
supply of instructions as well as data must scale with
faster clocks and wide issue widths. Several studies
have focused on increasing the number of instructions
supplied to the processor by using alterative fetch and
issue policies [1] or trace caches [2]. Data prefetching
schemes related to our concept in hardware [4] and in
the compiler [5] have also been investigated.
Traditionally, these researchers approached the problem
of the memory latency by implementing newer and more
optimized cache hierarchies. However, these methods
fail to address applications with poor spatial locality. In
addition, as caches grow larger, longer blocks of
contiguous data from memory are sent across the
memory bus and occupy space in the cache, even when
only a fraction of this data is required. These types of
accesses waste cache space and memory bus capacity.
In recent years, we have seen that the spatial and
temporal locality of programs will no longer be able to
hide this problem [3].
 Coupled with the above difficulty is the fact that the
programs running on today’s machines are changing
rapidly. The emergence of more parallelized
applications, requires more noncontiguous accesses to
memory. In these situations, reading in larger blocks
from cache will waste precious system resources while
providing only marginal benefits.

As systems adapt to these more parallelized
operations, we will see larger number of functional units
added to the execution core and more resources devoted
to feeding these units with instructions. We feel that a
more pressing issue is not the functional units, which are
relatively cheap, nor the supplying of instructions,
which has seen significant improvements over the past
few years, but rather a fast and efficient method to feed
data into the execution core from main memory.

In order to reduce some of the memory latencies, we
propose utilizing the concept of a trace cache [2] but
adapting it to provide traces of data memory access
patterns. In order to be effective, however, we need to
be able to adequately understand what, if any patterns,
are available in the memory accesses of a wide range of
applications. To further motivate the ideas for our
project, we created and analyzed memory traces of five
applications from the SPEC benchmark suite: Ammp,
Vpr, Mcf, Equake, and Parser. Each application

memory trace consisted of 10 samples of 100,000
memory accesses.

Table I summarizes the patterns found from our
analysis of the memory traces. In order to adequately
simulate the possible patterns that could be captured in
hardware, we limited the pattern size in our analysis
program to a maximum of 256 memory addresses and a
minimum of three. Two different methods were used to
classify a pattern. The first, backward branch,
accumulates all memory addresses into a pattern until a
backward branch occurs in the program counter. The
second method, jump, accumulates addresses into a
pattern until the difference between the previous and a
current program counter exceeds a fixed value. Table I
reveals that a large number of patterns exist in all of
applications and, if they could be efficiently stored and
examined, then they could efficiently cache common
memory access patterns and help reduce memory
latency.

B. Hypothesis

Non-contiguous memory accesses significantly
increase average memory latency and result in the
underutilization of the normal caches. We propose that
a Memory Address Trace Cache (MATCH) will help
solve this problem. MATCH stores the memory
addresses of several non-contiguous memory accesses
that a pattern generator identified as a pattern based on
backward branch. Whenever the same initial memory
address is accessed, the MATCH provides the
information necessary to speculatively fetch data into a
special cache. This allows the storage of many
noncontiguous memory accesses, which waste system

TABLE I
PATTERN STATISTICS FROM MEMORY TRACES

Ave Pattern
Length

Ave Pattern
Frequency

Ave % of Trace in
a Pattern App

BB Jump BB Jump BB Jump

Ammp 3.90 12.73 30.03 23.13 2.84 16.58

Vpr 34.41 33.80 9.18 32.06 10.26 12.88

Mcf 3.16 12.84 2.38 2.30 0.37 0.73

Equake 8.58 115.34 94.84 315.11 10.13 5.98

Parser 3.00 104.72 2.00 28.02 0.0004 9.79

ELEC 525 FINAL REPORT

3

resources in the normal cache, in a new memory address
trace cache (MATCH).

This approach has several advantages. First it reduces
overall memory latency by speculatively retrieving and
storing data that is required by patterns that will most
likely appear again. As long as the speculative memory
accesses do not interfere with the programs’ memory
accesses, they have minimal cost since the pipelined
memory system is idle. Finally, we feel that MATCH is
well suited for applications that redundantly access large
data sets.

By storing data access patterns with MATCH, the
system will reduce the number of reads to
noncontiguous memory. This will improve the overall
performance of a wide range of applications and will not
degrade the performance of general applications.

III. ARCHITECTURE

The MATCH architecture, depicted in Figure I,
consists of three major components for detecting, storing
and prefetching patterns. The Pattern Generator,
described in section 2.1, looks at memory addresses and
finds patterns that are sent to the Pattern Buffer, which
holds recently used patterns and handles prefetching.
Lastly, the MATCH Cache contains the data fetched via
the Pattern Buffer, and is accessed on L1 data cache
misses.

A. Pattern Generator

All memory loads are sent to the Pattern Generator
and L1 data cache simultaneously as the operations issue
from the load-store queue. The Pattern Generator stores
each load’s memory address into an internal buffer that
builds continuously. “Hit/Miss” signals from the L1
cache are also routed to the Pattern Generator. Because
the MATCH architecture is designed to primarily assist
with patterns that the standard L1 cache cannot exploit,
the Pattern Generator keeps a count of the L1 cache hits.
It then compares this count with the length of the pattern
found and makes a decision based on the L1 Cache Miss
Threshold to forward the pattern to the Pattern Buffer
unit or discard it. The L1 Cache Miss Threshold
stipulates the percentage of L1 cache hits allowed in a
valid pattern. For instance, if the Miss Threshold is .5,
then the Pattern Generator only accepts patterns in
which at most 50 percent of the memory accesses hit in
the L1 cache while the Pattern Generator creates the
pattern.

A pattern in the Pattern Generator’s internal buffer is
complete when either the buffer reaches its size limit, or
when the Pattern Generator detects a backwards branch.
We considered other methods of stopping a pattern, such
as the program counter jumping past a certain threshold
or finding a constant stride in the memory addresses.
Based on our earlier memory trace simulations we
determined that backwards branch was quite effective in
finding loop branches and some procedure calls. It is
also simple to implement, requiring only one
comparison between the current and previous program

FIGURE I: MATCH ARCHITECTURE BLOCK DIAGRAM

C or e

L 2 /M em

L 1

M -C a ch e

P attern

B u ffer

P atte rn G en

D ata

M em A dd r

M em A d dr

M em A dd r

P C

D
ata M em A dd r

D ata

P refe tch
B u ffer

M em A d dr

M em A dd r

P attern

ELEC 525 FINAL REPORT

4

counters. Once the Pattern Generator has a complete
pattern, it checks that the pattern is longer than the
minimum allowed pattern length and that it passes the
L1 Miss Threshold test described above. That is, a
certain percentage of its memory accesses must have
missed in the L1 cache. This prevents MATCH from
storing patterns that can usually be retrieved from the L1
cache. A pattern that passes these tests is sent to the
Pattern Buffer unit and the Pattern Generator is reset.

B. Pattern Buffer

The Pattern Buffer holds recently used patterns and
handles data prefetching. It is constructed as an array of
patterns received from the Pattern Generator, a row of
state bits for the current pattern, and pointers to the
current pattern and current address element in the
pattern. Each pattern also has a “used” bit for a simple
replacement policy.

A pattern is located in the Pattern Buffer simply by
checking the first address. Thus, no two patterns can
have the same starting address. From our analysis of
memory traces, we determined that it would be faster to
only check the first address, and surprisingly few
different patterns detected by the Pattern Generator have
the same starting addresses. When patterns arrive from
the Pattern Generator, the Pattern Buffer searches the
starting addresses of each pattern to determine if it
already exists in the buffer. If a match is found whose
used bit is not set, the row is replaced with the new
pattern. If the starting address does not match any
existing patterns, the pattern is inserted into an empty
slot in the Pattern Generator, if one exists. If there are
no empty spaces, the Pattern Generator evicts the first
pattern it can find that has a “used” bit that is not set,
i.e., the pattern has not yet been accessed. In the case
that all patterns have been used at least once, all “used”
bits are reset to zero and the pattern is inserted into the
first location.

 Each load issued from the load/store queue is also
sent to the Pattern Buffer in parallel with the L1 cache
and Pattern Generator. If the Pattern Buffer is not
currently accessing any particular pattern, and a
backwards branch has just occurred, the Pattern Buffer
searches for the current load’s memory address in its
array. This is done by checking only the first addresses
of each pattern, yet this process is quite slow since it
must make one comparison for every row in the Pattern
Buffer. Consequently, we only search for the start of a
new pattern when a backwards branch occurs.

If a matching address is found in a row, the Pattern

Buffer predicts that this load is the start of the pattern
located in that row. It then begins to prefetch all
addresses in the pattern into the MATCH Cache, and
sets the used bit for that pattern. The addresses of
subsequent memory accesses issued are checked to
certify that they match in the current pattern. If an
address does match the next address in the pattern, or if
the final address has already been checked, the Pattern
Buffer resets its current pattern and current address
pointers and prepares to search for the next pattern.

Alongside the Pattern Buffer exists a buffer that
handles the prefetching data from the memory addresses
in patterns. As the Pattern Buffer works through a
pattern, requests are sent to the Prefetch Buffer. The
Prefetch Buffer, in turn, sends load requests to the L1
cache and simultaneously probes the MATCH Cache.
Data does not need to be prefetched if it already exists in
the L1 or MATCH cache. On each memory operation
issued from the register update unit, the Prefetch Buffer
checks to see if that memory address has arrived and
been stored. If it has arrived, the address and data are
stored from the Prefetch Buffer into the MATCH Cache.

C. MATCH Cache

The MATCH Cache, or M-Cache, is a hash-
addressable set-associative cache that holds the data
values that are prefetched by the Pattern Buffer. The
organization is simple; it consists of an array of lists
with elements containing the data values and a tag
matching the corresponding memory address. The M-
Cache can be thought of as a cache level between the L1
and L2 caches. Memory addresses are sent to it as soon
as they are issued from the load/store queue,
simultaneously with the request to the L1 cache. If the
access misses in the L1 cache, the value from the M-
Cache will be available immediately. In the case of an
M-Cache miss, the data is retrieved from L2 memory.
Meanwhile, the Pattern Buffer and Prefetch Buffer
prefetch the pattern data values to fill the M-Cache. For
store operations, the M-Cache follows a write-through
policy for simplicity and speed. Since the L1 cache is
always accessed first, this policy effectively handles any
cache concurrency issues. The only exception occurs
when a dirty value is evicted from the L1 cache, and the
value also exists in the M-Cache. In this case, the value
is written to the M-Cache as well as the upper levels of
memory hierarchy.

ELEC 525 FINAL REPORT

5

IV. EXPERIMENTAL METHODOLOGY

In order to test our M-Cache structure described in
Section III, as well as the Pattern Buffer and the Pattern
Generator, we implemented them using the
SimpleScalar 3.0 tool set because of its relevant basic
architectural features and its support of SPEC
benchmarks. After editing existing sections and adding
the necessary functions to SimpleScalar, we compiled
the code using GNU GCC 2.95.

SPEC2000 benchmarks were used to evaluate the
performance of our architecture. These benchmarks
consisted of 188.ammp, 181.mcf, 197.parser, 175.vpr,
and 183.equake. We ran these benchmarks on
UltraSparc 220R servers using the reduced data sets for
a reasonable simulation time. These benchmarks
provide a good mix of computations, including integer
and floating point applications as well as scientific and
non-scientific programs. A description of the
SPEC2000 benchmarks we used in our analysis can be
found in Table 2.

Before running the simulations on our M-Cache
structure, we needed to establish a base case for
comparison. We simulated the performance of the
processor using only the baseline parameters found in
Table 3 in the previous section. These simulations
involved the basic SimpleScalar configurations with two
caches, with the size of the L1 data cache set to 8KB.
We also simulated a baseline comparison with the L1
data cache size set to 16KB to compare MATCH’s
performance with the typical solution: adding more
cache capacity.

We compared the baseline architecture to our
MATCH implementation. Our hardware structures were
implemented with different configurations. We varied

the M-Cache size between 8KB and 16KB to investigate
the optimal size of the M-Cache. The Pattern Buffer
was also varied in size between 8KB and 64KB to
determine whether an extremely large Pattern Buffer
gives diminishing returns. We also wanted to observe
whether patterns that reoccur frequently and are not
evicted as often increase the performance of the
MATCH architecture.

Pattern lengths were also fluctuated to demonstrate
the effects of varying-sized patterns on the M-Cache
performance. By varying this parameter we could
analyze two different effects: (1) whether short patterns
that occurred frequently are of any use in improving
performance, and (2) whether larger patterns that were
not found in the cache improved performance even if
they were not found as frequently. We also
experimented with different values for the L1 Cache
Miss Threshold to determine the impact of accepting an
assorted percentage of hits in the L1 cache. A summary
of the MATCH simulation parameters can be found in
Table 4. By varying these parameters of our hardware
structures and analyzing the resulting simulations, we
can develop the optimal configuration for the various
applications.

While the SimpleScalar implementation is a fair
model of a microprocessor architecture, several
assumptions were made that should be taken into
account. For example, the M-Cache access latency was
assumed to be one cycle regardless of the varied sizes of
the MATCH technology. This lack of additional L1

TABLE III
BASELINE ARCHITECTURE CONFIGURATION IN

SIMPLESCALAR

L1 Data Cache (using LRU
eviction)

8K or 16K, 2-way set
assoc

L1 Instruction Cache 16KB, direct-mapped
Unified L2 Cache 256KB, 4-way set assoc
L2 Cache Latency 9 cycles

Main Memory Latency 48 cycles
Memory Bus Width 8 Bytes

Issue Width 8
Branch mis-prediction

latency
3 cycles

BTB 512 sets
Inorder False

Register update unit size 32
Load Store queue size 16

Instruction TLB 16:4096:4:1
Data TLB 32:4096:4:1

Integer ALU’s 5
FP ALU’s 5

Memory Ports 3

TABLE II
SPEC2000 BENCHMARKS ANALYZED

Benchmark Data Type Description

188.ammp Floating Point
Molecular dynamics

simulation

181.mcf Integer
Vehicle scheduling in

public mass
transportation system

197.parser Integer
Syntactic parser of
English language

175.vpr Integer
Integrated circuit CAD

design program

183.equake Floating Point

Simulation of seismic
wave propagation in

large basins

ELEC 525 FINAL REPORT

6

latency is intended to focus on the performance of the
MATCH architecture and not on scalability issues.
However, our experiments indicate that increasing the
M-Cache latency to two cycles had a negligible impact
on overall performance. Furthermore, in our prefetch
implementations, we did not account for memory
bandwidth limitations and instead assume infinite
bandwidth. Also, no special penalties were examined or
issued for the situation where a large amount of
contention existed for the memory or system buses.

Although the Pattern Buffer can be large, the latency
of the selection logic, which consists mostly of
comparators, was not scaled to the Pattern Buffer size.
Once again, this project focuses on the possible
improvements in performance by the MATCH
technology without spending a great deal of time to
consider the impact of scalability.

The resulting IPC from each of the simulations was
used as the definitive measure of performance when
comparing the performance of the SPEC2000
benchmark simulations. We also used the calculation of
IPC per cache miss rate to determine cache trends in our
architecture.

From these simulations, one of the main goals is to
reveal that the addition of our M-Cache structure will
help to improve a system’s performance by reducing the
impact of memory latency. Using our baseline
configurations as a basis for comparison, we will show
in the following section that our M-Cache structure has
positive results and the potential to improve on future
microprocessor performance.

V. EXPERIMENTAL ANALYSIS

A. Results

 Figure 2 shows the speedups for the 5
configurations in Table 4 relative to the baseline with an
8 KB L1 data cache. In all cases, MATCH outperforms

the baseline configuration. MATCH improves the
performance of Ammp by 24 to 43 percent over the
baseline configuration, while simply adding more L1
cache provides little performance gain. Ammp solves
large systems of ODEs, which require a significant
number of regular, non-sequential array accesses.
Therefore, Ammp exhibits regular memory access
patterns, but these access patterns do not exhibit the
spatial locality that a standard L1 cache can exploit. For
this reason, the 16 KB data cache configuration (BB)
provides only a .04 percent performance improvement.
In contrast, the MATCH architecture was able to locate
and store the appropriate patterns, which occurred
frequently enough to provide significant performance
gains.

 The other benchmarks exhibit significantly less
performance improvement as a result of the MATCH
architecture. Mcf shows a 1 to 2 percent speedup, while
the other benchmarks have speedups of less than 1
percent over the baseline configuration. With the
exception of Ammp, the 16 KB L1 cache marginally
outperformed all tested MATCH configurations.

 The measured speedups also depend on the
baseline L1 data cache miss rates, which are
documented in Table 5. Since MATCH only improves
memory access latencies of accesses that miss in the L1
data cache, the L1 cache miss rate has a significant
impact on the absolute speedup numbers. The MATCH
speedup to L1 data cache miss rate ratio tabulated in
Table 5 indicates the normalized performance of
MATCH for the five tested benchmarks. The
normalized performance illustrates MATCH’s
performance in relation to the number of available long
latency memory accesses for a given benchmark, which
estimates how well MATCH is exploiting memory
access patterns.

TABLE IV
MATCH SIMULATION PARAMETERS

Configuration
L1 Data

Cache Size
Match Cache

Size
Pattern Buffer

Size
Maximum

Pattern Length
Minimum

Pattern Length

L1 Cache
Miss

Threshold

Baseline 8 KB No MATCH Hardware Present

BB 16 KB No MATCH Hardware Present

A 8 KB 8 KB 8 KB

B 8 KB 8 KB 64 KB

C 8 KB 16 KB 8 KB

D 8 KB 16 KB 64 KB

32
6 – Ammp, 3 –

All Other
Benchmarks

.5 – Ammp, 1
– All Other
Benchmarks

ELEC 525 FINAL REPORT

7

Like the absolute performance numbers, the
normalized performance data indicates that Ammp
achieves the greatest normalized performance.
However, Ammp’s normalized performance is only 6
times greater than the next highest benchmark, versus 24
times greater in terms of absolute performance. In
contrast to the absolute performance numbers, Parser
and Vpr surpass Mcf in normalized performance. Both
Parser and Vpr have significantly lower L1 data cache
miss rates than Mcf. Therefore, in both Parser and Vpr,
MATCH is more effectively exploiting the applicable
memory accesses than in Mcf. Equake exhibits the
lowest normalized performance of the five benchmarks.
Equake demonstrates virtually no performance
improvement due to a large distance between repeated
memory access patterns that are not captured in the L1
data cache. In fact, for Equake, the results indicate that
out of approximately 7.5 million memory accesses the
M-Cache only registered 400,000 hits.

The different MATCH configurations for Ammp have
significant performance variation. Figure 2 also shows
that increasing the Pattern Buffer size from 8 KB to 64
KB provides an additional 12 to 19 percent performance
gain over the baseline configuration. This is due to the
fact that the set of patterns generated is larger than the
size of the Pattern Buffer. Since the Pattern Generator
creates many patterns that are not utilized, the Pattern
Buffer must be large enough to allow reoccurring
patterns not to be replaced before they are executed.
This effect seems to hold for the other benchmarks as
well. Increasing the M-Cache size only improves
performance when the pattern buffer contains enough
patterns to exploit the increased M-Cache size. For
instance, increasing the M-Cache size from 8 KB to 16
KB while keeping the Pattern Buffer size constant at 8
KB provides negligible performance improvement for

Ammp. In contrast, increasing the M-Cache size by the
same amount when the Pattern Buffer is 64 KB
improves performance by 8 percent over the baseline
configuration for Ammp. Unlike Ammp, Mcf
performance improves when the M-Cache size is
increased while keeping the Pattern Buffer size constant.
Therefore, the degree to which the benchmarks exploit
M-Caches of various sizes depends largely upon the
ability of the Pattern Buffer to hold and prefetch valid,
reoccurring memory access patterns, which varies by
application.

The Pattern Buffer’s ability to capture the desired
reoccurring memory access patterns is directly related
the Pattern Generator’s pattern generation method and
parameters. Figure 3 depicts the performance of Ammp
and Mcf with several different L1 Cache Miss
Thresholds. Ammp exhibits the greatest performance
improvements when Miss Threshold is between .5 and
.66. Mcf, in contrast, experiences the greatest
performance when the Miss Threshold is 1. Ammp
tolerates a lower Miss Threshold than Mcf because its
higher L1 cache miss rate allows the Pattern Generator
to generate a greater number of Patterns that miss in the
L1 cache. Therefore, for optimal performance, the Miss
Threshold must be set to allow the optimal number of
patterns to be generated for a given application. Setting
the Miss Threshold too low starves the M-Cache, while
setting the Miss Threshold too high increases the
number of unused patterns, which pollutes the Pattern
Buffer. An unused pattern is a pattern that the
application never repeats after generation and is
eventually evicted from the Pattern Buffer. Therefore,
the optimal L1 Cache Miss Threshold depends on the L1
data cache miss rate and the memory access patterns of a
given application.

The Maximum Pattern Length also has a significant

FIGURE II: MATCH PERFORMANCE

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45

BB A B C D BB A B C D BB A B C D BB A B C D BB A B C D

Ammp Equake Mcf Parser Vpr

Benchmark / Configuration

S
p

ee
d

u
p

ELEC 525 FINAL REPORT

8

performance impact. Figure 4 shows the performance
statistics for Ammp and Mcf for several various
maximum pattern lengths. For Ammp, pattern lengths
of 16 and 64 perform better than maximum pattern
lengths of 32, while all maximum pattern length
simulations perform almost equally well for Mcf.
Therefore, like the L1 Cache Miss Threshold’s behavior,
the optimal Maximum Pattern Length depends on the
application.

B. Hypothesis Evaluation

The experimental results support a qualified version
of the original hypothesis. The patterns that the
MATCH architecture exploits are present in every
benchmark tested to some degree. In benchmarks with
low L1 data cache miss rates, MATCH has few memory
accesses with which to work, and consequently, the
speedups are low. However, for benchmarks with
higher L1 data cache miss rates, the speedups can
potentially be impressive, as the results for Ammp
indicate. Therefore, the hypothesis seems valid in
programs that exhibit poor spatial locality and perform
repeated work on fixed data sets.

C. Future Experimentation

The disparity between Ammp’s performance and the
performance of the other tested benchmarks fuels the
need for further experimentation in order to fully
evaluate the concept. The full memory trace and source
code for Ammp needs to be analyzed to quantify the
behavior that causes Ammp’s large speedup. This
information could then be used to identify other
applications that could significantly benefit from
MATCH. Furthermore, the simulation environment

needs to be modified to reflect the unrealistic
assumptions that were made in the simulations described
in the Experiment Methodology section in order to
validate Ammp’s performance improvement.

Several modifications to the architecture should be
made in order to account for a variable L1 Cache Miss
Threshold and the Maximum Pattern Length. The
Pattern Generator should dynamically record the number
of patterns that it is generating and scale the L1 Cache
Miss Threshold to allow only a certain number of
patterns to be generated during a given interval of time.
This would optimize the Pattern Buffer’s utilization
based on the currently running application. To more
efficiently take advantage of the optimal maximum
pattern length, the pattern buffer could be modified to
have different regions that allow different length
patterns. With this modification, the pattern buffer
would waste less space for smaller patterns, thereby
having more entries for a fixed size structure, which the
results indicate would improve performance.

The set of applications tested in this paper provide
insight into MATCH’s performance on a wide range of
application. This concept demands evaluation on a
multitude of applications in order to identify the
application types that benefit the most from the
proposed architecture. Therefore, the applications tested
were appropriate at this stage of the concept’s analysis.
From the five benchmarks it is hard to determine what
class of applications benefit the most from MATCH.
Equake and Ammp, the two floating-point benchmarks,
have the best and worst normalized performance,
respectively, while the integer benchmarks fall
somewhere in the middle. The common characteristic
applicable to all of the tested benchmarks is the
relationship between absolute speedup and the L1 cache

FIGURE IV: MAXIMUM PATTERN

LENGTH

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

16 32 64 16 32 64

Ammp Mcf

B enchmark / Maximum P attern L ength

FIGURE III: L1 MISS THRESHOLD USED IN PATTERN

GENERATION

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0.33 0.50 0.66 1.00 0.33 0.50 0.66 1.00

Ammp Mcf

Benchmark / L1 Cache Miss Threshold

S
p

ee
d

u
p

ELEC 525 FINAL REPORT

9

miss rate. Therefore, additional benchmarks need to be
analyzed in order to determine if other applications that
have a high L1 cache miss rate benefit greatly from
MATCH. Scientific applications may be a good starting
point, since they tend to utilize the cache less effectively
than their general-purpose counterparts. Therefore,
further experimentation is necessary to conclude
whether Ammp’s impressive performance gains are
common to other applications.

D. Cost Benefit Analysis

In order to conclusively determine if the cost of
MATCH is worth its potential benefits, additional
experimentation is required. If a certain class of
applications has performance numbers similar to
Ammp’s, then the cost of MATCH is definitely worth
the benefit for machine that run applications of that
class. MATCH improved Ammp’s performance by 24
percent in the relatively inexpensive configuration A
and by 43 percent in the expensive configuration D,
while simply doubling the L1 cache size provided little
performance improvement. Therefore, for applications
like Ammp, MATCH is a small price to pay for its
impressive performance gains. However, if Ammp’s
speedups are atypical, MATCH is not worth the cost
because the results indicate that a cheaper alterative,
adding 8 KB additional L1 cache, improves performance
to a greater degree. Therefore, the cost to benefit
relationship for MATCH largely depends on the results
of additional experimentation. However, if as few as 10
to 20 percent of typical applications can exploit
MATCH as effectively as Ammp, MATCH is a win.

VI. CONCLUSION

 The results indicate that MATCH has the potential
to significantly improve performance on certain
applications. As discussed in the Hypothesis Evaluation

section, the results point to a revised version of the
original hypothesis. While all applications should
experience some performance improvement, only those
applications with a large L1 miss rate will be
significantly faster. Furthermore, the application must
perform work on patterns that repeat often enough to be
captured in a reasonable sized Pattern Buffer in order to
experience a non-trivial speedup. Enough applications
should exhibit these characteristics to make MATCH an
effective addition to the cache hierarchy.

Additional experimentation needs to be performed to
validate the revised hypothesis and improve upon
MATCH. As discussed in the Future Experimentation
section, the different methods of generating patterns and
dynamically scaling pattern generation parameters need
to be explored. In addition, more efficient Pattern
Buffers should be explored to more effectively capture
patterns of varying lengths. Furthermore, Ammp needs
to be analyzed further to concretely establish what
qualities make its performance far superior to the other
benchmarks tested. Additional applications also need to
be examined to determine if Ammp’s performance is
typical of other applications.

Because of the increasing impact of memory latency
on processor performance, more complex methods of
hiding latency are useful. MATCH, while adding
significant hardware, has the potential to reduce the
impact of memory latency, especially for programs that
perform poorly in standard data caches. While research
on exploiting data memory access patterns with poor
spatial locality is still in its preliminary stages,
MATCH’s performance as well as the performance of
other schemes [3, 4, 5] provide the incentive for further
research. Additional experimentation and enhancement
of MATCH will undoubtedly lead to useful methods for
combating the memory latency that will plague future
processors.

REFERENCES

[1] Daniel Holmes Friendly, Sanjay Jeram Patel, and Yale N. Patt,
“Alternative Fetch and Issue Policies for the Trace Cache Fetch
Mechanism,” IEEE, pp. 24-33, 1997.

[2] Eric Rotenberg, Steve Bennett, and James E. Smith, “Trace
Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” Proceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, pp. 24-34, Dec.
1996.

[3] Impulse: An Adaptable Memory System,
http://www.cs.utah.edu/impulse/

[4] Jean-Loup Bair and Tien-Fu Chen, “ An Effective On-Chip
Preloading Scheme To Reduce Data Access Penalty”,
Proceedings of Supercomputing, November 1991.

TABLE V: L1 DATA CACHE MISS RATES

Application
L1 Cache Miss

Rate
MATCH Speedup /

Miss Rate

Ammp 0.236 1.815

Equake 0.033 0.077

Mcf 0.136 0.185

Parser 0.034 0.302

Vpr 0.012 0.232

ELEC 525 FINAL REPORT

10

[5] Todd C. Mowry, Monica S. Lam, Anoop Gupta, “Design and
Evaluation of Compiler Algorithm for Prefetching”,
Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 1992.

