
  

Abstract — In this paper we explore methods for 
hiding memory latency.   We analyzed the memory 
traces of several applications and determined that 
patterns exist with little spatial locality.  Therefore, 
these patterns will perform poorly in the L1 data 
cache.  With increasing memory latency, it is 
important to capture and store these patterns in 
order to feed data to wide-issue superscalar 
processors.   

To exploit these patterns, we propose a novel 
architecture, the Memory Address Trace CacHe 
(MATCH), that captures and stores recurring 
memory access patterns.  The architecture is 
composed of three primary structures located off the 
critical path: the Pattern Generator, Pattern Buffer 
and MATCH Cache.  Using SimpleScalar, we 
simulated 5 SPEC2000 benchmarks on our 
architecture to gauge performance relative to 
standard cache structures.  Our results indicate that 
MATCH significantly improves performance on 
Ammp, which has speedups ranging from 24 to 43 
percent.  These results demonstrate that MATCH 
has potential but requires further refinement.  
 

Index Terms — memory traces, trace cache, MATCH, 
prefetching 

 

I. INTRODUCTION 

As companies continue to introduce higher speed 
processors into the market, the disparity between 
transistor switching times and memory access latency 
increases.  To continue the performance improvement 
defined by Moore’s Law, one must analyze and improve 
the system as a whole in order to obtain the desired 
result.  To this end, steps must be taken to narrow the 
gap between memory latencies and processor 
frequencies.  The relative increase in memory access 
times plays a key role in several major functions of the 
microprocessor. 

In order to feed wide-issue the superscalar 

 
 

implementations prevalent toady, computer architects 
must deal with in memory latency in both the instruction 
and data realms.  In short, a the processor must be able 
to fetch, decode, and  issue enough instructions and 
access the appropriate data every cycle to utilize all of 
its available functional units. 

 In order to combat increasing instruction memory 
latency, researchers have focused on improving the 
cache structure of the microprocessor in an effort to hide 
some of the memory latency.  Deeper and more complex 
cache structures have been implemented and proposed 
over the past few years.  In addition, large issue buffers, 
more physical registers, and speculative fetch engines 
have all been examined in order to supply the execution 
core with the necessary, continuous-stream of 
instructions and the data on which the instructions 
operate. 

After effectively creating a continuous supply of 
instructions to the core, one must next make sure that 
the instructions can access the necessary data in order to 
efficiently utilize the processor’s functional units.  We 
continue to see that, while speculation efforts have 
improved dramatically, the large data memory latency is 
increasingly the major bottleneck for modern computer 
systems.  While the memory latencies at the supply side 
of the execution core have been decreased through a 
wide variety of new techniques, the latency to main 
memory during the execution of instructions has 
remained mainly dependent on brute-force 
improvements, such as improved DRAMs to provide 
faster buses and higher clocked chips or caches that are 
limited in size by increasing wire delay. 

The remainder of the paper is organized as follows. In 
Section II we provide more insight into the motivation 
behind our memory address trace cache and discuss our 
hypothesis.  In Section III we present the architecture for 
MATCH.  Section IV focuses on our experimental 
methods.  Information will be given on the simulations 
performed and the critical parameters examined.  
Section V will present our results, which include the 
performance and analysis of our simulations. We 
conclude in Section VI with an overview of our key 
results along with a discussion of the limitations in our 
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study and possible future work. 

II. MOTIVATION AND HYPOTHESIS 

A. Motivation   

To continue enhancing processor performance, the 
supply of instructions as well as data must scale with 
faster clocks and wide issue widths.  Several studies 
have focused on increasing the number of instructions 
supplied to the processor by using alterative fetch and 
issue policies [1] or trace caches [2]. Data prefetching 
schemes related to our concept in hardware [4] and in 
the compiler [5] have also been investigated.  
Traditionally, these researchers approached the problem 
of the memory latency by implementing newer and more 
optimized cache hierarchies.  However, these methods 
fail to address applications with poor spatial locality.  In 
addition, as caches grow larger, longer blocks of 
contiguous data from memory are sent across the 
memory bus and occupy space in the cache, even when 
only a fraction of this data is required.  These types of 
accesses waste cache space and memory bus capacity.  
In recent years, we have seen that the spatial and 
temporal locality of programs will no longer be able to 
hide this problem [3]. 
  Coupled with the above difficulty is the fact that the 
programs running on today’s machines are changing 
rapidly.  The emergence of more parallelized 
applications, requires more noncontiguous accesses to 
memory.  In these situations, reading in larger blocks 
from cache will waste precious system resources while 
providing only marginal benefits. 

As systems adapt to these more parallelized 
operations, we will see larger number of functional units 
added to the execution core and more resources devoted 
to feeding these units with instructions. We feel that a 
more pressing issue is not the functional units, which are 
relatively cheap, nor the supplying of instructions, 
which has seen significant improvements over the past 
few years, but rather a fast and efficient method to feed 
data into the execution core from main memory. 

In order to reduce some of the memory latencies, we 
propose utilizing the concept of a trace cache [2] but 
adapting it to provide traces of data memory access 
patterns.  In order to be effective, however, we need to 
be able to adequately understand what, if any patterns, 
are available in the memory accesses of a wide range of 
applications.  To further motivate the ideas for our 
project, we created and analyzed memory traces of five 
applications from the SPEC benchmark suite: Ammp, 
Vpr, Mcf, Equake, and Parser.  Each application 

memory trace consisted of 10 samples of 100,000 
memory accesses. 

Table I summarizes the patterns found from our 
analysis of the memory traces.  In order to adequately 
simulate the possible patterns that could be captured in 
hardware, we limited the pattern size in our analysis 
program to a maximum of 256 memory addresses and a 
minimum of three.  Two different methods were used to 
classify a pattern. The first, backward branch, 
accumulates all memory addresses into a pattern until a 
backward branch occurs in the program counter.  The 
second method, jump, accumulates addresses into a 
pattern until the difference between the previous and a 
current program counter exceeds a fixed value.  Table I 
reveals that a large number of patterns exist in all of 
applications and, if they could be efficiently stored and 
examined, then they could efficiently cache common 
memory access patterns and help reduce memory 
latency. 

 

B. Hypothesis 

Non-contiguous memory accesses significantly 
increase average memory latency and result in the 
underutilization of the normal caches.  We propose that 
a Memory Address Trace Cache (MATCH) will help 
solve this problem.  MATCH stores the memory 
addresses of several non-contiguous memory accesses 
that a pattern generator identified as a pattern based on 
backward branch. Whenever the same initial memory 
address is accessed, the MATCH provides the 
information necessary to speculatively fetch data into a 
special cache.  This allows the storage of many 
noncontiguous memory accesses, which waste system 

TABLE I 
PATTERN STATISTICS FROM MEMORY TRACES 

Ave Pattern 
Length 

Ave Pattern 
Frequency 

Ave % of Trace in 
a Pattern App 

BB Jump BB Jump BB Jump 

Ammp 3.90 12.73 30.03 23.13 2.84 16.58 

Vpr 34.41 33.80 9.18 32.06 10.26 12.88 

Mcf 3.16 12.84 2.38 2.30 0.37 0.73 

Equake 8.58 115.34 94.84 315.11 10.13 5.98 

Parser 3.00 104.72 2.00 28.02 0.0004 9.79 
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resources in the normal cache, in a new memory address 
trace cache (MATCH). 

This approach has several advantages.  First it reduces 
overall memory latency by speculatively retrieving and 
storing data that is required by patterns that will most 
likely appear again.  As long as the speculative memory 
accesses do not interfere with the programs’ memory 
accesses, they have minimal cost since the pipelined 
memory system is idle.  Finally, we feel that MATCH is 
well suited for applications that redundantly access large 
data sets. 

By storing data access patterns with MATCH, the 
system will reduce the number of reads to 
noncontiguous memory. This will improve the overall 
performance of a wide range of applications and will not 
degrade the performance of general applications. 

III. ARCHITECTURE 

The MATCH architecture, depicted in Figure I, 
consists of three major components for detecting, storing 
and prefetching patterns.  The Pattern Generator, 
described in section 2.1, looks at memory addresses and 
finds patterns that are sent to the Pattern Buffer, which 
holds recently used patterns and handles prefetching.  
Lastly, the MATCH Cache contains the data fetched via 
the Pattern Buffer, and is accessed on L1 data cache 
misses.   

 

A. Pattern Generator 

All memory loads are sent to the Pattern Generator 
and L1 data cache simultaneously as the operations issue 
from the load-store queue.  The Pattern Generator stores 
each load’s memory address into an internal buffer that 
builds continuously.  “Hit/Miss” signals from the L1 
cache are also routed to the Pattern Generator.  Because 
the MATCH architecture is designed to primarily assist 
with patterns that the standard L1 cache cannot exploit, 
the Pattern Generator keeps a count of the L1 cache hits.  
It then compares this count with the length of the pattern 
found and makes a decision based on the L1 Cache Miss 
Threshold to forward the pattern to the Pattern Buffer 
unit or discard it.  The L1 Cache Miss Threshold 
stipulates the percentage of L1 cache hits allowed in a 
valid pattern.  For instance, if the Miss Threshold is .5, 
then the Pattern Generator only accepts patterns in 
which at most 50 percent of the memory accesses hit in 
the L1 cache while the Pattern Generator creates the 
pattern. 

A pattern in the Pattern Generator’s internal buffer is 
complete when either the buffer reaches its size limit, or 
when the Pattern Generator detects a backwards branch.  
We considered other methods of stopping a pattern, such 
as the program counter jumping past a certain threshold 
or finding a constant stride in the memory addresses.  
Based on our earlier memory trace simulations we 
determined that backwards branch was quite effective in 
finding loop branches and some procedure calls.  It is 
also simple to implement, requiring only one 
comparison between the current and previous program 

FIGURE I: MATCH ARCHITECTURE BLOCK DIAGRAM 
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counters.  Once the Pattern Generator has a complete 
pattern, it checks that the pattern is longer than the 
minimum allowed pattern length and that it passes the 
L1 Miss Threshold test described above.  That is, a 
certain percentage of its memory accesses must have 
missed in the L1 cache.  This prevents MATCH from 
storing patterns that can usually be retrieved from the L1 
cache.  A pattern that passes these tests is sent to the 
Pattern Buffer unit and the Pattern Generator is reset. 

 

B. Pattern Buffer 

The Pattern Buffer holds recently used patterns and 
handles data prefetching.  It is constructed as an array of 
patterns received from the Pattern Generator, a row of 
state bits for the current pattern, and pointers to the 
current pattern and current address element in the 
pattern.  Each pattern also has a “used” bit for a simple 
replacement policy. 

A pattern is located in the Pattern Buffer simply by 
checking the first address.  Thus, no two patterns can 
have the same starting address.  From our analysis of 
memory traces, we determined that it would be faster to 
only check the first address, and surprisingly few 
different patterns detected by the Pattern Generator have 
the same starting addresses.  When patterns arrive from 
the Pattern Generator, the Pattern Buffer searches the 
starting addresses of each pattern to determine if it 
already exists in the buffer.  If a match is found whose 
used bit is not set, the row is replaced with the new 
pattern.  If the starting address does not match any 
existing patterns, the pattern is inserted into an empty 
slot in the Pattern Generator, if one exists.  If there are 
no empty spaces, the Pattern Generator evicts the first 
pattern it can find that has a “used” bit that is not set, 
i.e., the pattern has not yet been accessed.  In the case 
that all patterns have been used at least once, all “used” 
bits are reset to zero and the pattern is inserted into the 
first location. 

 Each load issued from the load/store queue is also 
sent to the Pattern Buffer in parallel with the L1 cache 
and Pattern Generator.  If the Pattern Buffer is not 
currently accessing any particular pattern, and a 
backwards branch has just occurred, the Pattern Buffer 
searches for the current load’s memory address in its 
array.  This is done by checking only the first addresses 
of each pattern, yet this process is quite slow since it 
must make one comparison for every row in the Pattern 
Buffer.  Consequently, we only search for the start of a 
new pattern when a backwards branch occurs. 

If a matching address is found in a row, the Pattern 

Buffer predicts that this load is the start of the pattern 
located in that row.  It then begins to prefetch all 
addresses in the pattern into the MATCH Cache, and 
sets the used bit for that pattern.  The addresses of 
subsequent memory accesses issued are checked to 
certify that they match in the current pattern.  If an 
address does match the next address in the pattern, or if 
the final address has already been checked, the Pattern 
Buffer resets its current pattern and current address 
pointers and prepares to search for the next pattern. 

Alongside the Pattern Buffer exists a buffer that 
handles the prefetching data from the memory addresses 
in patterns.  As the Pattern Buffer works through a 
pattern, requests are sent to the Prefetch Buffer.  The 
Prefetch Buffer, in turn, sends load requests to the L1 
cache and simultaneously probes the MATCH Cache.  
Data does not need to be prefetched if it already exists in 
the L1 or MATCH cache.  On each memory operation 
issued from the register update unit, the Prefetch Buffer 
checks to see if that memory address has arrived and 
been stored.  If it has arrived, the address and data are 
stored from the Prefetch Buffer into the MATCH Cache. 

 

C. MATCH Cache 

The MATCH Cache, or M-Cache, is a hash-
addressable set-associative cache that holds the data 
values that are prefetched by the Pattern Buffer.  The 
organization is simple; it consists of an array of lists 
with elements containing the data values and a tag 
matching the corresponding memory address.  The M-
Cache can be thought of as a cache level between the L1 
and L2 caches.  Memory addresses are sent to it as soon 
as they are issued from the load/store queue, 
simultaneously with the request to the L1 cache.  If the 
access misses in the L1 cache, the value from the M-
Cache will be available immediately.  In the case of an 
M-Cache miss, the data is retrieved from L2 memory.  
Meanwhile, the Pattern Buffer and Prefetch Buffer 
prefetch the pattern data values to fill the M-Cache.  For 
store operations, the M-Cache follows a write-through 
policy for simplicity and speed.  Since the L1 cache is 
always accessed first, this policy effectively handles any 
cache concurrency issues.  The only exception occurs 
when a dirty value is evicted from the L1 cache, and the 
value also exists in the M-Cache.  In this case, the value 
is written to the M-Cache as well as the upper levels of 
memory hierarchy. 
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IV. EXPERIMENTAL METHODOLOGY    

In order to test our M-Cache structure described in 
Section III,  as well as the Pattern Buffer and the Pattern 
Generator, we implemented them using the 
SimpleScalar 3.0 tool set because of  its relevant basic 
architectural features and its support of SPEC 
benchmarks.  After editing existing sections and adding 
the necessary functions to SimpleScalar, we compiled 
the code using GNU GCC 2.95.   

SPEC2000 benchmarks were used to evaluate the 
performance of our architecture.  These benchmarks 
consisted of 188.ammp, 181.mcf, 197.parser, 175.vpr, 
and 183.equake.  We ran these benchmarks on 
UltraSparc 220R servers using the reduced data sets for 
a reasonable simulation time.  These benchmarks 
provide a good mix of computations, including integer 
and floating point applications as well as scientific and 
non-scientific programs.  A description of the 
SPEC2000 benchmarks we used in our analysis can be 
found in Table 2.    

Before running the simulations on our M-Cache 
structure, we needed to establish a base case for 
comparison.  We simulated the performance of the 
processor using only the baseline parameters found in 
Table 3 in the previous section.  These simulations 
involved the basic SimpleScalar configurations with two 
caches, with the size of the L1 data cache set to 8KB.  
We also simulated a baseline comparison with the L1 
data cache size set to 16KB to compare MATCH’s 
performance with the typical solution: adding more 
cache capacity. 

We compared the baseline architecture to our 
MATCH implementation.  Our hardware structures were 
implemented with different configurations.  We varied 

the M-Cache size between 8KB and 16KB to investigate 
the optimal size of the M-Cache.  The Pattern Buffer 
was also varied in size between 8KB and 64KB to 
determine whether an extremely large Pattern Buffer 
gives diminishing returns.  We also wanted to observe 
whether patterns that reoccur frequently and are not 
evicted as often increase the performance of the 
MATCH architecture. 

Pattern lengths were also fluctuated to demonstrate 
the effects of varying-sized patterns on the M-Cache 
performance.  By varying this parameter we could 
analyze two different effects: (1) whether short patterns 
that occurred frequently are of any use in improving 
performance, and (2) whether larger patterns that were 
not found in the cache improved performance even if 
they were not found as frequently.  We also 
experimented with different values for the L1 Cache 
Miss Threshold to determine the impact of accepting an 
assorted percentage of hits in the L1 cache.  A summary 
of the MATCH simulation parameters can be found in 
Table 4.  By varying these parameters of our hardware 
structures and analyzing the resulting simulations, we 
can develop the optimal configuration for the various 
applications. 

While the SimpleScalar implementation is a fair 
model of a microprocessor architecture, several 
assumptions were made that should be taken into 
account.  For example, the M-Cache access latency was 
assumed to be one cycle regardless of the varied sizes of 
the MATCH technology.  This lack of additional L1 

TABLE III 
BASELINE ARCHITECTURE CONFIGURATION IN 

SIMPLESCALAR 

L1 Data Cache (using LRU 
eviction) 

8K or 16K, 2-way set 
assoc 

L1 Instruction Cache 16KB, direct-mapped 
Unified L2 Cache 256KB, 4-way set assoc 
L2 Cache Latency 9 cycles 

Main Memory Latency 48 cycles 
Memory Bus Width 8 Bytes 

Issue Width 8 
Branch mis-prediction 

latency 
3 cycles 

BTB 512 sets 
Inorder False 

Register update unit size 32 
Load Store queue size 16 

Instruction TLB 16:4096:4:1 
Data TLB 32:4096:4:1 

Integer ALU’s 5 
FP ALU’s 5 

Memory Ports 3 

TABLE II 
SPEC2000 BENCHMARKS ANALYZED 

Benchmark Data Type Description 

188.ammp Floating Point 
Molecular dynamics 

simulation 

181.mcf Integer 
Vehicle scheduling in 

public mass 
transportation system 

197.parser Integer 
Syntactic parser of 
English language 

175.vpr Integer 
Integrated circuit CAD 

design program 

183.equake Floating Point 

Simulation of seismic 
wave propagation in 

large basins 
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latency is intended to focus on the performance of the 
MATCH architecture and not on scalability issues.  
However, our experiments indicate that increasing the 
M-Cache latency to two cycles had a negligible impact 
on overall performance.  Furthermore, in our prefetch 
implementations, we did not account for memory 
bandwidth limitations and instead assume infinite 
bandwidth.  Also, no special penalties were examined or 
issued for the situation where a large amount of 
contention existed for the memory or system buses.   

Although the Pattern Buffer can be large, the latency 
of the selection logic, which consists mostly of 
comparators, was not scaled to the Pattern Buffer size.  
Once again, this project focuses on the possible 
improvements in performance by the MATCH 
technology without spending a great deal of time to 
consider the impact of scalability.          

The resulting IPC from each of the simulations was 
used as the definitive measure of performance when 
comparing the performance of the SPEC2000 
benchmark simulations.  We also used the calculation of 
IPC per cache miss rate to determine cache trends in our 
architecture. 

From these simulations, one of the main goals is to 
reveal that the addition of our M-Cache structure will 
help to improve a system’s performance by reducing the 
impact of memory latency.  Using our baseline 
configurations as a basis for comparison, we will show 
in the following section that our M-Cache structure has 
positive results and the potential to improve on future 
microprocessor performance. 

V. EXPERIMENTAL ANALYSIS 

A. Results 

 Figure 2 shows the speedups for the 5 
configurations in Table 4 relative to the baseline with an 
8 KB L1 data cache.  In all cases, MATCH outperforms 

the baseline configuration.  MATCH improves the 
performance of Ammp by 24 to 43 percent over the 
baseline configuration, while simply adding more L1 
cache provides little performance gain.  Ammp solves 
large systems of ODEs, which require a significant 
number of regular, non-sequential array accesses.  
Therefore, Ammp exhibits regular memory access 
patterns, but these access patterns do not exhibit the 
spatial locality that a standard L1 cache can exploit.  For 
this reason, the 16 KB data cache configuration (BB) 
provides only a .04 percent performance improvement.  
In contrast, the MATCH architecture was able to locate 
and store the appropriate patterns, which occurred 
frequently enough to provide significant performance 
gains.   

 The other benchmarks exhibit significantly less 
performance improvement as a result of the MATCH 
architecture.  Mcf shows a 1 to 2 percent speedup, while 
the other benchmarks have speedups of less than 1 
percent over the baseline configuration.  With the 
exception of Ammp, the 16 KB L1 cache marginally 
outperformed all tested MATCH configurations.   

  The measured speedups also depend on the 
baseline L1 data cache miss rates, which are 
documented in Table 5.  Since MATCH only improves 
memory access latencies of accesses that miss in the L1 
data cache, the L1 cache miss rate has a significant 
impact on the absolute speedup numbers.  The MATCH 
speedup to L1 data cache miss rate ratio tabulated in 
Table 5 indicates the normalized performance of 
MATCH for the five tested benchmarks.  The 
normalized performance illustrates MATCH’s 
performance in relation to the number of available long 
latency memory accesses for a given benchmark, which 
estimates how well MATCH is exploiting memory 
access patterns.   

TABLE IV 
MATCH SIMULATION PARAMETERS 

Configuration 
L1 Data 

Cache Size 
Match Cache 

Size 
Pattern Buffer 

Size 
Maximum 

Pattern Length 
Minimum 

Pattern Length 

L1 Cache 
Miss 

Threshold 

Baseline 8 KB No MATCH Hardware Present 

BB 16 KB No MATCH Hardware Present 

A 8 KB 8 KB 8 KB 

B 8 KB 8 KB 64 KB 

C 8 KB 16 KB 8 KB 

D 8 KB 16 KB 64 KB 

32 
6 – Ammp, 3 – 

All Other 
Benchmarks 

.5 – Ammp, 1 
– All Other 
Benchmarks 
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Like the absolute performance numbers, the 
normalized performance data indicates that Ammp 
achieves the greatest normalized performance.  
However, Ammp’s normalized performance is only 6 
times greater than the next highest benchmark, versus 24 
times greater in terms of absolute performance.  In 
contrast to the absolute performance numbers, Parser 
and Vpr surpass Mcf in normalized performance.  Both 
Parser and Vpr have significantly lower L1 data cache 
miss rates than Mcf.  Therefore, in both Parser and Vpr, 
MATCH is more effectively exploiting the applicable 
memory accesses than in Mcf.  Equake exhibits the 
lowest normalized performance of the five benchmarks.  
Equake demonstrates virtually no performance 
improvement due to a large distance between repeated 
memory access patterns that are not captured in the L1 
data cache.  In fact, for Equake, the results indicate that 
out of approximately 7.5 million memory accesses the 
M-Cache only registered 400,000 hits. 

The different MATCH configurations for Ammp have 
significant performance variation.  Figure 2 also shows 
that increasing the Pattern Buffer size from 8 KB to 64 
KB provides an additional 12 to 19 percent performance 
gain over the baseline configuration.  This is due to the 
fact that the set of patterns generated is larger than the 
size of the Pattern Buffer.  Since the Pattern Generator 
creates many patterns that are not utilized, the Pattern 
Buffer must be large enough to allow reoccurring 
patterns not to be replaced before they are executed.  
This effect seems to hold for the other benchmarks as 
well.  Increasing the M-Cache size only improves 
performance when the pattern buffer contains enough 
patterns to exploit the increased M-Cache size.  For 
instance, increasing the M-Cache size from 8 KB to 16 
KB while keeping the Pattern Buffer size constant at 8 
KB provides negligible performance improvement for 

Ammp.  In contrast, increasing the M-Cache size by the 
same amount when the Pattern Buffer is 64 KB 
improves performance by 8 percent over the baseline 
configuration for Ammp.  Unlike Ammp, Mcf 
performance improves when the M-Cache size is 
increased while keeping the Pattern Buffer size constant.  
Therefore, the degree to which the benchmarks exploit 
M-Caches of various sizes depends largely upon the 
ability of the Pattern Buffer to hold and prefetch valid, 
reoccurring memory access patterns, which varies by 
application. 

The Pattern Buffer’s ability to capture the desired 
reoccurring memory access patterns is directly related 
the Pattern Generator’s pattern generation method and 
parameters.  Figure 3 depicts the performance of Ammp 
and Mcf with several different L1 Cache Miss 
Thresholds.  Ammp exhibits the greatest performance 
improvements when Miss Threshold is between .5 and 
.66.  Mcf, in contrast, experiences the greatest 
performance when the Miss Threshold is 1.  Ammp 
tolerates a lower Miss Threshold than Mcf because its 
higher L1 cache miss rate allows the Pattern Generator 
to generate a greater number of Patterns that miss in the 
L1 cache.  Therefore, for optimal performance, the Miss 
Threshold must be set to allow the optimal number of 
patterns to be generated for a given application.  Setting 
the Miss Threshold too low starves the M-Cache, while 
setting the Miss Threshold too high increases the 
number of unused patterns, which pollutes the Pattern 
Buffer.  An unused pattern is a pattern that the 
application never repeats after generation and is 
eventually evicted from the Pattern Buffer.  Therefore, 
the optimal L1 Cache Miss Threshold depends on the L1 
data cache miss rate and the memory access patterns of a 
given application. 

The Maximum Pattern Length also has a significant 

FIGURE II: MATCH PERFORMANCE 
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performance impact.  Figure 4 shows the performance 
statistics for Ammp and Mcf for several various 
maximum pattern lengths.  For Ammp, pattern lengths 
of 16 and 64 perform better than maximum pattern 
lengths of 32, while all maximum pattern length 
simulations perform almost equally well for Mcf.  
Therefore, like the L1 Cache Miss Threshold’s behavior, 
the optimal Maximum Pattern Length depends on the 
application. 
 

B. Hypothesis Evaluation 

The experimental results support a qualified version 
of the original hypothesis.  The patterns that the 
MATCH architecture exploits are present in every 
benchmark tested to some degree.  In benchmarks with 
low L1 data cache miss rates, MATCH has few memory 
accesses with which to work, and consequently, the 
speedups are low.  However, for benchmarks with 
higher L1 data cache miss rates, the speedups can 
potentially be impressive, as the results for Ammp 
indicate.  Therefore, the hypothesis seems valid in 
programs that exhibit poor spatial locality and perform 
repeated work on fixed data sets.   

 

C. Future Experimentation 

The disparity between Ammp’s performance and the 
performance of the other tested benchmarks fuels the 
need for further experimentation in order to fully 
evaluate the concept.  The full memory trace and source 
code for Ammp needs to be analyzed to quantify the 
behavior that causes Ammp’s large speedup.  This 
information could then be used to identify other 
applications that could significantly benefit from 
MATCH.  Furthermore, the simulation environment 

needs to be modified to reflect the unrealistic 
assumptions that were made in the simulations described 
in the Experiment Methodology section in order to 
validate Ammp’s performance improvement.   

Several modifications to the architecture should be 
made in order to account for a variable L1 Cache Miss 
Threshold and the Maximum Pattern Length.  The 
Pattern Generator should dynamically record the number 
of patterns that it is generating and scale the L1 Cache 
Miss Threshold to allow only a certain number of 
patterns to be generated during a given interval of time.  
This would optimize the Pattern Buffer’s utilization 
based on the currently running application.  To more 
efficiently take advantage of the optimal maximum 
pattern length, the pattern buffer could be modified to 
have different regions that allow different length 
patterns. With this modification, the pattern buffer 
would waste less space for smaller patterns, thereby 
having more entries for a fixed size structure, which the 
results indicate would improve performance. 

The set of applications tested in this paper provide 
insight into MATCH’s performance on a wide range of 
application.  This concept demands evaluation on a 
multitude of applications in order to identify the 
application types that benefit the most from the 
proposed architecture.  Therefore, the applications tested 
were appropriate at this stage of the concept’s analysis.  
From the five benchmarks it is hard to determine what 
class of applications benefit the most from MATCH.  
Equake and Ammp, the two floating-point benchmarks, 
have the best and worst normalized performance, 
respectively, while the integer benchmarks fall 
somewhere in the middle.  The common characteristic 
applicable to all of the tested benchmarks is the 
relationship between absolute speedup and the L1 cache 
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miss rate.  Therefore, additional benchmarks need to be 
analyzed in order to determine if other applications that 
have a high L1 cache miss rate benefit greatly from 
MATCH.  Scientific applications may be a good starting 
point, since they tend to utilize the cache less effectively 
than their general-purpose counterparts.  Therefore, 
further experimentation is necessary to conclude 
whether Ammp’s impressive performance gains are 
common to other applications. 
 

D. Cost Benefit Analysis  

In order to conclusively determine if the cost of 
MATCH is worth its potential benefits, additional 
experimentation is required.  If a certain class of 
applications has performance numbers similar to 
Ammp’s, then the cost of MATCH is definitely worth 
the benefit for machine that run applications of that 
class.  MATCH improved Ammp’s performance by 24 
percent in the relatively inexpensive configuration A 
and by 43 percent in the expensive configuration D, 
while simply doubling the L1 cache size provided little 
performance improvement.  Therefore, for applications 
like Ammp, MATCH is a small price to pay for its 
impressive performance gains.  However, if Ammp’s 
speedups are atypical, MATCH is not worth the cost 
because the results indicate that a cheaper alterative, 
adding 8 KB additional L1 cache, improves performance 
to a greater degree.  Therefore, the cost to benefit 
relationship for MATCH largely depends on the results 
of additional experimentation.  However, if as few as 10 
to 20 percent of typical applications can exploit 
MATCH as effectively as Ammp, MATCH is a win. 

VI. CONCLUSION   

 The results indicate that MATCH has the potential 
to significantly improve performance on certain 
applications.  As discussed in the Hypothesis Evaluation 

section, the results point to a revised version of the 
original hypothesis.  While all applications should 
experience some performance improvement, only those 
applications with a large L1 miss rate will be 
significantly faster.  Furthermore, the application must 
perform work on patterns that repeat often enough to be 
captured in a reasonable sized Pattern Buffer in order to 
experience a non-trivial speedup.  Enough applications 
should exhibit these characteristics to make MATCH an 
effective addition to the cache hierarchy.   

Additional experimentation needs to be performed to 
validate the revised hypothesis and improve upon 
MATCH.  As discussed in the Future Experimentation 
section, the different methods of generating patterns and 
dynamically scaling pattern generation parameters need 
to be explored.  In addition, more efficient Pattern 
Buffers should be explored to more effectively capture 
patterns of varying lengths.  Furthermore, Ammp needs 
to be analyzed further to concretely establish what 
qualities make its performance far superior to the other 
benchmarks tested.  Additional applications also need to 
be examined to determine if Ammp’s performance is 
typical of other applications. 

Because of the increasing impact of memory latency 
on processor performance, more complex methods of 
hiding latency are useful.  MATCH, while adding 
significant hardware, has the potential to reduce the 
impact of memory latency, especially for programs that 
perform poorly in standard data caches.  While research 
on exploiting data memory access patterns with poor 
spatial locality is still in its preliminary stages, 
MATCH’s performance as well as the performance of 
other schemes [3, 4, 5] provide the incentive for further 
research.  Additional experimentation and enhancement 
of MATCH will undoubtedly lead to useful methods for 
combating the memory latency that will plague future 
processors. 
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