MATCH: Memory Address
Trace CacHe

Arthur Nieuwoudt
David Leal
Noah Deneau
Michael Haag

04/22/2003

i Agenda

= Motivation

= Hypothesis
= Architecture
= Methodology
= Analysis

= Conclusions
= Future Work

Motivation — Breaking Down
i the Memory Wall

= For wide-issue superscalar processors,
memory latency is increasing relative to
cycle time

= Not all memory accesses exhibit the
spatial locality that standard caches
exploit

= Other memory access patterns could
exist

i Related Concept: Trace Cache

s Instruction trace caches are used to
exploit patterns in instructions

= Research has demonstrated substantial
berformance improvements

» Used in current processor designs

= Can this concept be extended to data
memory?

i Hypothesis

= Memory Access patterns exist that
cannot be exploited by standard caches

= We can capture these patterns in
reasonably sized data structures

= By capturing these patterns, we will
improve performance on a wide range
of applications

Memory Trace Analysis: Are
i There Patterns Out There?

= Analyzed 5 SPEC2000 benchmarks

s Used several different pattern
generation algorithms

= Evaluated statistics such as frequency,
length, utilization

= Patterns exist with sufficient length and
frequency to exploit

i Solution: MATCH Architecture

s Pattern Generator

= Generates patterns of memory accesses that
poorly utilize the L1 data cache

= Pattern Buffer

= Stores traces of memory addresses generated by
the Pattern Generator

= Prefetch data from L2 cache and main memory

= MATCH Cache (M-Cache)
= Stores data associated with access patterns

i MATCH: The Gory Details

L2 /Mem

MemAddr I

MemAddr

Data

Core

L1

ls

—
<
ekd

\i’ M Cache

i)

CP
Valid?

Control Logic

Value_‘ PB

MemAdd
Pattern Gen
PC

Prefetch/Arrived

L L,

Arrived? Prefetched?

1/2 [Vvalid)
A Pattern?|

Latch

t

Pattern Gen Ptr

i Methodology

= Modified Simplescalar cache functions
to simulate the MATCH architecture

= Baseline configurations:
= Baseline — 8 KB L1 Data Cache, no MATCH

= Big Baseline (BB) — 16 KB L1 Data Cache,
no MATCH

i MATCH Configurations

= All tested configuration have 8 KB L1
data cache

= Tested MATCH configurations
= A — 8 KB M-Cache, 8 KB Pattern Buffer
= B — 8 KB M-Cache, 64 KB Pattern Buffer
= C - 16 KB M-Cache, 8 KB Pattern Buffer
= D — 16 KB M-Cache, 64 KB Pattern Buffer

Results

Speedup

1.45
1.4
1.35
1.3
1.25
1.2
1.15
1.1
1.05

0.95

Ammp

INEAN

BB/A|B|C| D BB A|/B|C| D

Equake

Mcf

Parser

Benchmark / Configuration

i L1 Miss Rate and Performance

= MATCH performance
depends on L1 miss
rate

= Normalized
performance
provides a estimate
of efficiency

Application L:;:Iti:s S;I;I;fll; /
Miss Rate
Ammp 0.236 1.815
Equake 0.033 0.077
Mcf 0.136 0.185
Parser 0.034 0.302
Vpr 0.012 0.232

i MATCH Configuration Results

L1 Miss Threshold Used in Pattern
Generation

0.33|/0.50|0.66 | 1.00|0.33|0.50 | 0.66 | 1.00

Ammp Mcf
Benchmark / L1 Cache Miss Threshold

Maximum Pattern Length

1III]
16 | 32 | 64 | 16 32

B

Ammp Mcf

Benchmark / Maximum Pattern Length

i Revised Hypothesis

= MATCH works well in specific programs
= High L1 miss rate

= Poor spatial locality

= Repeated work on fixed data sets

= Patterns do exist

= Reasonably sized data structure are
effective for certain applications

= Requires further research

i Future Work

= Does Ammp’s performance exist in
other applications?

= Scientific applications may be a good
starting point

= Evaluate other pattern generation
schemes

= More efficient Pattern Buffer

* Questions / Comments

