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Hypothesis 

Some modern processors use a prefetching unit at the front-end of the machine to fetch 

instructions and data into the cache ahead of their use in order to reduce the latency of going 

to main memory if those accesses were to originally miss in the cache.  The prefetcher 

guesses what the next address of access is going to be. Therefore, a good prefetcher should 

prefetch only those addresses that are actually used and not waste memory bandwidth by 

prefetching extraneous addresses.   

 

The paper “Prefetching with Markov Predictors” by D. Joseph and D. Grunwald introduces 

us to the Markov prefetcher, which is a correlation-based prefetcher that uses the history and 

probability of previous memory accesses to build a table of future memory fetches[1].  

Figure 1 shows a miss reference stream and how that stream can be depicted as a Markov 

chain.  The predictor proposed by Joseph and Grunwald places the information from the 

chain into a table which can be used to predict the next memory reference. 

 

 

Figure 1:  An address reference string markov model of the reference pattern[1] 

The index to the Markov table is the current address.  Each index (or entry) has an associated 

number of next states, or future addresses, to fetch when the search of the Markov table 

results in a “hit”.  These entries also have associated data about their probability of being the 

correct next state.  This data is in the form of hit counters for each next state.  In an ideal 

Markov prefetcher, there are an unlimited number of next states to fetch, and the number of 

entries in the table is infinite.  A real implementation must limit these two variables.   

 

In our study, we investigate the tradeoff between the number of next states and number of 

entries in the Markov table versus the coverage and accuracy of the prefetches to determine 

the most efficient configuration for our implementation.  We will also look for ways to make 

the Markov prefetcher use less memory bandwidth by limiting the number of next states 

prefetched to be less than the number of next states in the table. Similar to Joseph and 

Grunwald, we explore the addition of a stride prefetcher in front of the Markov prefetcher in 

an attempt to filter out patterns that are more easily found by the stride prefetcher and thus 

reduce the mispredictions from the Markov prefecher.  Our implementation of the stride 
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prefetcher is simplified from the one proposed by Grunwald and shows a significant gain in 

the overall coverage and a reduction in the mispredicted prefetches.   

Markov Prefetcher Architecture 

The Markov table and prefetch logic are inserted off-chip between L2 cache and main 

memory.  See Figure 2.  Upon an L2 cache miss, the Markov table is searched.  If the table 

search results in a “hit”, all valid next states (addresses) are loaded into the on-chip Markov 

prefetch “buffer” (32 entries in our implementation) at the same level as L2 cache.   

 

The on-chip Markov prefetch buffer is searched during an L1 cache miss at the same time as 

L2 cache is searched.  If the current address hits in the prefetch buffer, then the valid next 

states in the Markov are loaded into the prefetch buffer.  An address can only acquire one 

valid next state for each time it is seen in the address stream.  Thus if we have only seen an 

address once previously, then we do not send out 4 prefetches for the next state when we see 

that address again, since the table only knows about one possible next state for that address.  

Regardless of the results of searching the prefetch buffer, if the address misses in the L2 it is 

forwarded to the Markov prefetcher as well as to main memory.  If the address hits in the 

Markov table, then again the next states in the table are loaded into the prefetch buffer, 

replacing those entries that are the oldest in the prefetch buffer. 

 

We use a least recently used (LRU) replacement policy for our Markov prefetcher.  Each 

time around, if there is a hit in the prefetch buffer, the LRU status of that entry in the Markov 

is updated.  The entries are not stored in address order in the Markov table.  Hence, when an 

entry is evicted, the new entry merely overwrites the old one, and no reshuffling or shifting 

of the entries occurs.   

 

 

Figure 2:  Diagram of memory hierarchy with Markov prefetcher inserted 

 

In our implementation, we use a direct mapped, 8KB L1 instruction cache and 8KB L1 data 

cache.  Each L1 cache block is 32-bytes with single cycle latency.   
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Our L2 cache is a direct mapped, 1MB unified instruction/data cache with a block size of 

128-bytes and 12-cycle latency.  The Markov paper uses an L2 cache of 4MB in size, but the 

paper was written in 1997 and used SPEC95 benchmarks. We changed the size of the L2 

cache to 1MB because the size of the data sets in the SPEC2000 benchmarks fit too well in 

4MB of cache, thus we were getting a sparse number of L2 cache misses to prove our 

concept with.  We think this is a reasonable change because most modern day year 2005 

processors don’t necessarily have as much as 4MB of L2 cache on-chip.  

 

Grunwald and Joseph implemented their Markov prefetcher for L1 cache misses; we 

implemented ours for L2 cache misses.  See Figure 3 for the Markov paper’s implementation.  

From Figure 3 it appears that L2 cache and main memory are off-chip.  Modern day 

processors have L2 cache on chip, so in our implementation we use L2 cache misses as our 

miss reference trace.  Moving the prefetcher beyond the L2 cache would seem to cause a 

decrease in accuracy since the address stream would be interleaved with I and Dcache 

accesses which may not exhibit the patterns that arise looking at a single cache as in [1]. 

 

 

Figure 3: Memory hierarchy with Markov prefetchers inserted[1] 

 

The size of the Markov prefetch table in the paper is fixed at 1MB (2^20).  The ideal number 

of next states as determined by the Markov paper is four.  If each next state (address) is 4 

bytes, then each table entry (index) plus four next states is 2^2*5.  Therefore the number of 

indices (entries) in the paper’s Markov table is (2^20) / (2^2*5) = 2^15 ~ 2^16, or roughly 

50k entries.  The paper also simulates using 1, 2, 4 and 8 next states, where the number of 

table entries varies dynamically while keeping the table size fixed at 1MB. 

 

In our experiments, we vary our table size, with our largest table being 16k (or 2^14) entries 

with 16 next states.  We estimate this size to be 4*(16+1)*2^14 = 2^20, or roughly 1.1MB.   

 

Experimental methodology and analysis 

Markov Prefetcher 
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The first step in our experiment was to duplicate the Markov paper’s Markov prefetcher 

model as close as possible, with the added exception of the changes noted in the previous 

section.  As described previously, we decreased the size of the L2 cache as compared to the 

paper in order to reel in more L2 cache misses from our SPEC2000 benchmarks.  We also 

implemented the Markov prefetcher between L2 cache and main memory, instead of between 

L1 and L2 cache since modern day processors implement L2 cache on-chip.  

 

We wrote the Markov prefetcher in C and used input traces generated by the SimpleScalar 3 

tool, sim-cache.  The inputs to our Markov prefetcher are SPEC2000 benchmark traces 

which we generated by adding a “print” statement to sim-cache.c's L2 cache miss handler.  

Upon entering the L2 cache’s miss handlers, the memory address is dumped out into a file, 

which we used as our trace.  Due to limited time for the project, we chose only six 

SPEC2000 benchmarks.  The six benchmarks we chose for our experiment show the varying 

accuracy of the prefetcher for different workloads.  They are: ammp, crafty, gcc, gzip, mcf, 

and vpr.  

 

The simulation results for our Markov prefetcher are shown below for all six benchmarks.  

We varied our table size from 1k entries up to 16k entries, and varied the number of next 

states at 2, 4, 8 and 16.  The same definitions as in [1] are used to produce the diagrams, 

where the bottom part of the bar is the “predicted” area, or coverage of our Markov 

prefetcher.  This is the percentage of total demand fetches that are caught by our Markov 

prefetcher.  The middle bar is the percentage of demand fetches that were “not predicted”, 

which is (1-coverage).  The upper bar area is the number of wasted prefetches that were 

fetched but unused, or “mispredicted” prefetches. 
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ammp benchmark - Markov
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gcc benchmark - Markov
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gzip benchmark - Markov
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mcf benchmark - Markov
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vrp benchmark - Markov
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From these results we can make three conclusions.  First, increasing the number of next 

states that are prefetched increases the number of mispredictions (which is a decrease in 

accuracy).  This makes sense since not all of the next states fetched will eventually be used 

by the program.  Second, increasing the number of entries in the table increases the coverage 

(predicted), but only slightly.  This also makes sense because holding more addresses will 

increase the chances that an address will “hit” in the Markov table.  Third, the increase in 

coverage associated with increasing the number of entries in the Markov table does not offset 

the cost of such high mispredictions if area or memory bandwidth are considerations for the 

design. 
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As can be seen from the results, Markov does very well in only the ammp benchmark, where 

the coverage (predicted) is as high as 99.4%.  The worst is mcf, which has a coverage of only 

3.4%.  The average coverage over all six benchmarks is 38%.  The average wasted prefetches 

over six benchmarks is 600%!  This means that our Markov prefetcher does six times more 

useless fetches than the demand fetches. 

 

Clearly from the results, the Markov prefetcher does not perform well for all of these 

benchmarks.  Our idea was augment the markov prefetcher by adding another prefetcher to 

help catch some of the not predicted address and reduce the misprediction rate of the Markov 

prefetcher similar to the work in [1].  One of these schemes we believe has a high chance of 

success in decreasing the number of mispredictions and increasing the accuracy of our 

Markov is adding a stride buffer.  The stride buffer is added in front of the Markov in series 

with it.  Our hypothesis is that the stride buffer will catch one-time linear (or strided) 

memory accesses that Markov would not be able to catch.  This is because the Markov 

prefetcher requires a “training period” and does not catch addresses that have no previous 

history.   

 

The stride buffer works to filter out one-time strided addresses before reaching the Markov.  

The stride prefetcher also has an on-chip 32-entry prefetch buffer at the same level as L2 

cache.  L2 cache is searched at the same time the stride prefetch buffer is searched.  The 

stride works by keeping track of the distance between the previous memory address and the 

current memory address.  This distance is saved in a register.  If the next time around the new 

memory address distance is the same as our saved stride value, we prefetch this current 

memory address plus the stride distance into the prefetch buffer.  A stride distance has to be 

seen twice before prefetches of that distance occur.   The stride prefetch buffer replaces the 

oldest entries in the buffer once all of the entries are full. 

 

 

Combined Stride/Markov Prefetcher 

Figure 4 shows the stride logic added to our architecture.  Here the stride prefetcher is placed 

in front of the Markov prefetcher in order to filter out access sequences that cannot be 

predicted by the Markov prefetcher.  If an address does not cause a prediction from the stride 

prefetcher, only then is that address passed to the Markov prefetcher.  
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Figure 4 

 

The figures below show the results of adding the stride prefetcher in front of our Markov 

prefetcher.   

 

ammp benchmark - Markov/Stride combined
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crafty benchmark - Markov/Stride combined
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gcc benchmark - Markov/Stride combined
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gzip benchmark - Markov/Stride combined
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mcf benchmark - Markov/Stride combined
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vpr benchmark - Markov/Stride combined
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The most notable result from adding the stride prefetcher in front of the Markov is the 

number of mispredictions decreases dramatically, with only a slight increase in coverage.  

The average misprediction goes from 600% down to 46% using the combined Stride/Markov 

architecture.  The average prediction rate goes up slightly from 38% to 43%.  The table 

below summarizes the results comparing the percentage of the total L2 miss addresses 

(demand fetches) that are predicted and mispredicted for the combined Stride/Markov 

prefetcher to our baseline Markov prefetcher with our largest implementation of 16k entries 

and 16 next states. 

 

 

Benchmark Markov  

%Predicted 

Markov  

%Mispredicted 

Combined  

%Predicted 

Combined  

%Mispredicted 

ammp 99.4 640.6 99.4 23.9 

crafty 31.5 959.9 31.6 62.5 

gcc 54.0 631.8 56.2 40.4 

gzip 12.0 120.8 22.2 44.6 

mcf 3.4 73.9 21.7 40.4 

vpr 27.5 1173.8 28.2 66.6 

Average 38.0 600.1 43.2 46.4 

 

The advantage of combining stride and Markov together is that the stride prefetcher can filter 

out many one-shot strided accesses to the Markov.  As we can see from the results, the 

Markov catches most cases in the ammp benchmark; whereas the stride catches a lot more 

cases in the mcf benchmark. 

We did an additional experiment to see if limiting the number of next states that are 

prefetched would decrease the misprediction further.  For instance, instead of prefetching all 

next states, we would only prefetch half of them.  From our results, we concluded that there 

was no benefit in doing so.  In fact, the misprediction was slightly higher and the prediction 

slightly lower. 
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Benchmark Combined w/ 

fetching only 

half next states -

 % Predicted 

Combined w/ 

fetching only 

half next states -

 % Mispredicted 

Ammp 98.8 24.5 

Crafty 21.9 72.2 

gcc 49.0 47.5 

gzip 21.5 45.3 

mcf 20.8 41.3 

vpr 19.3 75.6 

Average 38.5 51.1 

 

Performance Analysis 

For our performance analysis, we compared our best case Markov to our best case combined 

Stride/Markov to see how their CPU performances stack up.  The best case Markov is 2 next 

states with 8k entries.  The best case combined Stride/Markov is 16 next states with 4k 

entries. 

 

We used the SimpleScalar 4.0 alpha simulator for the performance analysis. We modified the 

cache_timing.c file to replace the default prefetcher with our Markov/stride prefetcher, which 

was now connected to the L2 instead of the L1 cache as in the default. We intended to 

perform 2 sets of performance experiments: with the Markov/stride prefetcher combined, and 

with the Markov prefetcher alone.  

 

However, we were unable to obtain any results at the time of writing this report, since the 

simulation has been running for several days over a single benchmark and has not completed 

or produced any output. As a sanity check, we are also running a simulation with the original 

simplescalar 4.0 code, which is also currently running.  

Cost of Implementation 

The largest cost associated with the Markov prefetcher implementation is the area for the 

Markov table.  In our best case of 4k entries and 16 next states the table size is roughly equal 

to a 256 kilobyte cache.  This is nearly a quarter of the size of the Markov table proposed in 

[1] and we have a single table, whereas they implemented two separate tables. 

 

Given more time, would we have liked to find a tool that could convert our Markov and 

combined Stride/Markov C models into VHDL or Verilog, and then synthesize them using a 

standard library to get an estimate of the transistor gate count. 
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Conclusion 

In this project we discovered that Markov prefetching is still useful beyond the L1 cache for 

certain applications.  However, the Markov prefetcher alone does not improve the bandwidth 

requirements. Augmenting Markov prefetcher in series with a simple stride prefetcher can 

dramatically reduce mispredicted prefetches. 

 

Our modification using a limited number of next states that are prefetched also showed that 

the implementation requirements for prefetcher can be smaller than previously proposed with 

similar performance.  

 

Unfortunately, we could not obtain results for the performance of the prefetcher in a more 

realistic processor, inspite of integrating with SimpleScalar 4.0 alpha processor simulator, 

because of the time taken to run the simulations. 

 

One drawback of our prefetching scheme is that it might not be suitable for SMT applications. 

In that case, an equivalent system may be implemented with separate tables with for different 

threads. 
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