
Abstract

Several classes of applications can be
characterized by repetition of certain behaviors or
the regular distribution of the data sets. The
extensive use of loops to organize the control flow of
the program and data processing magnify the value
of performance improvements in these regions of
code. The continuing demand for higher
performance machines in areas of media processing
and floating-point programs also leads to
application-targeted architectures being developed to
meet the market's needs. To accommodate loop
intensive applications we propose specific ISA and
architectural additions to improve the performance
of certain classes of loops found in media and
scientific applications. Compilers frequently practice
loop unrolling to hide latency, but the compiler lacks
sufficient information to work with many loops.
Through the elimination of branch instructions and
other unrolling techniques, significant speedup can
be achieved; however, compilers lack information on
the bounds of many loops whose limits are
determined only at runtime. By implementing semi-
dynamic and static branch elimination in hardware,
our architecture takes better advantage of compiler
information to extract greater efficiency in loops and
yield a speedup with a moderate increase in
complexity. We tested our modifications in
simulation on an out-of-order architecture, and the
results demonstrate the utility of our changes in the
scope of the benchmark.

1. Introduction

The goal of improving the performance of
certain stretches of common code is an essential goal
of hardware modification. Driven by the specter of
Moore's Law and by a demand for better performance

on media, scientific, and other applications, the
pressure to squeeze small performance gains out of
modern high-performance processors makes
moderate gains seem appealing at even a high
complexity cost. Targeting loops for performance
gains has traditionally been handled by compiler loop
unrolling algorithms in which instructions from
subsequent iterations are blended into each other.
The benefits of this can be two-fold. Delays from
high-latency instructions can be hidden by
interleaving them with instructions from the
following iteration. This benefit sometimes suffers
from additional instruction overhead incurred to
detect and recover from the instructions executed
from iterations after the end of the loop; however, if
sufficient instruction level parallelism (ILP) is
present, the compiler can hide most delays with
instructions that are only from the same iteration of
the loop. Second, if the bounds of the loop are known
at compile time, branch instructions can be
eliminated by reducing the number of conditional
checks and recovery instructions involved in the
loop. In both cases, loops whose bounds are
determined at runtime hamper compiler efforts to
efficiently resolve loop speculation.

To further exploit the available information
in loops, we propose modifying the instruction set
architecture (ISA) with appropriate additions to
supply the hardware with information the compiler
has about the loop but is unable to exploit on its own.
These cases are static and semi-dynamic loops that
are well-formed.

Static loops are those loops where the
number of iterations is known at compile time.

Dynamic loops are loops whose termination
conditions are unknown
when the loop begins execution at runtime.

Semi-dynamic loops fall in between static
and dynamic; they are loops whose bounds are
determined at runtime but before the loop begins
execution.

Hardware Loop Buffering

Scott DiPasquale, Khaled Elmeleegy,
C.J. Ganier, Erik Swanson

W e l l - f o r m e d loops are loops whose
instructions are all consecutive with no branches,
jumps, etc.

Compilers frequently encounter loops whose
indices are either known or set just before the
beginning of the loop. With foreknowledge of which
register will be used to determine the bounds of the
loop, the compiler has done the analysis that is useful
to hardware loop speculation, but too complicated to
be done in hardware. Our ISA additions provide the
hardware with the number of iterations that will be
executed in the loop, the beginning instruction, and
the ending instruction of the loop. With these
specific bounds, the hardware is able to eliminate
branch logic in the loop. This provides instruction
savings inversely proportional to the length of the
loop, proportional to the number of times the loop is
executed, and limited primarily by the stalls that
compiler techniques attempt to minimize. Through
the use of semi-dynamic and static hardware loop
buffering, the number of instructions per clock cycle
should increase and the total number of instructions
should decrease.

In the subsequent sections of this paper, we
will cover the purpose, methods, and results of this
project. Section 2 shows the frequency of semi-
dynamic, static, well-formed loops in several
benchmarks to explain the motivation for this project;
this section also addresses the reasons for not

performing actual unrolling in hardware. Section 3
explains the ISA changes, and Section 4 describes the
hardware support used in the simulations and the way
this differs from other implementations of similar
ideas. Section 5 explains the simulation architecture
and its results. Section 6 gives a brief description of
extending buffering to loop unrolling. Finally, we
discuss the conclusions and future possibilities for the
idea.

2. Motivation

According to Amdahl’s Law, in order for an
improvement to microprocessor operation to be
significant, there must be an observed frequency of
occurrences such that the improvement will be used a
good percentage of the time. To determine whether
or not it was worthwhile to pursue hardware loop
buffering as a viable way to increase processor
performance, the total number of loops, number of
static loops, number of well-formed static loops, and
the total number of semi-dynamic well-formed loops
were observed for the following SPEC2000
benchmarks. 179.art is an object recognizing neural
network, 256.bzip2 is an integer data compression
utility, and 183.equake is a floating-point earthquake
simulator.

Figure 1 – Percentages of Loops by Type

Figure 1 presents the total number of each
type of loop normalized to the total number of loops.
As is observed, the hardware loop buffering
mechanism would cover 29.6% of loops in art, 24.6%
in bzip2, and 31.5% in equake. The average
percentage of loops that meet our constraints across
the three benchmarks is 28.6%. Not only is the
percentage of loops important to show that
improvement in loop execution would affect
performance, but the percentage of execution time
that these loops consume during program execution is
also important. Figure 2 presents the amount of
execution time spent in the relevant loops within the
benchmarks. In equake, the loops consume 45% of
the total execution time. The loops in art represent
53% of the execution time, and the loops for bzip2
32.5%. This is more than sufficient to show that any
speedup of these loops would provide significant
performance improvements of the overall program.

Semi-dynamic loops are those that the
compiler cannot unroll or modify due its inability to
determine vital information at compile time. The
majority of the speedup gained by hardware loop
buffering over compiler-optimized code would come
from the ability to optimize untouched loops. All of
the loops covered in art are actually semi-dynamic
loops that the compiler would be unable to unroll.
The semi-dynamic loops make up 12% of the loops

in equake and 15.2% in bzip2. These loops would
represent the majority of our speedup over compiler-
optimized code.

Loop unrolling was not implemented in this
project, although it would very likely provide
additional improvement over hardware buffering.
Developing a generalized algorithm to remap
registers in duplicated instructions would require
redirecting much of the simulator’s execution
pipeline, and the specific case of index dependent
loads required altering registers on the fly. Since we
are already modifying the execution pipeline, which
has proved to be a very difficult task, these further
modifications that would allow correct functioning of
unrolling would be a major undertaking and are
beyond the scope of this project.

2. ISA Changes

In most ISAs, a loop is a branch instruction
whose target is a previous instruction. The execution
of the program passes through the same instructions
to this branch until eventually the branch is not taken,
and the control flow leaves the branch. Standard
branch prediction techniques such as 2-bit branch
prediction are guaranteed to mispredict, while more
complicated schemes require executing the loop fully
once to correctly predict it in the future. The irony of

Figure 2 – Execution Time of Relevant Loops

these mispredictions is that in many cases the
information the branch predictor needs is held by the
compiler. The programmer often makes the
conditions of the loop explicitly a count down or up,
basing the termination condition on the increment of
a variable. To extract performance benefits from
compile-time information, it is necessary to pass the
information to the hardware. Our proposal is to
change the ISA of the system in question. In our
case, we modified the PISA for use in Simple Scalar
simulations. At the most basic level, this requires
adding two instructions to the ISA: a begin loop
instruction (LOOP) and an end of loop instruction
(ENDL). Due to complications in modifying the
simulation environment, we chose to use two
instructions to handle the beginning and ending of the
loop. Using one instruction is also possible, with a
relative PC of the last instruction being included in
the LOOP instruction or by detecting the branch
instruction at the end of the loop.

LOOP signals the beginning of a loop and
includes two pieces of information. The first is
whether the source is an immediate or a register. The
second is either the number of iterations of the loop
as an immediate or the register where the number of
iterations is stored.
These two cases correspond to static and semi-
dynamic loops, respectively. After receiving a LOOP
instruction with the register format, the machine is
free to write over this register because the machine
will have stored the value. The program counter will
point to each instruction being executed during the
loop. This will preserve correct behavior during
context switching and interrupts. ENDL marks the
end of the loop. From the LOOP instruction to the
ENDL, the hardware will execute the intervening
instructions the number of times specified in the

LOOP instruction. When the number of iterations
specified in LOOP has occurred, the program counter
will proceed directly to the instruction after ENDL.
Table 1 demonstrates a code section including a loop
before and after the LOOP and ENDL instructions.

The transformation of the above loop
illustrates the nature of our improvement's speedup.
Each iteration 2 instructions are saved, with the
actual benefit being contingent on a low latency
between the end of the loop and the beginning. The
speedup over the loop varies inversely to the length
of the loop in cycles while the overall speedup
depends on a large number of iterations. The greatest
benefit from out modifications goes to applications
dominated by short loops with little dependency
between the end of the loop and beginning. These
stalls between the end and the beginning of the loop
can negate the benefits of eliminating the branch
instructions, but the performance can never degrade.
In a way, our instructions will grant the benefits of
perfect branch prediction with less instruction
overhead. There is no change in code size overall,
assuming a two instruction branch and compare in
most ISAs.

While it would be possible to have the same
instruction begin and end the loop, this would prevent
nesting of loops with these instructions.

To enable the hardware to better execute
semi-dynamic and static loops, the compiler must
collect certain information for the hardware.

The number of iterations that will be
performed must be included as an immediate or in a
register. This limits the maximum number of
iterations to a relatively low 1024 iterations if the
immediate is used. However, if the number of
iterations is stored in a register, the iteration count is

Original Loop Hardware Buffer Setup Loop

LOOP: LOOP r6, REG

SLL r3, r2, 2 LOOP:

ADD r3, r3, r5

LW r1, 0(r3) SLL r3, r2, 2

ADD r1, r1, r4 ADD r3, r3, r5

SW r1, 0(r3) LW r1, 0(r3)

ADDI r2, r2, 4 ADD r1, r1, r4

SGT r5, r2, r6 SW r1, 0(r3)

BEQ r0, r5, LOOP ADDI r2, r2, 4
 ENDL

Table 1 – Loop modification example, usage of LOOP and ENDL instructions

allowed to be the full numeric range of the register
(2^32 in our case).

The loop register where the value is stored is
the full 32 bits. Furthermore, the compiler must
ensure that the loops enclosed by LOOP and ENDL
are well-formed. The other requirement the compiler
must enforce is the instruction limit on the length of
the loop. In some cases, this will make in-lining
functions beneficial because it will create a well-
formed loop still within the instruction limit. While
fixing a specific instruction limit into the ISA might
make the instruction an undesirable artifact, this is
unlikely because the savings are minimized by very
long loops anyway.

Should a program attempt to buffer a loop
that is not well-formed, that has too many
instructions, or that has too many iterations, an
interrupt will be generated.

The changes necessary to utilize these
instructions in the compiler are not large. The
register with the loop bound is easily determined and

the additional instructions to calculate this are minor
additions. The bookkeeping by the compiler to verify
the correctness of the instruction usage is also not
difficult. An important difference in this respect is the
effort to hide the latency between the end of the loop
and the beginning. However, the instructions can also
be used alongside traditional interleaving/latency
hiding techniques like loop unrolling because the ISA
visible behavior is largely the same. Even if this
latency cannot be hidden, the performance will not
degrade. One complicating factor for the compiler is
the tradeoff between spatial and temporal locality in
determining things such as array accesses. In these
cases, memory issues determine the way in which
loops might be nested; but because the cost of poor
locality is likely to outweigh the loop benefits,
compiler algorithms to determine nesting can
efficiently remain the same. The LOOP and END
LOOP scheme does not allow for using the loop
instructions and then branching into the middle of the
loop to gain a different functionality. All looping

Figure 3 – Pipeline Diagram

Loop Cache
Instruction

Fetch

Issue

MUX

Loop Issue
Loop Information

Register

Mode

Mode

Mode

PC

Loop PC
when in
Unrolling

Mode

must begin with a LOOP instruction.
The idea for instructions specifically to

handle certain repetitive branches is not new. The
Power PC ISA has a two branch conditional to count
register instructions which branch to an incrementing
counter based on certain conditions defined in the
instruction parameters. This functionality can be
used to handle case statements and loops, but the
essential difference is that the instruction does not
eliminate the branch instruction itself. The Itanium
has a prefix to the opcode on branch instructions to
pass hints to the processor; again, however, the
branches are not eliminated and the hints are not
guaranteed to be correct. Additionally, hints do not
indicate when the end of the loop will be.

3. Hardware Additions

The hardware requirements for hardware loop
buffering are relatively simple. A 32-bit LOOP
register holds the contents of the loop register load.
The LOOP instruction loads its immediate or the

contents of the named register into the loop register.
This loop register is accessed in order to determine
the number of iterations in the loop. After receiving
the loop register load instruction, a 64-bit x 1024
entry cache is loaded sequentially as the instructions
execute until the END LOOP branch instruction is
reached. The total number of entries in this cache is
determined by the ISA and enforced by the compiler.
An interrupt will be generated if this buffer
overflows. The size of the cache in the SimpleScalar
architecture is 8KB. While 8KB is large, there is less
overhead than in regular caches because there are no
tags, no addressing logic, and only one port. Valid
bits are replaced by storing the last instruction in the
buffer, and all subsequent instructions are known to
be invalid. This cache will later be used to retrieve
and duplicate instructions for subsequent executions
of the loop. The instruction cache as present in most
architectures would not be suitable for serving as a
loop buffer because of the additional complexity,
non-consecutive blocks, and evictions during context
switches. Many of the specific functionalities needed

Loop
Instruction

Loop Instruction
Index

8
16
24
32
40
...
...
...
...
...
...
...

8184

+

Program Counter

Loop
Base PC

Loop Cache(0)

Loop Cache

Loop Instruction
Max

=+ 8

MUX

0

Loop Counter

-1

=0?

Stop Loop
Execution

Figure 4 – Hardware Loop Buffering Block Diagram

are not present, and changing the instruction cache to
meet the requirements would slow the cache down
further.

Once the first iteration of the loop is
completed, no instructions after the loop are fetched
from the instruction cache until the loop execution is
done. In future revisions this may be changed to
allow for detection of the imminent loop termination,
and the instruction fetch mechanisms will be allowed
to work in parallel. This is consistent with the
behavior if branches were still present, since Simple
Scalar fetches instructions in a cycle until its
maximum is reached or until a branch instruction is
encountered. It then reads instructions sequentially
out of the loop cache. The program counter will be
incremented each cycle to point to the instruction
currently being issued, and the current instruction to
be fetched is referenced by a register that counts up
to the loop buffer's size. When the current instruction
equals the last instruction, the pointer will roll over.
This system effectively makes the loop buffer the
new source for instructions for the pipeline, and the
structure acts in place of the regular instruction fetch
mechanisms. Because the order of instructions is
preserved, behavior remains the same. Each time the
loop rolls over to the beginning of the buffer, the loop
register is decremented. The instructions will repeat
until the loop register is zero.

In the case of context switches and similar
reloading of hardware, the system will need to move
the entire loop buffer, loop register, loop buffer
pointer, and loop buffer end pointer along with the
rest of the context data to maintain state. This is a
significant burden and in eventual implementation
might require decreasing the size of the buffer.

Because the behavior of the loop is entirely
governed by the additional structures, the branch
prediction structures are bypassed. A side effect of
focusing on loops with separate structures is that the
branch predictor handles fewer loops, and it becomes
less important to implement elaborate branch
prediction schemes that track specific patterns.
Branch target buffers, 2-bit branch prediction, and
most branch prediction algorithms would still retain
their utility. Part of our approach in handling loops
has been to avoid high complexity algorithms and
structures. This decision was made both because
complexity itself is undesirable and because fully-
dynamic loop unrolling schemes had already been
discussed in [1]. In this paper, loops that cannot be
unrolled by the compiler are targeted with a special
buffer and executed speculatively. The affected loops
are largely dynamic and non-well-formed. The
highly complex system tracks multiple paths into the
loop, registers modified, and loop predictions based
on the paths taken with structures similar to a branch

target buffer. We believe that this degree of size and
complexity exceeds what is necessary to extract
performance from the loop.

4. Performance Evaluation

4.1 Methodology

Evaluating the performance impact of our technique
requires extensive analysis and modification to either
the assembly or binary output of a benchmark. The
algorithm to do these is of sufficient generality that it
could be implemented in a compiler, at which point
the compiler could choose to include instructions for
our technique if the target architecture includes
proper support. However, modifying the compiler to
do this is outside the scope of this paper, since
significant time constraints were present and
modifying either gcc or SUIF would have occupied
too large a percentage of the available work time.

Due to this limitation, analysis and the
necessary modifications were performed manually.
This restricted the possible benchmarks, since any
benchmark chosen needed to possess sufficiently
small code size to make conversion a manageable
task. Additionally, the time needed to convert a
single benchmark, regardless of size, was so large as
to make it only feasible to do a performance analysis
of one benchmark. To this end, 183.equake was
chosen from the SPEC 2000 benchmark suite. It
meets the requirements of small code size as well as
having loop characteristics that are useful.

SimpleScalar was run with wrong path
execution turned off. A known limitation of our
architecture change is that once the LOOP instruction
is run, the processor will continue storing instructions
until the ENDL instruction is reached. If the LOOP
instruction is reached during the wrong-path
execution that occurs during a branch misprediction,
then it is likely that the loop buffer will overflow.
Also, the instructions that will be stored in the buffer
are very likely to be the incorrect ones. Turning off
wrong-path execution solves this problem.

For reasons that could not be discovered, a
full simulation of a modified equake would not
complete. Simple Scalar would throw a segmentation
fault during execution. However, when the loops in
equake were removed and put in there own C
programs, each of them would run properly.
Therefore, we profiled a representative sample of the
loops and extrapolated their behavior to the rest of
the benchmark. This is possible because there are
only a few general types of loops in the program.

For each profiled loop, runs with both
modified and unmodified loops were done. The
difference in cycle count between the runs is the
number of cycles that are removed by the hardware
buffering and perfect branch prediction for that loop.

4.2 Results

Table 2 presents the cycle count reductions
measured for the loops we profiled. The last column
is the speedup measured per loop.

The last item in the last column is a
weighted average of the per-loop speedups. Because
these loops are representative of the program as a
whole, this is approximately the speedup that the
loops in the program will have.

Referring to figure 2, the total time spent in
the loops in equake is approximately 45% of the total
execution time. Using Amdahl’s law [2] we find that
the total speedup (using a enhanced program fraction
of 0.45) is 1.062. Therefore, a full run of equake will
perform approximately 6.2% faster with the new
architecture than without.

Since the other benchmarks for which we
have analyzed the loop execution time have similar
loop characteristics to equake, we expect that other
benchmarks will show similar speedups to that shown
for equake.

5. Future Work

Hardware Loop Buffering could be modified
to allow simpler loops to be unrolled instead of just
buffered. A simpler loop could be classified as a

loop without inter-loop dependencies. If an inter-
loop dependency is discovered, the hardware should
proceed with loop buffering rather than loop
unrolling. In order to successfully unroll the loop, it
would be necessary to keep track of data
dependencies, incremented values, and register
allocation. The loop predictor must also be modified
to allow for multiple iterations of the loop in flight at
one time.

Unrolling the loop in a simple fashion would
be to duplicate instructions and make the necessary
adjustments to maintain correct loop function. For
example, when marching an array, it would be
necessary to increment the address for the load and/or
store for each unrolled loop iteration, as well as the
loop iteration number j. Any instruction that
consumes j must be incremented by the value INC
prior to consuming j. Likewise, any instruction that
uses a value that is incremented each time through
the loop must be adjusted accordingly. To
accomplish this feat, the compiler must pass some
additional information to the hardware. The compiler
must not only give the hardware the register or value
of the loop index and loop maximum, but also the
value that the index is incremented by each iteration,
INC. Other registers that are incremented every
iteration of the loop must be identified while saving
the instructions into the loop buffer. This is
relatively difficult. However, they will usually have
the form, Add/Sub $rt, $rs1, imm/$rs2. Not only do
the instructions themselves need to be modified, the
registers must be remapped such that no value from
the first iteration is overwritten by the unrolled
instructions.

Register allocation must also be considered
when unrolling a loop. Normally, microprocessors
have more physical registers than there are specified
in the ISA. When duplicating instructions, the
registers not used by the ISA will be used as unrolled

Total Loop Percentage of Cycle
Cycle Loop Execution Count Speedup

LOOP Count Time Reduction

1 907848 0.6 140100 1.18248175

2 1140 7.66E-04 100 1.09615385
3 21788352 14.6 3218126 1.17329493
4 907848 0.6 79602 1.09610913
5 126652 8.50E-02 19500 1.18198447

6 3934008 2.64 318409 1.08806535
7 3026160 2.03 241672 1.08679226

TOTALS 30692008 20.6 4017509 1.15

Table 2 - Results

iteration registers. The values held in these registers
will be committed upon completion of each loop.

In order to determine how many loop
iterations are left until the loop execution completes,
the number of remaining iterations must be calculated
during every unrolled batch. If i is the loop index,
INC, the loop increment, U, the number of times that
the loop is unrolled per loop batch, and MAX, the
value held in the register for the maximum number of
iterations, then MAX >= i + INC * U characterizes
the check for whether or not to proceed unrolling.
This calculation is done in parallel with the loop
execution for each batch of instructions. This way, as
soon as the check is detected to be false, the loop
controller can adjust U, the number of times the loop
is unrolled such that the loop will complete on the
following batch execution. This method allows for
perfect branch prediction in all loops that fall into the
category that can be handled by the loop un-roller.
This also allows the un-roller to bypass the loop
branch, thus reducing the instruction count and in
most machines resulting in a savings of the branch
instruction, compare, and any assorted branch delay
slots that could not be filled.

6. Conclusion

As has been shown in the results, hardware
loop buffering can be an effective way to speed up
loop-intensive code. By simply removing the branch
and compare instructions in a loop, loop buffering
provides a 6.2% speedup to execution. Compilers
often do a good job of unrolling static loops, but are
not able to unroll loops where the bounds are not
known until run-time. This leaves a fair amount,
28.6%, of loops untouchable for the compiler. In
addition to just buffering loops, hardware has the
ability, with compiler hints, to perfectly predict loop
branch behavior, thus removing the need for the
branch and any other necessary compare instructions
needed for branching.

Hardware loop buffering captures a large
percentage of the loops that the compiler is incapable
of unrolling without the large hardware overhead of
fully-dynamic unrolling [1]. A few minor changes to
the ISA allow hardware to take advantage of
compiler hints, thus making the buffering possible
without speculation. It is speculation and recovery
that make full-dynamic hardware unrolling very
complex.

Loop buffering does a good job of hiding
latencies in single loop execution and in removing
branch overheads, but can be limited in cases where
it would be more optimal to schedule the duplicated
instructions. Scheduling the instructions would

require an analysis of the instructions while they are
being stored and a method for picking and choosing
which instructions to execute. The addition of this
hardware would greatly increase the complexity and
may or may not pay off in performance. However,
future research into hardware loop unrolling rather
than just buffering could lead to further performance
improvements.

Hardware loop buffering has been shown to
be a good way of speeding up loops in code without
drastically increasing the complexity of the
microprocessor. Buffering increases the observed
IPC of both static and semi-dynamic loops in code.
Given the results, it appears to be worth further
pursuit.

References

[1] de Alba, M. and Kaeli D. Characterization and
Evaluation of Hardware Loop Unrolling URL:
http://www.ece.neu.edu/info/architecture/publications
/ispass.pdf

[2] Hennessy J.L. and Patterson D.A. Computer
Architecture: A Quantitative Approach Morgan
Kaufman, 3rd edition

