Hardware Loop Buffering

Scott DiPasquale
Khaled Elmeleegy
C.J. Ganier
Erik Swanson
Problem and Hypothesis

- Compilers have more information about loops that they can exploit.
- Hardware loop unrolling is highly complex.
- Buffering loops reduces instruction count and improves performance with moderate complexity.
Loop Definitions

- **Dynamic**: The number of loop iterations is determined within the loop itself.
- **Semi-dynamic**: The number of loop iterations is determined prior to entering the loop; the specific value is unknown to the compiler.
- **Static**: Fixed iteration count for a loop; the value is known to the compiler.
Loop Definitions

- **Well-formed:** There are no control transfers in the loop other than the exit branch.

- **Ill-formed:** Anything not well-formed.

- We are concerned with static and semi-dynamic loops that are well formed.
Motivation

Percentage of loops in benchmark that loop buffering can affect
Motivation

Percentage of total execution time spent in relevant loops
ISA changes – LOOP & ENDL

- LOOP Instruction takes immediate or register with number of iterations.
- Loop repeats without branch overhead
- ENDL Instruction signals end of loop
Example loops

Loop:

SLL r3, r2, 2
ADD r3, r3, r5
LW r1, 0(r3)
ADD r1, r1, r4
SW r1, 0(r3)
ADDI r2, r2, 1
SGT r5, r2, r6
BEQ r0, r5, Loop

LOOP r6, reg

Loop:

SLL r3, r2, 2
ADD r3, r3, r5
LW r1, 0(r3)
ADD r1, r1, r4
SW r1, 0(r3)
ADDI r2, r2, 4
ENDL
Hardware Implementation

- 64b x 1024 entry buffer
- Loop counter, loop instruction index, loop instruction maximum, number of times to duplicate an instruction.
- If loop bound is in a register, maximum number of iterations is 2^{32}; an immediate allows 1024 iterations.
Pipeline Block Diagram

Instruction Fetch → Loop Cache

Loop Issue

MUX

Issue

Loop Information Register

Loop PC when in Unrolling Mode

PC
Buffer Block Diagram

+ 8 \rightarrow \text{MUX} \rightarrow \text{Loop Instruction Index} \rightarrow \text{Loop Cache}(0) \rightarrow \text{Loop Instruction}

MUX

0

Loop Instruction Index

Loop Base PC

Program Counter

+ 8

Loop Instruction Max

Loop Counter

-1

=0?

Stop Loop Execution

Loop Instruction
Experimentation

- Simple Scalar modified to bypass instruction fetch and to add instructions
- A small, but relevant, benchmark (183.Equake) was chosen.
- Only one benchmark was used due to the necessity of analyzing and modifying assembly by hand.
Results

- On average, individual loops in Equake saw a speedup of 1.15.
- Using Amdahl’s law, this equates to an overall speedup of 1.062 for Equake.
- Other benchmarks have similar loop characteristics, and are expected to have similar speedups.
Conclusion

- Speedups achieved are appreciable.
- Hardware complexity is moderate.
- Future work can build on the framework developed here to include such elements as loop unrolling.
Questions?