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Abstract 
 
 Prefetching is a common method to 
prevent memory stalls, but it depends on the 
time sensitive return of prefetch requests 
relative to their consumption by an 
operation.  Additionally, adding prefetches 
increases the contention on memory system 
buses which is counterproductive to 
ensuring the timely service of prefetches.  
By issuing prefetches as single grouped 
access through memory buses, bus 
contention can be reduced.  However, this is 
improvement in bus contention over normal 
prefetching is only relevant for applications 
which place sufficient stress on the memory 
system to saturate the buses.  This may be an 
increasingly common occurrence as 
processors continue to speed up faster then 
memory systems. 
 
1 INTRODUCTION 
 
 As the response time of memory 
relative to processor speed continues to 
degrade, more focus is being placed on 
attempting to avoid paying the increasingly 
large memory stalls.  One group of methods 
that has been developed to address this issue 
is the prefetching of instructions or data into 
memory before they are actually called for 
by an operation. However, the ability of a 
prefetch to convert a hit into a miss is 
dependent on whether the prefetch is 
serviced before the information is required 
for an operation. 
 There are many factors that affect 
how quickly a prefetch can be serviced, 
including the hit latency of structures in the 

memory hierarchy, memory bus speed, 
memory bus contention, and contention in 
the memory hierarchy with other memory 
requests that require servicing.  The addition 
of many prefetches to a memory service 
stream can potentially have a negative 
impact on the ability of the memory system 
to service normal memory requests, as they 
are now forced to contend with the 
prefetches.  The role of bus speed and 
contention in servicing prefetches would 
seem to indicate that better use of the 
memory hierarchy buses could improve the 
impact prefetches have on performance. 
 
Motivation 
 
 First it will be useful to define some 
attributes that describe how well a prefetch 
system works.  The coverage factor of a 
prefetcher is the fraction of cache misses 
that are changed to hits by prefetching.  An 
unnecessary prefetch is one that does not 
need to be issued because the requested line 
is either already in the cache or a prefetch 
has already been issued to service that line.  
A useless prefetch is a prefetch that brings in 
a line that is evicted from the cache without 
ever being used.  This is caused when 
something is prefetched and goes unused or 
when a prefetched line is brought in too 
early and evicted before it can be used.  A 
useful prefetch is a prefetch that brings in a 
line that results in a cache hit before the line 
is replaced.  These terms help describe how 
the prefetch distance, or the time between 
issuing a prefetch request and the use of a 
prefetch line, affect the coverage factor. A 
prefetch must be done early enough that it is 
ready to be used before a cache miss is 
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registered, but not so early that it is evicted 
before being used and becoming a useless 
prefetch.  Thus a critical factor in 
determining the effectiveness of a prefetcher 
is its timeliness. [1] 
 Assuming that it is more difficult to 
ensure that prefetch arrives early enough to 
hide a miss than it is to prevent a prefetch 
from arriving to early and becoming useless, 
we can examine the memory hierarchy buses 
as a factor in the timeliness of a prefetch.  
Under this assumption, it would be desirable 
to minimize the number of memory requests 
competing for bus access so that queuing 
delays are decreased.  It would also be 
desirable to maximize the number of 
memory requests that can be sent to the next 
level of memory at a time so that the lower 
level memory structure can begin processing 
them sooner.  
 The question remains as to whether 
there exist multiple contending memory 
accesses during prefetching that would 
benefit from reduced contention. Figure 1 
shows that with a next-n-line prefetcher.  
There is an increased number of references 
contending for access to main memory. 
 

 
Figure 1: Average number of outstanding memory 
requests 
 
Hypothesis 
 

A major component of 
communication delay time for prefetch units 
is bus contention. By adding the ability for 
memory to handle group requests from 
prefetch units, the average bus contention 

delay per memory access can be 
significantly reduced. 

In group prefetching, multiple 
prefetch requests would be calculated 
simultaneously and sent in a single packet to 
the bus instead of multiple bus access.  
Fortunately many existing prefetchers 
operate by generating a list of lines that the 
prefetch predicts will be needed in response 
to a single cache miss and thus provide a set 
of requests to group into a single bus access. 
 The rest of the paper is organized as 
follows.  Section 2 describes the architecture 
of our proposed group prefetching method.  
Section 3 gives the experimental 
methodology we used, including the 
additions to simplescalar and the 
benchmarks we ran.  Section 4 presents the 
results of the simulations we ran, and 
Section 5 concludes the paper. 
 
2 ARCHITECTURE 
 
Next-n-Line Prefetcher 
 
 A basic next-n-line prefetcher [2] 
will be used to generate prefetch requests. In 
the event of a miss in the cache, the logic 
that is attached to the prefetcher checks to 
see if the next N lines after the miss are in 
the attached cache and then issues a request 
for those lines which are missing. 
  
Group Prefetch Communicator 
 
 In a normal next-n-line prefetcher 
this process would be done by issuing 
individual sequential requests across the bus 
to the lower level memory structure to 
service each prefetch.  For our proposed 
architecture, an additional mechanism will 
be added to the prefetch unit.  This prefetch 
communicator will collect the results of the 
check to see which next N lines actually 
require prefetching and store the results as a 
bit vector.  Instead of sending each prefetch 
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request sequentially, the prefetch 
communicator will send the base address of 
the first necessary prefetch, a bit flag 
indicating that a group prefetch is being 
made, and the sparse vector that indicates by 
offset from the base address the location of 
the other prefetches that require servicing by 
the lower level memory structure. 
 When the request reaches the lower 
levels of memory, the memory structure 
attempts to service as many of the prefetches 
as possible and returns the requested lines in 
a normal sequential fashion.  If not all the 
requested lines are found then the sparse 
vector is updated to represent the requests 
that still require servicing.  The base address 
and the update sparse vector are then 
forwarded by another prefetch 
communicator to the next lower level of 
memory.  These stand-alone prefetch 
communicators are included with each level 
of memory between the level 1 caches that 
use prefetching and main memory. 
 

 
Figure 2: Memory hierarchy with modified 
prefetch communicator unit inserted 
 
 
 
 
3 EXPERIMENTAL METHODOLOGY 

Simulator 
 
 We choose to use Simple-Scalar 4.0 
with Sim-Alpha configuration files to model 
the Alpha 21264 processor as our baseline 
architecture [3].  Simple-Scalar 4.0 was used 
over previous versions because it 
incorporates bus contention modeling which 
is critical to evaluating how our new 
prefetch communication model affects bus 
usage.  To see the full system settings used, 
see the Appendix. 
 
Additions to Sim-Alpha 
 
 Sim-Alpha’s existing prefetch and 
code library was modified first to allow 
prefetching to be set for data level 1 cache in 
addition to just the instruction level 1 cache, 
and then to allow the option of sending 
prefetches across the memory bus normally 
or by a group prefetch communicator. 
 
SPEC2000 Benchmarks 
 
 In order to show the behavior of our 
new implementation over a range of 
commonly used applications, we chose to 
run five different SPEC2000 benchmarks: 
gzip, mcf, parser, vpr, and apsi.   The gzip 
benchmark is a compression algorithm that 
has five components: a TIFF image, a web 
server log, a program binary, random data, 
and a source tar file.  Each input is 
compressed and decompressed, then 
compared to the original data to insure 
accuracy.  Mcf is a benchmark used for 
combinatorial optimization.  Based on a 
program used for single-depot vehicle 
scheduling in public mass transportation, 
this benchmark takes in inputs about the 
vehicles’ timetables and outputs and optimal 
schedule.  The parser benchmark tests word 
processing effects, parsing English 
sentences based on link grammar.  Given an 
input sequence of English sentences, the 
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parser outputs an analysis of each.  Vpr is an 
integrated circuit computer-aided design 
benchmark.  The input includes the netlist of 
the circuit, the FPGA architecture in which 
the circuit is to be implemented, and the 
assigned placement within the circuit.  Vpr 
then outputs the final circuit routing, as well 
as statistics and validity check results.  
Finally, apsi is a floating point benchmark 
that deals with weather prediction.  It reads 
in a 112x112x112 array of weather data over 
70 different timesteps, then outputs the 
probably weather patterns. [4] 
 
Experiments Run 
 
 To demonstrate the effect of our 
proposed architectural changes, we ran a 
number of experiments on each different 
benchmark.  To first determine a base case 
for each, every test was run with all 
prefetching turned off.  We then ran multiple 
simulations for each benchmark with the 
following variations: (1) Normal instruction 
prefetching turned on, using a prefetch 
width of 1, 2, 4, and 8. (2) Normal 
instruction and data prefetching turned on, 
using a prefetch width of 1, 2, 4, and 8.  (3) 
Group instruction prefetching turned on, 
using a prefetch width of 1, 2, 4, and 8.  (4) 
Group instruction and data prefetching 
turned on, using a prefetch width of 1, 2, 4, 
and 8.  These experiments were designed to 
primarily show more efficient use of the 
memory bus resulting in a performance gain.  
Running the different benchmarks allowed 
us to see variations in our results due to the 
huge differences in existing applications.  
Once we had collected and studied the first 
set of data, we varied some architectural 
parameters and re-ran some of the 
simulations, a description of which can be 
found in later sections of this paper. 
 
 

4 RESULTS 
 
CPI 
 
 Figure 3 (a) compares the CPI of our 
five benchmark programs for normal next-n-
line prefetching and group next-n-line 
prefetching for the Instruction Level 1 
cache, while Figure 3 (b) compares the CPI 
for normal and group prefetching when 
prefetching is done for both the data and 
instruction Level 1 caches.  In both figures 
the CPIs have been normalized to a base 
case in which no prefetching is activated.  
As the figures show, instruction prefetching 
has little impact on the overall CPI of the 
benchmarks and group prefetching does 
little to change this.  Using both data and 
instruction prefetching actually 
detrimentally increases CPI, though group 
prefetching mitigates this increase to a small 
extent. There is a small exception for parser 
which shows slight gains with instruction 
and data prefetching, but this is more a 
result of normal prefetching rather than the 
use of group prefetching specifically. 
 

 
(a) CPI Level 1 Instruction cache prefetching 
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Reduction =  

 

(On-chip bus latency) ×  (prefetch width -1) 
 
With our baseline machine that has an on-
chip bus latency of 1 processor cycle, this 
would be an extremely small gain. 
 

 

(b) CPI with instruction and data prefetching 
 
Figure 3: CPI with next-n-line prefetcher enabled.  
Each bench-mark was run with a prefetch width 
of 1, 2, 4, or 8.  Each prefetch width was simulated 
both as individual and group requests 
 
Coverage & Prefetch accuracy 
 Figure 4: Greatest improvement in coverage 

factor using grouped prefetching over normal 
prefetching  The affect prefetching has on 

performance should be tied to how well it 
hides misses as hits on prefetches.  As 
discussed before, this aspect of prefetch 
performance is described by the coverage 
factor of a prefetcher.  Figure 4 shows the 
benchmarks with the best improvement in 
coverage factor for group prefetching over 
normal prefetching.  Even these best case 
scenarios show little improvement in 
coverage with group prefetching, but this is 
to be expected given the previous illustration 
that CPI was largely unaffected.  This small 
gain in coverage comes from prefetches 
arriving early enough to count as a hit.  
However if these converted misses 
originally only had small stall length, the 
overall change in CPI would be minimal.  
For example, if a miss under the baseline 
model is prefetched with normal prefetching 
from the L2 but the prefetch fails to return 
soon enough to change the miss into a hit, 
and with group prefetching the prefetch does 
return early enough to change the miss into a 
hit, then the maximum bus latency reduction 
by sending the prefetch as a group request 
is: 

 
 The group prefetching method also 
left the amount of unnecessary and useless 
prefetches largely unchanged.  The 
unnecessary prefetches are expected to 
remain mostly the same, as the prediction 
method (next-n-line) remained constant.  
Unnecessary prefetches would only go away 
when a missed line under normal 
prefetching was instead prefetched into a hit. 
This would not trigger a prefetch on the next 
N lines that had previously returned as 
unnecessary prefetches.  The number of 
useless prefetches should only be increasing 
when the prefetcher has been altered to 
prefetch too quickly, resulting in 
prematurely evicted prefetches.  This should 
result in a corresponding decay in the 
coverage factor.  With the coverage factor 
remaining largely unchanged, a 
corresponding minimal change in the 
number of useless prefetches is expected. 
 
Bus idle time 
 
 While the CPI and coverage 
properties of the prefetch were unaffected, it 
is still interesting to examine the effect 
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Figure 5: Percent of total cycles that the system bus was idle while running gzip 
 
group prefetching has on bus usage.  Figure 
5 shows the percentage of cycles the on-chip 
bus was idle during the execution of gzip, 
the benchmark that showed the most 
improvement in on-chip bus usage.  It 
should first be observed that in most cases 
the bus is idle for a significant portion of the 
cycles in the program.  It is reasonable to 
assume that this indicates that memory stalls 
have a minimal affect on the benchmarks 
performance.  Since the CPI is not changing 
and thus the number of cycle is remaining 
constant, the change in the amount of time 
the bus is idle can be inversely equated to 
the amount of time spent communicating on 
the bus.  The high prefetch width instruction 
and data prefetching simulations indicate 
that group prefetching can improve the 
efficiency of bus usage.  However, if the bus 
contention experienced is not significant 
enough to cause stalls, then increasing the 
efficiency of the bus usage will not have an 
effect on CPI. 
 The memory bus exhibited idle 
percentages of over 90 percent for three of 
the five benchmarks. For the mcf 

benchmark, the memory bus idle percentage 
increased for the larger width data 
prefetching cases, but this coincided with an 
increase in CPI.  Group prefetching did not 
change the bus idle percentage when 
compared with normal prefetching.   
 For the apsi benchmark, however, 
the memory bus idle percentage for the 
baseline case (with no prefetching) and 
instruction-only prefetching case ranged 
from 0.18 to 0.22 percent.  These extremely 
small percentages indicate that the memory 
bus is in near constant usage in this case.  
Figure 6 shows the effect of prefetching on 
the memory bus idle percentage of the aspi 
benchmark when instruction and data 
prefetching are both used.  The addition of 
normal instruction and data prefetching 
causes an increase in CPI as shown in Figure 
3 (b), but also results in a much more 
significant increase in processor idle time.  
The change from normal prefetching to 
group prefetching causes a slight decrease in 
CPI, and also causes a further increase in the 
memory bus idle percentage.  The high bus 
usage in the baseline case and effect of 
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group prefetching on bus usage would seem 
to indicate that the high data use of aspi 
would be able to benefit from group 
prefetching when the memory system 
performance is degraded with respect to the 
CPU performance. 
 

 
Figure 6: Percent of time that the memory bus 
was idle while running apsi with both normal and 
grouped instruction and data prefecthing 
 
Artificial Constraints 
 
 Having examined the affect of group 
prefetching on an actual processor, one of 
the most interesting results is that group 
prefetching does have potential to improve 
bus usage.  The question then becomes 
whether or not there are conditions under 
which this more efficient bus usage actually 
results in a performance improvement.  We 
selected apsi as the benchmark to perform 
this test because its main memory bus was 
already close to 100 percent usage. 
 First we attempted to increase bus 
traffic by halving the size of the baseline L1 
caches to cause evictions that require 
servicing.  However, the spec2000 
benchmarks memory footprints were too 
small for this to cause a change in the 
results.  Second, the L1 caches were kept at 
the base line size, the L2 cache was reduced 
to 64 Kilobytes (from the original 2Mb) by 
reducing the number of sets to 1024, and the 
DRAM was altered by changing the 
CPU/DRAM clock ratio from 6 to 15.  This 

still failed to result in a case where group 
prefetching generated a CPI improvement 
over a similar setting with no prefetching.  
Next, a third test was run using the same 
cache size and dram speed as the second 
test, but with the on-chip bus latency 
increased to 4 CPU cycles and the memory 
bus latency increased to 16 CPU cycles.  
This additional increase in bus latency 
finally resulted in a case where an increase 
in CPI was realized.  A fourth test was run 
with the baseline memory sizes and DRAM 
speed and the only alteration being the 
increased bus latencies used in test three.  
However, this test failed to exhibit an 
increase in CPI for group prefetching over a 
similarly configured non-prefetching base 
case. 
 The third case with a decreased L2 
cache size, decrease memory speed, and 
increased bus latency can be further 
examined to determine why group 
prefetching causes a decrease in CPU for 
this constrained system. Figure 7 shows the 
CPI of this test case normalized to a non-
prefetching system with the same 
constrained memory setting.  This figure 
shows that CPI decreased measurably only 
when both instruction and data prefetching 
were used, and that using group prefetching 
with both level 1 caches using prefetching 
can reduce CPI further for certain prefetch 
widths.  The CPI didn’t change when only 
instruction prefetching was used.  The 
coverage factor of the Level 1 Instruction 
cache does not change with the change to 
group prefetching, though it does increase 
with prefetch width as shown in Figure 8.  
The figure does however show that change 
from normal prefetching to group 
prefetching results in a large increase in the 
coverage factor of the data level 1 cache.  
Figure 9 show the change in queuing delay 
for the on-chip bus and memory bus 
normalized to the delay for a non 
prefetching processor using the same 
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constrained memory system. The queuing 
delay remains constant for the cases with 
just instruction prefetching regardless of 
whether group prefetching is used. When 
data prefetching is added, the queuing delay 
for the on-chip bus increases, and the 
queuing delay for the memory bus 
decreases.  Furthermore, adding group 
prefetching to data prefetching decreases the 
queuing delay on both buses, which results 
in the decrease in CPI using data 
prefetching.  Finally, the number of 
replacements in the instruction level 1 cache 
range from 588 in the base case to 1452 with 
8 wide instruction and data prefetching.  In 
contrast the number of replacements in the 
data level 1 cache range from 3,125,858 to 
3,151,021. 
 

 
Figure 7: Normalized CPI for apsi with both 
normal and grouped instruction and data 
prefecthing 
 

 
Figure 8: Coverage factor of L1 instruction cache 
remains unchanged with group prefetching.   
 

 
Figure 9: Queuing delay for the on-chip bus and 
memory bus normalized to the delay for a non-
prefetching processor using a constrained memory 
system 
 

For aspi, the servicing of data cache 
misses dominates the memory system for 
this constrained memory test.  This results in 
instruction prefetching having no impact 
despite a reasonable coverage factor, while 
the coverage factor of data prefetching 
results in a significant improvement to CPI. 
The added coverage factor that group 
prefetching provides by reducing bus queue 
latency further extends this CPI 
improvement over the normal prefetching 
case. 
 
Hypothesis Evaluation 
 
 It has been found that group 
prefetching does reduce bus contention and 
queuing delay, but that this only translates 
into an overall performance gain when 
applications exceed size of the cache system 
and the response of the DRAM and memory 
buses are significantly slower in relation to 
CPU speed.  It remains to be seen that if 
with larger or more data intensive 
benchmarks this performance gain would be 
realized with a memory system that more 
accurately represents modern processors. 
 Logic design and testing of the group 
prefetch communicator will be necessary to 
verify that a group prefetch communicator 
can be implemented without increasing the 
hit latency for caches.  If this is not possible, 
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this increase in latency must be included in 
future simulations to evaluate the overall 
performance affect of group prefetching. 
 For the test case where a 
performance increase was released with 
group prefetching, the additional gain over 
normal prefetching did not exceed 4.0 
percent.  The additional development, logic 
design, and die costs of adding group 
prefetching would have to estimated and 
then weighed against this limited 
performance boost in a limited application 
space. 
 
5 CONCLUSIONS 
 
 As future processors continue to 
increase in speed faster then memory 
systems, bus contention may become an 
increasing problem.  While group 
prefetching does help reduce bus contention, 
this is only relevant to overall performance 
when sufficiently large demands are placed 
on the bus.  Larger and more complex 
applications than the SPEC2000 benchmarks 
may show that current applications do 
actually generate such bus demand in 
modern applications.  Before this idea can 
be implemented, it is still necessary to verify 
any additional latency group prefetching 
would add to cache hit times and to obtain a 
cost estimate for the additional logic. 
 
ACKNOWLEDGEMENTS 
 
 We would like to thank Paul 
Willman, the TA for ELEC 525, for being 
the loving, friendly, and helpful labbie 
would made this project possible.  We 
would also like to thank those two associate 
professors who didn’t want to let us borrow 
their memory simulator code.  
 
 
 
 

REFERENCES 
 
[1] Luk Chi-Keung, Mowry Todd C.  “Cooperative 
Prefetching: Compiler and Hardware Support for 
Effective Instruction Prefetching in Modern 
Processors.”  Proceedings of Micro-31, Nov. 30 - 
Dec. 2, 1998, Dallas, Texas. 
[2] Smith A.  “Sequential program prefetching in 
memory hierarchies.”  IEEE Computer, 11(2):7–21, 
1978. 
[3] http://www.simplescalar.com/ 
[4] www.spec.org/cpu2000/ 
 

 9



APPENDIX  
 

Latency of integer register read -issue:int_reg_lat  1 
Latency of fp register read -issue:fp_reg_lat 1 
Integer issue queue size -issue:int_size 20 
FP issue queue size -issue:fp_size 15 
Reorder buffer size (<number of entries>) -rbuf:size 80 
Load queue size (<number of entries>) -lq:size  32 
Store queue size (<number of entries>) -sq:size 32 
Additional victim buffer latency -cache:vbuf_lat 1 
Number of entries in the victim buffer -cache:vbuf_ent 8 
Queuing delay enabled in memory -mem:queuing_delay  1 
Queuing delay enabled in buses -bus:queuing_delay 1 
CPU freq / DRAM freq -mem:clock_multiplier 6 
0 - openpage, 1 - closepage autoprecharge -page_policy 0 
Time between start of ras command and cas 
command -mem:ras_delay 1 
Time between start of cas command and data start -mem:cas_delay 1 
Time between start of precharge command and ras 
command -mem:pre_delay 1 
1 - single data rate. 2 - double data rate -mem:data_rate 1 
Width of bus from CPU to DRAM -mem:bus_width 16 
Delay in chipset for request path -mem:chipset_delay_req  2 
Delay in chipset in data return path -mem:chipset_delay_return 2 
Line predictor -bpred:line_pred 0 
Line predictor width -line_pred:width 4 
Way predictor latency -way:pred  1 
Branch predictor type 
{nottaken|taken|perfect|bimod|2lev|comb|21264} -bpred 21264 
21264 predictor config (<l1size> <l2size> 
<lhist_size> <gsize> <ghist_size> <csize> 
<chist_size>) -bpred:21264 1024 1024 8 4096 4 4096 4 
Size of st wait table (0 for no table) -fetch:stwait 1024 
Line predictor speculative update -line_pred:spec_update  1 
Branch predictor speculative update -bpred:spec_update 1 
Disable slotting and clustering -issue:no_slot_clus  0 
Adder for computing branch targets -slot:adder 1 
Whether to use static slotting -slot:slotting 1 
Early inst. retire enabled -map:early_retire 1 
Load traps enabled -wb:load_trap 1 
Different size traps enabled -wb:diffsize_trap 1 
Trap if two loads map to same MSHR target -cache:target_trap 1 
Trap if two loads map to same cache line but have 
different addresses -cache:addr_trap 1 
Stall for 3 cycles of map < 8 free regs -map:stall 1 
   
Use load use speculation -load:spec 1 
Number of blocks to prefetch on a icache miss -prefetch:dist 4 
Cache configuration -cache:define DL1:512:64:0:2:F:3:vipt:0:1:0:Onbus 
Cache configuration -cache:define IL1:512:64:0:2:l:1:vivt:0:1:0:Onbus 

L2:32768:64:0:1:l:7:pipt:0:1:0:Membu
s Cache configuration -cache:define 

Flush caches on system calls -cache:flush false  
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Sets maximum number of MSHRs per cache -cache:mshrs 8 
Sets maximum number of MSHRs per cache -cache:prefetch_mshrs 4 
Sets number of allowable targets per mshr -cache:mshr_targets 8 
Bus configuration -bus:define Onbus:16:1:0:0:1:0:L2 
Bus configuration -bus:define Membus:16:4:0:0:1:0:SDRAM 
Memory bank configuration -mem:define SDRAM 
Define TLBs -tlb:define DTLB:1:32:0:128:l:1:vivt:0:1:0:Onbus 
Define TLBs -tlb:define ITLB:1:32:0:128:l:1:vivt:0:1:0:Onbus 
Data TLB config, i.e., {<config>|none} -tlb:dtlb DTLB 
Instruction TLB config, i.e., {<config>|none} -tlb:itlb ITLB 
 -cache:addr_trap 0 
Enable/disable traps due to loads and stores with 
different sizes to the same address -wb:diffsize_trap    0 
Enable/disable trap if two loads map to same 
MSHR target -cache:target_trap         0 
Trap if MSHRs are full -cache:mshrfull_trap 0 
Instruction fetch queue size(in insts) -fetch:ifqsize 4 
Number of instructions to fetch per access -fetch:width 4 
Number of discontinuous fetches per cycle -fetch:speed 1 
Instruction slotting width(in insts) -slot:width 4 
Mapping width(in insts) -map:width 4 
Integer inst issue width(in insts) -issue:intwidth 4 
FP inst issue width(in insts) -issue:fpwidth 2 
Commit width(in insts) -commit:width 11 
Number of integer clusters -res:iclus 2 
Number of integer ALUs -res:ialu 4 
Number of integer multipliers/dividers -res:imult 4 
Number of fp clusters -res:fpclus 1 
Number of fp ALUs -res:fpalu 1 
Number of fp multipliers -res:fpmult 1 
Minimum cross cluster delay -res:delay 1 
Frequency of simulated machine -mach:freq 463000000 
Return address stack size (0 for no return stack) -bpred:ras 32 
Initial value of line pred bits -line_pred:ini_value 0 
Number of integer physical registers -reg:int_p_regs 41 
Number of fp physical registers -reg:fp_p_regs 41 
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