
Grouped Prefetching: Maximizing Resource Utilization

Weston Harper, Justin Mintzer, Adrian Valenzuela
Rice University – ELEC525 Final Report

Abstract

 Prefetching is a common method to
prevent memory stalls, but it depends on the
time sensitive return of prefetch requests
relative to their consumption by an
operation. Additionally, adding prefetches
increases the contention on memory system
buses which is counterproductive to
ensuring the timely service of prefetches.
By issuing prefetches as single grouped
access through memory buses, bus
contention can be reduced. However, this is
improvement in bus contention over normal
prefetching is only relevant for applications
which place sufficient stress on the memory
system to saturate the buses. This may be an
increasingly common occurrence as
processors continue to speed up faster then
memory systems.

1 INTRODUCTION

 As the response time of memory
relative to processor speed continues to
degrade, more focus is being placed on
attempting to avoid paying the increasingly
large memory stalls. One group of methods
that has been developed to address this issue
is the prefetching of instructions or data into
memory before they are actually called for
by an operation. However, the ability of a
prefetch to convert a hit into a miss is
dependent on whether the prefetch is
serviced before the information is required
for an operation.
 There are many factors that affect
how quickly a prefetch can be serviced,
including the hit latency of structures in the

memory hierarchy, memory bus speed,
memory bus contention, and contention in
the memory hierarchy with other memory
requests that require servicing. The addition
of many prefetches to a memory service
stream can potentially have a negative
impact on the ability of the memory system
to service normal memory requests, as they
are now forced to contend with the
prefetches. The role of bus speed and
contention in servicing prefetches would
seem to indicate that better use of the
memory hierarchy buses could improve the
impact prefetches have on performance.

Motivation

 First it will be useful to define some
attributes that describe how well a prefetch
system works. The coverage factor of a
prefetcher is the fraction of cache misses
that are changed to hits by prefetching. An
unnecessary prefetch is one that does not
need to be issued because the requested line
is either already in the cache or a prefetch
has already been issued to service that line.
A useless prefetch is a prefetch that brings in
a line that is evicted from the cache without
ever being used. This is caused when
something is prefetched and goes unused or
when a prefetched line is brought in too
early and evicted before it can be used. A
useful prefetch is a prefetch that brings in a
line that results in a cache hit before the line
is replaced. These terms help describe how
the prefetch distance, or the time between
issuing a prefetch request and the use of a
prefetch line, affect the coverage factor. A
prefetch must be done early enough that it is
ready to be used before a cache miss is

 1

registered, but not so early that it is evicted
before being used and becoming a useless
prefetch. Thus a critical factor in
determining the effectiveness of a prefetcher
is its timeliness. [1]
 Assuming that it is more difficult to
ensure that prefetch arrives early enough to
hide a miss than it is to prevent a prefetch
from arriving to early and becoming useless,
we can examine the memory hierarchy buses
as a factor in the timeliness of a prefetch.
Under this assumption, it would be desirable
to minimize the number of memory requests
competing for bus access so that queuing
delays are decreased. It would also be
desirable to maximize the number of
memory requests that can be sent to the next
level of memory at a time so that the lower
level memory structure can begin processing
them sooner.
 The question remains as to whether
there exist multiple contending memory
accesses during prefetching that would
benefit from reduced contention. Figure 1
shows that with a next-n-line prefetcher.
There is an increased number of references
contending for access to main memory.

Figure 1: Average number of outstanding memory
requests

Hypothesis

A major component of
communication delay time for prefetch units
is bus contention. By adding the ability for
memory to handle group requests from
prefetch units, the average bus contention

delay per memory access can be
significantly reduced.

In group prefetching, multiple
prefetch requests would be calculated
simultaneously and sent in a single packet to
the bus instead of multiple bus access.
Fortunately many existing prefetchers
operate by generating a list of lines that the
prefetch predicts will be needed in response
to a single cache miss and thus provide a set
of requests to group into a single bus access.
 The rest of the paper is organized as
follows. Section 2 describes the architecture
of our proposed group prefetching method.
Section 3 gives the experimental
methodology we used, including the
additions to simplescalar and the
benchmarks we ran. Section 4 presents the
results of the simulations we ran, and
Section 5 concludes the paper.

2 ARCHITECTURE

Next-n-Line Prefetcher

 A basic next-n-line prefetcher [2]
will be used to generate prefetch requests. In
the event of a miss in the cache, the logic
that is attached to the prefetcher checks to
see if the next N lines after the miss are in
the attached cache and then issues a request
for those lines which are missing.

Group Prefetch Communicator

 In a normal next-n-line prefetcher
this process would be done by issuing
individual sequential requests across the bus
to the lower level memory structure to
service each prefetch. For our proposed
architecture, an additional mechanism will
be added to the prefetch unit. This prefetch
communicator will collect the results of the
check to see which next N lines actually
require prefetching and store the results as a
bit vector. Instead of sending each prefetch

 2

request sequentially, the prefetch
communicator will send the base address of
the first necessary prefetch, a bit flag
indicating that a group prefetch is being
made, and the sparse vector that indicates by
offset from the base address the location of
the other prefetches that require servicing by
the lower level memory structure.
 When the request reaches the lower
levels of memory, the memory structure
attempts to service as many of the prefetches
as possible and returns the requested lines in
a normal sequential fashion. If not all the
requested lines are found then the sparse
vector is updated to represent the requests
that still require servicing. The base address
and the update sparse vector are then
forwarded by another prefetch
communicator to the next lower level of
memory. These stand-alone prefetch
communicators are included with each level
of memory between the level 1 caches that
use prefetching and main memory.

Figure 2: Memory hierarchy with modified
prefetch communicator unit inserted

3 EXPERIMENTAL METHODOLOGY

Simulator

 We choose to use Simple-Scalar 4.0
with Sim-Alpha configuration files to model
the Alpha 21264 processor as our baseline
architecture [3]. Simple-Scalar 4.0 was used
over previous versions because it
incorporates bus contention modeling which
is critical to evaluating how our new
prefetch communication model affects bus
usage. To see the full system settings used,
see the Appendix.

Additions to Sim-Alpha

 Sim-Alpha’s existing prefetch and
code library was modified first to allow
prefetching to be set for data level 1 cache in
addition to just the instruction level 1 cache,
and then to allow the option of sending
prefetches across the memory bus normally
or by a group prefetch communicator.

SPEC2000 Benchmarks

 In order to show the behavior of our
new implementation over a range of
commonly used applications, we chose to
run five different SPEC2000 benchmarks:
gzip, mcf, parser, vpr, and apsi. The gzip
benchmark is a compression algorithm that
has five components: a TIFF image, a web
server log, a program binary, random data,
and a source tar file. Each input is
compressed and decompressed, then
compared to the original data to insure
accuracy. Mcf is a benchmark used for
combinatorial optimization. Based on a
program used for single-depot vehicle
scheduling in public mass transportation,
this benchmark takes in inputs about the
vehicles’ timetables and outputs and optimal
schedule. The parser benchmark tests word
processing effects, parsing English
sentences based on link grammar. Given an
input sequence of English sentences, the

 3

parser outputs an analysis of each. Vpr is an
integrated circuit computer-aided design
benchmark. The input includes the netlist of
the circuit, the FPGA architecture in which
the circuit is to be implemented, and the
assigned placement within the circuit. Vpr
then outputs the final circuit routing, as well
as statistics and validity check results.
Finally, apsi is a floating point benchmark
that deals with weather prediction. It reads
in a 112x112x112 array of weather data over
70 different timesteps, then outputs the
probably weather patterns. [4]

Experiments Run

 To demonstrate the effect of our
proposed architectural changes, we ran a
number of experiments on each different
benchmark. To first determine a base case
for each, every test was run with all
prefetching turned off. We then ran multiple
simulations for each benchmark with the
following variations: (1) Normal instruction
prefetching turned on, using a prefetch
width of 1, 2, 4, and 8. (2) Normal
instruction and data prefetching turned on,
using a prefetch width of 1, 2, 4, and 8. (3)
Group instruction prefetching turned on,
using a prefetch width of 1, 2, 4, and 8. (4)
Group instruction and data prefetching
turned on, using a prefetch width of 1, 2, 4,
and 8. These experiments were designed to
primarily show more efficient use of the
memory bus resulting in a performance gain.
Running the different benchmarks allowed
us to see variations in our results due to the
huge differences in existing applications.
Once we had collected and studied the first
set of data, we varied some architectural
parameters and re-ran some of the
simulations, a description of which can be
found in later sections of this paper.

4 RESULTS

CPI

 Figure 3 (a) compares the CPI of our
five benchmark programs for normal next-n-
line prefetching and group next-n-line
prefetching for the Instruction Level 1
cache, while Figure 3 (b) compares the CPI
for normal and group prefetching when
prefetching is done for both the data and
instruction Level 1 caches. In both figures
the CPIs have been normalized to a base
case in which no prefetching is activated.
As the figures show, instruction prefetching
has little impact on the overall CPI of the
benchmarks and group prefetching does
little to change this. Using both data and
instruction prefetching actually
detrimentally increases CPI, though group
prefetching mitigates this increase to a small
extent. There is a small exception for parser
which shows slight gains with instruction
and data prefetching, but this is more a
result of normal prefetching rather than the
use of group prefetching specifically.

(a) CPI Level 1 Instruction cache prefetching

 4

Reduction =

(On-chip bus latency) × (prefetch width -1)

With our baseline machine that has an on-
chip bus latency of 1 processor cycle, this
would be an extremely small gain.

(b) CPI with instruction and data prefetching

Figure 3: CPI with next-n-line prefetcher enabled.
Each bench-mark was run with a prefetch width
of 1, 2, 4, or 8. Each prefetch width was simulated
both as individual and group requests

Coverage & Prefetch accuracy
 Figure 4: Greatest improvement in coverage

factor using grouped prefetching over normal
prefetching The affect prefetching has on

performance should be tied to how well it
hides misses as hits on prefetches. As
discussed before, this aspect of prefetch
performance is described by the coverage
factor of a prefetcher. Figure 4 shows the
benchmarks with the best improvement in
coverage factor for group prefetching over
normal prefetching. Even these best case
scenarios show little improvement in
coverage with group prefetching, but this is
to be expected given the previous illustration
that CPI was largely unaffected. This small
gain in coverage comes from prefetches
arriving early enough to count as a hit.
However if these converted misses
originally only had small stall length, the
overall change in CPI would be minimal.
For example, if a miss under the baseline
model is prefetched with normal prefetching
from the L2 but the prefetch fails to return
soon enough to change the miss into a hit,
and with group prefetching the prefetch does
return early enough to change the miss into a
hit, then the maximum bus latency reduction
by sending the prefetch as a group request
is:

 The group prefetching method also
left the amount of unnecessary and useless
prefetches largely unchanged. The
unnecessary prefetches are expected to
remain mostly the same, as the prediction
method (next-n-line) remained constant.
Unnecessary prefetches would only go away
when a missed line under normal
prefetching was instead prefetched into a hit.
This would not trigger a prefetch on the next
N lines that had previously returned as
unnecessary prefetches. The number of
useless prefetches should only be increasing
when the prefetcher has been altered to
prefetch too quickly, resulting in
prematurely evicted prefetches. This should
result in a corresponding decay in the
coverage factor. With the coverage factor
remaining largely unchanged, a
corresponding minimal change in the
number of useless prefetches is expected.

Bus idle time

 While the CPI and coverage
properties of the prefetch were unaffected, it
is still interesting to examine the effect

 5

Figure 5: Percent of total cycles that the system bus was idle while running gzip

group prefetching has on bus usage. Figure
5 shows the percentage of cycles the on-chip
bus was idle during the execution of gzip,
the benchmark that showed the most
improvement in on-chip bus usage. It
should first be observed that in most cases
the bus is idle for a significant portion of the
cycles in the program. It is reasonable to
assume that this indicates that memory stalls
have a minimal affect on the benchmarks
performance. Since the CPI is not changing
and thus the number of cycle is remaining
constant, the change in the amount of time
the bus is idle can be inversely equated to
the amount of time spent communicating on
the bus. The high prefetch width instruction
and data prefetching simulations indicate
that group prefetching can improve the
efficiency of bus usage. However, if the bus
contention experienced is not significant
enough to cause stalls, then increasing the
efficiency of the bus usage will not have an
effect on CPI.
 The memory bus exhibited idle
percentages of over 90 percent for three of
the five benchmarks. For the mcf

benchmark, the memory bus idle percentage
increased for the larger width data
prefetching cases, but this coincided with an
increase in CPI. Group prefetching did not
change the bus idle percentage when
compared with normal prefetching.
 For the apsi benchmark, however,
the memory bus idle percentage for the
baseline case (with no prefetching) and
instruction-only prefetching case ranged
from 0.18 to 0.22 percent. These extremely
small percentages indicate that the memory
bus is in near constant usage in this case.
Figure 6 shows the effect of prefetching on
the memory bus idle percentage of the aspi
benchmark when instruction and data
prefetching are both used. The addition of
normal instruction and data prefetching
causes an increase in CPI as shown in Figure
3 (b), but also results in a much more
significant increase in processor idle time.
The change from normal prefetching to
group prefetching causes a slight decrease in
CPI, and also causes a further increase in the
memory bus idle percentage. The high bus
usage in the baseline case and effect of

 6

group prefetching on bus usage would seem
to indicate that the high data use of aspi
would be able to benefit from group
prefetching when the memory system
performance is degraded with respect to the
CPU performance.

Figure 6: Percent of time that the memory bus
was idle while running apsi with both normal and
grouped instruction and data prefecthing

Artificial Constraints

 Having examined the affect of group
prefetching on an actual processor, one of
the most interesting results is that group
prefetching does have potential to improve
bus usage. The question then becomes
whether or not there are conditions under
which this more efficient bus usage actually
results in a performance improvement. We
selected apsi as the benchmark to perform
this test because its main memory bus was
already close to 100 percent usage.
 First we attempted to increase bus
traffic by halving the size of the baseline L1
caches to cause evictions that require
servicing. However, the spec2000
benchmarks memory footprints were too
small for this to cause a change in the
results. Second, the L1 caches were kept at
the base line size, the L2 cache was reduced
to 64 Kilobytes (from the original 2Mb) by
reducing the number of sets to 1024, and the
DRAM was altered by changing the
CPU/DRAM clock ratio from 6 to 15. This

still failed to result in a case where group
prefetching generated a CPI improvement
over a similar setting with no prefetching.
Next, a third test was run using the same
cache size and dram speed as the second
test, but with the on-chip bus latency
increased to 4 CPU cycles and the memory
bus latency increased to 16 CPU cycles.
This additional increase in bus latency
finally resulted in a case where an increase
in CPI was realized. A fourth test was run
with the baseline memory sizes and DRAM
speed and the only alteration being the
increased bus latencies used in test three.
However, this test failed to exhibit an
increase in CPI for group prefetching over a
similarly configured non-prefetching base
case.
 The third case with a decreased L2
cache size, decrease memory speed, and
increased bus latency can be further
examined to determine why group
prefetching causes a decrease in CPU for
this constrained system. Figure 7 shows the
CPI of this test case normalized to a non-
prefetching system with the same
constrained memory setting. This figure
shows that CPI decreased measurably only
when both instruction and data prefetching
were used, and that using group prefetching
with both level 1 caches using prefetching
can reduce CPI further for certain prefetch
widths. The CPI didn’t change when only
instruction prefetching was used. The
coverage factor of the Level 1 Instruction
cache does not change with the change to
group prefetching, though it does increase
with prefetch width as shown in Figure 8.
The figure does however show that change
from normal prefetching to group
prefetching results in a large increase in the
coverage factor of the data level 1 cache.
Figure 9 show the change in queuing delay
for the on-chip bus and memory bus
normalized to the delay for a non
prefetching processor using the same

 7

constrained memory system. The queuing
delay remains constant for the cases with
just instruction prefetching regardless of
whether group prefetching is used. When
data prefetching is added, the queuing delay
for the on-chip bus increases, and the
queuing delay for the memory bus
decreases. Furthermore, adding group
prefetching to data prefetching decreases the
queuing delay on both buses, which results
in the decrease in CPI using data
prefetching. Finally, the number of
replacements in the instruction level 1 cache
range from 588 in the base case to 1452 with
8 wide instruction and data prefetching. In
contrast the number of replacements in the
data level 1 cache range from 3,125,858 to
3,151,021.

Figure 7: Normalized CPI for apsi with both
normal and grouped instruction and data
prefecthing

Figure 8: Coverage factor of L1 instruction cache
remains unchanged with group prefetching.

Figure 9: Queuing delay for the on-chip bus and
memory bus normalized to the delay for a non-
prefetching processor using a constrained memory
system

For aspi, the servicing of data cache
misses dominates the memory system for
this constrained memory test. This results in
instruction prefetching having no impact
despite a reasonable coverage factor, while
the coverage factor of data prefetching
results in a significant improvement to CPI.
The added coverage factor that group
prefetching provides by reducing bus queue
latency further extends this CPI
improvement over the normal prefetching
case.

Hypothesis Evaluation

 It has been found that group
prefetching does reduce bus contention and
queuing delay, but that this only translates
into an overall performance gain when
applications exceed size of the cache system
and the response of the DRAM and memory
buses are significantly slower in relation to
CPU speed. It remains to be seen that if
with larger or more data intensive
benchmarks this performance gain would be
realized with a memory system that more
accurately represents modern processors.
 Logic design and testing of the group
prefetch communicator will be necessary to
verify that a group prefetch communicator
can be implemented without increasing the
hit latency for caches. If this is not possible,

 8

this increase in latency must be included in
future simulations to evaluate the overall
performance affect of group prefetching.
 For the test case where a
performance increase was released with
group prefetching, the additional gain over
normal prefetching did not exceed 4.0
percent. The additional development, logic
design, and die costs of adding group
prefetching would have to estimated and
then weighed against this limited
performance boost in a limited application
space.

5 CONCLUSIONS

 As future processors continue to
increase in speed faster then memory
systems, bus contention may become an
increasing problem. While group
prefetching does help reduce bus contention,
this is only relevant to overall performance
when sufficiently large demands are placed
on the bus. Larger and more complex
applications than the SPEC2000 benchmarks
may show that current applications do
actually generate such bus demand in
modern applications. Before this idea can
be implemented, it is still necessary to verify
any additional latency group prefetching
would add to cache hit times and to obtain a
cost estimate for the additional logic.

ACKNOWLEDGEMENTS

 We would like to thank Paul
Willman, the TA for ELEC 525, for being
the loving, friendly, and helpful labbie
would made this project possible. We
would also like to thank those two associate
professors who didn’t want to let us borrow
their memory simulator code.

REFERENCES

[1] Luk Chi-Keung, Mowry Todd C. “Cooperative
Prefetching: Compiler and Hardware Support for
Effective Instruction Prefetching in Modern
Processors.” Proceedings of Micro-31, Nov. 30 -
Dec. 2, 1998, Dallas, Texas.
[2] Smith A. “Sequential program prefetching in
memory hierarchies.” IEEE Computer, 11(2):7–21,
1978.
[3] http://www.simplescalar.com/
[4] www.spec.org/cpu2000/

 9

APPENDIX

Latency of integer register read -issue:int_reg_lat 1
Latency of fp register read -issue:fp_reg_lat 1
Integer issue queue size -issue:int_size 20
FP issue queue size -issue:fp_size 15
Reorder buffer size (<number of entries>) -rbuf:size 80
Load queue size (<number of entries>) -lq:size 32
Store queue size (<number of entries>) -sq:size 32
Additional victim buffer latency -cache:vbuf_lat 1
Number of entries in the victim buffer -cache:vbuf_ent 8
Queuing delay enabled in memory -mem:queuing_delay 1
Queuing delay enabled in buses -bus:queuing_delay 1
CPU freq / DRAM freq -mem:clock_multiplier 6
0 - openpage, 1 - closepage autoprecharge -page_policy 0
Time between start of ras command and cas
command -mem:ras_delay 1
Time between start of cas command and data start -mem:cas_delay 1
Time between start of precharge command and ras
command -mem:pre_delay 1
1 - single data rate. 2 - double data rate -mem:data_rate 1
Width of bus from CPU to DRAM -mem:bus_width 16
Delay in chipset for request path -mem:chipset_delay_req 2
Delay in chipset in data return path -mem:chipset_delay_return 2
Line predictor -bpred:line_pred 0
Line predictor width -line_pred:width 4
Way predictor latency -way:pred 1
Branch predictor type
{nottaken|taken|perfect|bimod|2lev|comb|21264} -bpred 21264
21264 predictor config (<l1size> <l2size>
<lhist_size> <gsize> <ghist_size> <csize>
<chist_size>) -bpred:21264 1024 1024 8 4096 4 4096 4
Size of st wait table (0 for no table) -fetch:stwait 1024
Line predictor speculative update -line_pred:spec_update 1
Branch predictor speculative update -bpred:spec_update 1
Disable slotting and clustering -issue:no_slot_clus 0
Adder for computing branch targets -slot:adder 1
Whether to use static slotting -slot:slotting 1
Early inst. retire enabled -map:early_retire 1
Load traps enabled -wb:load_trap 1
Different size traps enabled -wb:diffsize_trap 1
Trap if two loads map to same MSHR target -cache:target_trap 1
Trap if two loads map to same cache line but have
different addresses -cache:addr_trap 1
Stall for 3 cycles of map < 8 free regs -map:stall 1

Use load use speculation -load:spec 1
Number of blocks to prefetch on a icache miss -prefetch:dist 4
Cache configuration -cache:define DL1:512:64:0:2:F:3:vipt:0:1:0:Onbus
Cache configuration -cache:define IL1:512:64:0:2:l:1:vivt:0:1:0:Onbus

L2:32768:64:0:1:l:7:pipt:0:1:0:Membu
s Cache configuration -cache:define

Flush caches on system calls -cache:flush false

 10

Sets maximum number of MSHRs per cache -cache:mshrs 8
Sets maximum number of MSHRs per cache -cache:prefetch_mshrs 4
Sets number of allowable targets per mshr -cache:mshr_targets 8
Bus configuration -bus:define Onbus:16:1:0:0:1:0:L2
Bus configuration -bus:define Membus:16:4:0:0:1:0:SDRAM
Memory bank configuration -mem:define SDRAM
Define TLBs -tlb:define DTLB:1:32:0:128:l:1:vivt:0:1:0:Onbus
Define TLBs -tlb:define ITLB:1:32:0:128:l:1:vivt:0:1:0:Onbus
Data TLB config, i.e., {<config>|none} -tlb:dtlb DTLB
Instruction TLB config, i.e., {<config>|none} -tlb:itlb ITLB
 -cache:addr_trap 0
Enable/disable traps due to loads and stores with
different sizes to the same address -wb:diffsize_trap 0
Enable/disable trap if two loads map to same
MSHR target -cache:target_trap 0
Trap if MSHRs are full -cache:mshrfull_trap 0
Instruction fetch queue size(in insts) -fetch:ifqsize 4
Number of instructions to fetch per access -fetch:width 4
Number of discontinuous fetches per cycle -fetch:speed 1
Instruction slotting width(in insts) -slot:width 4
Mapping width(in insts) -map:width 4
Integer inst issue width(in insts) -issue:intwidth 4
FP inst issue width(in insts) -issue:fpwidth 2
Commit width(in insts) -commit:width 11
Number of integer clusters -res:iclus 2
Number of integer ALUs -res:ialu 4
Number of integer multipliers/dividers -res:imult 4
Number of fp clusters -res:fpclus 1
Number of fp ALUs -res:fpalu 1
Number of fp multipliers -res:fpmult 1
Minimum cross cluster delay -res:delay 1
Frequency of simulated machine -mach:freq 463000000
Return address stack size (0 for no return stack) -bpred:ras 32
Initial value of line pred bits -line_pred:ini_value 0
Number of integer physical registers -reg:int_p_regs 41
Number of fp physical registers -reg:fp_p_regs 41

 11

