
 1

The Frequently Used Trace Cache
A Method For Improving Trace Cache Performance

Indraneel Datta, Marc Power and Eric Furbish

Abstract: Trace caching provides a high-
bandwidth instruction fetch mechanism for
more effectively supplying a large execution
core with a sufficient number of instructions.
However, access time tradeoffs put a limit
on how effective a large trace cache can be
at increasing performance. With the
addition of a smaller, more associative
Frequently Used Trace Cache (FUTC) that
employs a more judicious fill mechanism
based on the usage frequency of trace cache
lines, some of this access time can be
hidden, yielding performance gains over a
traditional monolithic trace cache.

1 Introduction

With the increasing performance demands
of today’s applications, microprocessor
designers are forced to create fetch
mechanisms that can supply an ever-greater
number of instructions per cycle to the
execution core. Unfortunately, the
traditional instruction cache hierarchy that
has been employed thus far fails to scale to
dispatch widths much larger than the size of
a basic block, since the cache is designed to
exploit spatial locality rather than trace
locality. Recently, a different fetch
mechanism called a trace cache has been
proposed [1] to meet the needs of today’s
new processors. Trace caches, with the help
of multiple branch predictors, store dynamic
instruction traces rather than sequential
areas of instruction memory and effectively
widen fetch bandwidth by allowing one to
take advantage of large multi-basic-block

pools of instructions which are likely to be
sequentially executable.

1.1 Motivation

These trace caches have been shown to
improve machine performance [1];
additional testing illustrates that in the ideal
case (with unit trace cache latency)
performance scales with trace cache size
(See Figure 1). As the number of available
transistors on a chip increases towards 109,
larger and larger on-chip trace caches will
become ever more feasible; indeed, the area
cost to include a 1MB trace cache, the point
of diminishing size-performance returns
revealed by our tests, will be relatively
insignificant. However, there is a problem
with large trace caches that overwhelms the
previous space considerations: the increased
access time required to access such large
structures.

This issue is only exacerbated by recent
trends in process technology scaling, as wire
delays continue to become an increasingly
large percentage of overall circuit delay, and
additional simulation reveals the large trace
caches that will be demanded by future
microprocessors will require several cycles
to access.

To verify this, one need only examine the
figures below. Figure 1 represents the
performance of a high execution bandwidth
machine equipped with a variety of trace
cache sizes, all of which can be accessed in
a single cycle. In contrast, Figure 2

 2

 Figure 1 Figure 2

illustrates the behavior of the same machine
modified to reflect the fact that trace caches
of increasing size tend to have increasing
latency. A comparison of the two quite
unsurprisingly reveals that size-induced
latency, an unavoidable part of any such
large memory in a real machine, is clearly
detrimental to performance. The ideal case
shows the possibility of achieving roughly
ten percent performance improvement if a
method can be found for making a large
trace cache more efficient.

The normal method used to combat this
latency problem is to add another level of
hierarchy to the cache structure. A small L1
cache with relatively small latency is used to
store the most recently used data, while a
larger L2 cache maintains more of the
program in storage that is faster to access
than memory. However, contention in the
L1 cache, especially in large programs, can
lead to decreased performance when
frequently used lines are evicted and
replaced by less frequently used lines. Thus,
a method for judiciously filling the L1 cache
with the lines that are most frequently used
is warranted.

1.2 Concept

With this in mind, in an attempt to reclaim
this performance lost to latency and
contention, we propose a new structure
called a Frequently Used Trace Cache
(FUTC) designed to improve trace cache
performance. The FUTC is a relatively
small and associative trace cache that is
accessed in parallel with the normal (L2)
trace cache (Figure 3) and contains the lines
most frequently used in the trace cache. A
single saturating counter is added to each
line in the L2 trace cache that is incremented
each time that line is read. When that
counter reaches a certain threshold, the line
is promoted into the FUTC and the counter
is left unchanged. This organization is
similar to that of a traditional inclusive
L1/L2 cache structure, except for the fact
that writes into the L1(FUTC) occur only on
trace cache read hits and are filtered by
counters. We expect that the FUTC will
improve performance over a traditional
monolithic trace cache by providing a cache
of frequently used lines that can be accessed
in a single cycle. Further, we anticipate that
the judicious fill method employed will
improve the performance of the FUTC
relative to a standard L1 trace cache of the
same size.

Norm IPC vs. TC Size (1-cycle lat.)

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

1.0200

S i z e

ammp

test-fmath

test- l long

test- lswlr

test-math

test-pr intf

Norm. IPC vs TC Size (variable lat.)

0.8

0.85

0.9

0.95

1

1.05

25
6

10
24

40
96

16
38

4

Size

IP
C

 N
o

rm
al

iz
ed

 t
o

 M
ax

ammp

test-math

mcf

test-fmath

test-llong

test-lsw lr

test-printf

 3

(Figure 3: Fetch Pipeline augmented with FUTC; Figure modified from [1])

1.3 Overview of Paper

This paper will examine and evaluate the
idea of a Frequently Used Trace Cache
(FUTC) in detail. Section 2 contains a full
overview of the FUTC architecture. Section
3 presents our experimental methodology,
followed in Section 4 by the analysis of said
experimentation. Finally, Section 5
concludes the paper.

2 Architecture

In Section 1.2, the idea of a Frequently Used
Trace Cache (FUTC) was presented. This
structure is effectively a small independent
trace cache accessed in parallel with the
general trace cache during instruction fetch.
It draws its name from the fact that it is not
filled on commit (or dispatch in
architectures other than the one used for this
study) as is the normal TC; rather, it is filled
only with the most frequently used traces
from the normal trace cache itself. The
FUTC traces are not updated during commit

since that would have required an extra
write port (one for promotions, one for
commits). Since the FUTC traces would
have to be hit several times before getting to
the FUTC, they should likely be correct in
most cases.

This structure required a number of
modifications to the fetch pipeline of the
typical trace cache enabled fetch mechanism
presented in [1]. First, each line in the trace
cache is augmented with a saturating
counter, representing how many times the
line has been accessed since it has been
written into the trace cache. This counter is
zeroed when the line is written into the trace
cache initially, and it is updated on TC read
hits in the fetch stage of the pipeline. In
addition, new logic and data paths must be
added to the fetch pipeline to support the
FUTC. These extra elements of the fetch
mechanism consist of the FUTC itself,
including its logic and storage requirements,
as well as data paths between the trace cache
and FUTC (to carry the promoted

 4

instructions and the PROMOTE signal). Of
course, we must include the wire costs to
route the address and branch prediction bits
to the FUTC as well as the additional wires
and larger multiplexer providing a path from
the FUTC to the fetch queue on a FUTC hit.

All in all, the area and power costs of these
additions are negligible, considering the
small size of a practical FUTC accessible in
a single cycle (roughly 8 – 64KB), the
relative simplicity of the added logic, the
small number of additional wires, and, of
course, the high transistor counts of present
and especially future processors. In a trace
cache of 1MB (8192 lines), the counters
would consume from 1-3KB, for counter
sizes of one to eight.

In addition to its inherent hardware
scalability, the FUTC provides a method of
more effectively scaling performance to new
processes, as it lifts the burden from large,
monolithic trace caches and places it on a
smaller, faster structure.

3 Experimental Methodology

To assess the effectiveness of the FUTC, the
experiments were designed to address two
specific issues. First, a large trace cache
size whose performance lagged due to its
large latency had to be picked for use with
the later FUTC runs, as computing resources
for running the simulations were limited.
Second, the combination of FUTC size and
FUTC promotion threshold that provided the
best performance was sought. Once this
combination was found, its performance was
compared to the most reasonable design
alternatives, the standard L1 trace cache
(approximated with a FUTC of threshold 0)
and a monolithic trace cache, to see whether
the cost of implementing the FUTC would
be worth the performance gain (if any). The
standard L1 trace cache was approximated

in the sense that its traces were only updated
on a read hit in the L2 trace cache (as with
the FUTC), instead of updating on all trace
cache fills. As described in Section 2, this
decision was made to avoid an extra write
port on the FUTC, and because simulation
showed performance was not degraded.

In picking the trace cache size that would be
used for the later FUTC runs, two sets of
inputs were used. First, the dependence of
IPC on trace cache size was evaluated for
trace caches with ideal single-cycle latencies
(Figure 1). This data was used to determine
how much performance was ideally
available. Second, the same IPC
dependence was generated for trace caches
with non-ideal latencies that scaled with size
(Figure 2, Table 1). Together, these two
data points provided a trace cache size that
would have approximately ideal
performance if it were not dampened by its
latency. The size that seemed most
appropriate was 1MB, since it shows the last
major gain in ideal performance with a
significant degradation when latency is
considered.

Unfortunately, lack of computing resources
limited the number of benchmarks that could
be run. However, a very representative set of
SPEC2000 with reduced data sets was
completed. The combination of sizes and
thresholds was found using an exhaustive
run for FUTC sizes varying from 8KB to
64KB (a range deemed suitable for single-
cycle access) with thresholds from zero to

Size (KB) Latency (Cycles)
32 1
64 1
128 2
256 3
512 5
1024 8
2048 12

Table 1: TC Latency vs. Size

 5

Note: This parameter is incorrect, but was
discovered too late in simulation. However,
since it is constant across all runs, we
believe our results are still valid.

Parameters For Trace Cache Runs Description
-bpred mgag -bpred:mgag 1 14 1 3 Sets the branch predictor to multiple GAG

mode, 1 BHR of width 14, XOR the address
with the BHR, 3 predictions/cycle

-cache:trace tc:<size>:16:3:1:l:n Defines a trace cache named tc of size <size>,
16 instructions and 3 branches per line, direct-
mapped, LRU with normal matching

-cache:tracelat <latency> Sets the latency of the trace cache
-cache:futc futc:<size>:2:<thr>:l Defines a FUTC with name futc, size <size>, 2-

way associative, threshold <thr>, LRU
Universal Parameters Description

-fetch:ifqsize 256 Sets the ifetch queue size to 256
-decode:width 32 -issue:width 32 Sets the decode/issue width to 32
-commit:width 32 Sets commit width to 32
-ruu:size 64 Sets RUU size to 64
-res:ialu 16 -res:imult 8 Creates 16 integer ALUs and 8 integer

multipliers
-res:memport 8 -mem:lat 50 2 Creates 8 memory ports with an initial memory

latency of 50 cycles, with data returning every 2
cycles after that

-res:fpalu 16 -res:fpmult 8 Creates 16 FP ALUs and 8 FP multipliers
-fetch:mplat 3 Default misprediction latency
-fetch:speed 1 Default front/backend relative speed
-bpred:ras 8 -bpred:btb 512 4 Default RAS/BTB parameters
-issue:inorder false -issue:wrongpath
true

Default OOO issue parameters

-lsq:size 8 (See note) Default LSQ size
-cache:dl1 dl1:128:32:4:l –
cache:dl1lat 1

Default L1 D$

-cache:il1 il1:512:32:1:l –
cache:il1lat 1

Default L1 I$

-cache:dl2 ul2:1024:64:4:l –
cache:dl2lat 6 -cache:il2 dl2

Default unified L2$

-cache:flush false -cache:icompress
false

Default flushing/compression options

-mem:width 8 Default memory bus width configuration
-tlb:itlb itlb:16:4096:4:l -tlb:dtlb
dtlb:32:4096:4:l -tlb:lat 30

Default TLB configuration

 6

eight. The primary data points generated
were for the ammp, vpr and mcf programs,
with some points of secondary importance
given for the small test programs that
accompany the SimpleScalar tool set.

Additionally, the back ends for all
simulations were set to approximate infinite
execution resources as compared to the
instruction fetch mechanism. This allows
the full impact of the fetch method to be
shown. The configuration included support
for an instruction fetch queue of 256 entries,
16 integer ALUs, 8 integer multipliers, 8
memory ports, 16 FP ALUs and 8 FP
multipliers. The branch predictor was a
directly implemented large mGAG
predictor[2] with a 14-wide BHR indexing a
full 214 entry PHT. The predictor generates
three predictions per cycle, in accordance
with the trace cache line limit of three
branches. The trace cache held a maximum
of 16 instructions/3 branches per line (the
configuration found optimal in [1], and used
a standard matching policy (i.e. every
branch prediction must match the trace
cache branch flags, or the line does not hit,

unless the branch is at the end of the line).

The parameters used to run the modified
version of sim-outorder are shown in Table 2.
Parameters enclosed by "<>" were varied for
each run. All others were constant. The -
bpred:mgag, -cache:trace, -cache:tracelat and -
cache:futc parameters are the only ones
added to the original SimpleScalar
parameter set.

4 Analysis

Figures 4&5 show the results of the FUTC
size and threshold experiments. The
immediate conclusion that can be drawn
from the data is that an increasing threshold
generally decreases performance. Though
some cases fluctuate slightly, this trend is
otherwise universal. There are several
possible factors that may cause this. First,
the programs available for simulation are
generally of very small size. This means
that contention in the L1 trace cache (which
helped motivate the FUTC) does not affect
performance to the same degree as with a

IPC vs FUTC Size/Threshold

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8K
B

0 1 2 4 8 16K
B

0 1 2 4 8 32K
B

0 1 2 4 8 64K
B

0 1 2 4 8

Size/Threshold

IP
C

test-fmath

test-llong

test-lswlr

test-math

test-printf

ammp

vpr

mcf

Figure 4

 7

Miss Rate vs FUTC Size/Threshold

0.5

0.6

0.7

0.8

0.9

1

1.1

8K
B

0 1 2 4 8 16K
B

0 1 2 4 8 32K
B

0 1 2 4 8 64K
B

0 1 2 4 8

Size

M
is

s
R

at
e

test-fmath
test-llong
test-lswlr
test-math
test-printf
ammp
vpr
mcf

Figure 5

large program. Thus, increasing the
promotion threshold merely makes the
FUTC have a longer “warm-up time” than a
standard L1.

Additionally, most of the simulated
programs spend a lot of their time in
localized loops that, once finished, tend not
to be executed again for a long time, if ever.
One possible effect of this property may be
in its interplay with the algorithm for
updating the traces in the FUTC. Poor
interactions at this level may be causing at
least part of the FUTC misses that lead to
the poor performance. Recall that
instructions are filled into the trace cache on
commit, but not into the FUTC. The FUTC
traces are updated when a promotion
happens from the trace cache. Hence, if a
trace inside one of these localized loops is
placed into the FUTC and not replaced, and
the actual program trace changes, then the
FUTC trace for that address will be
incorrect. Assuming the branch predictor
begins correctly predicting the trace, misses
will start to occur in the FUTC; indeed,

Figure 5 shows this to occur. Further
simulation would be required to decide
whether this update algorithm degrades
performance. If it were found that updating
the FUTC entries on TC commits to lines
with similar tags is beneficial, the benefit of
implementing it would need to be weighed
against the cost of the additional FUTC
write port needed to do it efficiently.

However, whatever the effect of the exact
mechanics of filling, the high miss rates are,
for the most part, obviously attributable to
the higher promotion threshold itself causing
fewer valid traces to be present in the FUTC
at any given time. When a localized loop is
present in the FUTC and the program moves
on, it must begin re-filling the FUTC with
the new traces that it is executing. The
counters may prevent this filling from
happening quickly, and if the program
moves on it will suffer misses while it is
constantly forced to warm up the FUTC.

In any case, regardless of the reasons for the
poor performance of the FUTC-augmented

 8

Best-Case FUTC vs L1 and TC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ammp mcf test-printf test-math

N
o

rm
al

iz
ed

 IP
C

TC Only
L1 TC
FUTC

32KB

16KB 16KB 16KB

Figure 6

machine, it seems clear that while the FUTC
did provide some benefit over a machine
with only a simple trace cache mechanism, it
did not generally out-perform a fetch
mechanism equipped with a “classical”
L1/L2. Figure 6 compares normal TC
performance against that of the FUTC- and
L1-augmented systems. In all cases, both
setups containing an auxiliary trace cache
structure outperformed machines with a
general TC fetch structure, gains which
seem clearly due to the presence of any
small, fast auxiliary TC at all. More
importantly, however, this graph illustrates
that in general there are no gains to be had
by using a FUTC over an L1 TC. The data
for FUTC runs represents the optimal
performance of the FUTC for a given
application (while the TC+L1 data merely
come from configurations with
corresponding second-level structure sizes).
Even in this situation, in basically all cases
the L1 outperforms the FUTC. Furthermore,

if one examines Figure 4, the relative
superiority of the L1 is even more clearly
displayed – the best case L1 configuration
always achieves greater performance on a
given benchmark than the best case FUTC
configuration.

Despite the relatively poor performance
exhibited by the FUTC on this set of
benchmarks, there may be some hope for it
yet. It seems likely that the FUTC would
exhibit different characteristics on extremely
large programs, or more precisely programs
with large or varied instruction memory
working sets, where contention would
dominate the L1/FUTC miss rate. However,
unavailability of such programs and
extremely limited simulation resources
rendered testing this hypothesis impossible.
Similarly, trace line matching policies such
as partial matching and inactive issue
drastically increase the trace cache hit rate,
making L1 contention a much larger

 9

bottleneck and perhaps paving the way for
FUTC-based performance improvements.
For now, however, this is only conjecture,
and must be borne out by experimentation
before given overmuch weight.

5 Conclusions & Future Work

As alluded to in the previous section, the
improvement in IPC presented by both the
FUTC and the L1 trace cache over the base
configuration clearly illustrates the presence
of performance gains to be had with some
form of small fast auxiliary trace cache
structure. This bodes well for the general
issue of overcoming the latency issues
caused by increasing trace cache sizes and
process scaling (or lack thereof). However,
as a specific means of ameliorating TC
latency issues, the FUTC clearly failed the
litmus test. In failing to outstrip a simple
additional L1 trace cache, the FUTC was
shown to be only useful inasmuch as it
provides fast auxiliary TC storage; indeed, it
seems to be little more than a slow-to-warm-
up L1 trace cache. Thus, modulo later
testing with larger programs and other
matching schemes, the FUTC should be
abandoned in favor of other forms of fast
TC auxiliary. Beyond the effective simple
L1 trace caches, there are a host of other
caching optimizations that can and should be
tried. After all, if one “classical”
optimization shows positive results, why
might another not be even more favorable?
At the very least, it is clear that the problem
of hiding increasing trace cache latency is
far from closed.

REFERENCES

[1] E. Rotenbert, S. Bennett, J. Smith. Trace
cache: a low latency approach to high
bandwidth instruction fetching. Tech Report
1310, CS Dept., Univ. of Wisc.-Madison,
1996
[2] T.-Y. Yeh, D.T. Marr, and Y.N. Patt.
Increasing the instruction fetch rate via
multiple branch prediction and a branch
address cache, 7th Intl. Conf. On
Supercomputing, pp. 67-76, July 1993

