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Abstract:  Trace caching provides a high-
bandwidth instruction fetch mechanism for 
more effectively supplying a large execution 
core with a sufficient number of instructions.  
However, access time tradeoffs put a limit 
on how effective a large trace cache can be 
at increasing performance.  With the 
addition of a smaller, more associative 
Frequently Used Trace Cache (FUTC) that 
employs a more judicious fill mechanism 
based on the usage frequency of trace cache 
lines, some of this access time can be 
hidden, yielding performance gains over a 
traditional monolithic trace cache. 
 
1  Introduction 
 
With the increasing performance demands 
of today’s applications, microprocessor 
designers are forced to create fetch 
mechanisms that can supply an ever-greater 
number of instructions per cycle to the 
execution core.  Unfortunately, the 
traditional instruction cache hierarchy that 
has been employed thus far fails to scale to 
dispatch widths much larger than the size of 
a basic block, since the cache is designed to 
exploit spatial locality rather than trace 
locality.  Recently, a different fetch 
mechanism called a trace cache has been 
proposed [1] to meet the needs of today’s 
new processors.  Trace caches, with the help 
of multiple branch predictors, store dynamic 
instruction traces rather than sequential 
areas of instruction memory and effectively 
widen fetch bandwidth by allowing one to 
take advantage of large multi-basic-block 

pools of instructions which are likely to be 
sequentially executable. 
 
1.1 Motivation 
 
These trace caches have been shown to 
improve machine performance [1]; 
additional testing illustrates that in the ideal 
case (with unit trace cache latency) 
performance scales with trace cache size 
(See Figure 1). As the number of available 
transistors on a chip increases towards 109, 
larger and larger on-chip trace caches will 
become ever more feasible; indeed, the area 
cost to include a 1MB trace cache, the point 
of diminishing size-performance returns 
revealed by our tests, will be relatively 
insignificant. However, there is a problem 
with large trace caches that overwhelms the 
previous space considerations: the increased 
access time required to access such large 
structures. 
 
This issue is only exacerbated by recent 
trends in process technology scaling, as wire 
delays continue to become an increasingly 
large percentage of overall circuit delay, and 
additional simulation reveals the large trace 
caches that will be demanded by future 
microprocessors will require several cycles 
to access. 
 
To verify this, one need only examine the 
figures below.  Figure 1 represents the 
performance of a high execution bandwidth 
machine equipped with a variety of trace 
cache sizes, all of which can be accessed in 
a single cycle.  In contrast, Figure 2
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                              Figure 1                                                                     Figure 2 
 
illustrates the behavior of the same machine 
modified to reflect the fact that trace caches 
of increasing size tend to have increasing 
latency.  A comparison of the two quite 
unsurprisingly reveals that size-induced 
latency, an unavoidable part of any such 
large memory in a real machine, is clearly 
detrimental to performance.  The ideal case 
shows the possibility of achieving roughly 
ten percent performance improvement if a 
method can be found for making a large 
trace cache more efficient. 
 
The normal method used to combat this 
latency problem is to add another level of 
hierarchy to the cache structure.  A small L1 
cache with relatively small latency is used to 
store the most recently used data, while a 
larger L2 cache maintains more of the 
program in storage that is faster to access 
than memory.  However, contention in the 
L1 cache, especially in large programs, can 
lead to decreased performance when 
frequently used lines are evicted and 
replaced by less frequently used lines.  Thus, 
a method for judiciously filling the L1 cache 
with the lines that are most frequently used 
is warranted. 
 
 
 

1.2 Concept 
 
With this in mind, in an attempt to reclaim 
this performance lost to latency and 
contention, we propose a new structure 
called a Frequently Used Trace Cache 
(FUTC) designed to improve trace cache 
performance.  The FUTC is a relatively 
small and associative trace cache that is 
accessed in parallel with the normal (L2) 
trace cache (Figure 3) and contains the lines 
most frequently used in the trace cache.  A 
single saturating counter is added to each 
line in the L2 trace cache that is incremented 
each time that line is read.  When that 
counter reaches a certain threshold, the line 
is promoted into the FUTC and the counter 
is left unchanged.  This organization is 
similar to that of a traditional inclusive 
L1/L2 cache structure, except for the fact 
that writes into the L1(FUTC) occur only on 
trace cache read hits and are filtered by 
counters.  We expect that the FUTC will 
improve performance over a traditional 
monolithic trace cache by providing a cache 
of frequently used lines that can be accessed 
in a single cycle.  Further, we anticipate that 
the judicious fill method employed will 
improve the performance of the FUTC 
relative to a standard L1 trace cache of the 
same size. 
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(Figure 3: Fetch Pipeline augmented with FUTC; Figure modified from [1]) 

 

1.3 Overview of Paper 
 
This paper will examine and evaluate the 
idea of a Frequently Used Trace Cache 
(FUTC) in detail.  Section 2 contains a full 
overview of the FUTC architecture.  Section 
3 presents our experimental methodology, 
followed in Section 4 by the analysis of said 
experimentation.  Finally, Section 5 
concludes the paper. 
 
2 Architecture 
 
In Section 1.2, the idea of a Frequently Used 
Trace Cache (FUTC) was presented.  This 
structure is effectively a small independent 
trace cache accessed in parallel with the 
general trace cache during instruction fetch.  
It draws its name from the fact that it is not 
filled on commit (or dispatch in 
architectures other than the one used for this 
study) as is the normal TC; rather, it is filled 
only with the most frequently used traces 
from the normal trace cache itself.  The 
FUTC traces are not updated during commit 

since that would have required an extra 
write port (one for promotions, one for 
commits).  Since the FUTC traces would 
have to be hit several times before getting to 
the FUTC, they should likely be correct in 
most cases. 
 
This structure required a number of 
modifications to the fetch pipeline of the 
typical trace cache enabled fetch mechanism 
presented in [1].  First, each line in the trace 
cache is augmented with a saturating 
counter, representing how many times the 
line has been accessed since it has been 
written into the trace cache.  This counter is 
zeroed when the line is written into the trace 
cache initially, and it is updated on TC read 
hits in the fetch stage of the pipeline.  In 
addition, new logic and data paths must be 
added to the fetch pipeline to support the 
FUTC.  These extra elements of the fetch 
mechanism consist of the FUTC itself, 
including its logic and storage requirements, 
as well as data paths between the trace cache 
and FUTC (to carry the promoted 
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instructions and the PROMOTE signal).  Of 
course, we must include the wire costs to 
route the address and branch prediction bits 
to the FUTC as well as the additional wires 
and larger multiplexer providing a path from 
the FUTC to the fetch queue on a FUTC hit. 
 
All in all, the area and power costs of these 
additions are negligible, considering the 
small size of a practical FUTC accessible in 
a single cycle (roughly 8 – 64KB), the 
relative simplicity of the added logic, the 
small number of additional wires, and, of 
course, the high transistor counts of present 
and especially future processors.  In a trace 
cache of 1MB (8192 lines), the counters 
would consume from 1-3KB, for counter 
sizes of one to eight.   
 
In addition to its inherent hardware 
scalability, the FUTC provides a method of 
more effectively scaling performance to new 
processes, as it lifts the burden from large, 
monolithic trace caches and places it on a 
smaller, faster structure. 
 
3 Experimental Methodology 
 
To assess the effectiveness of the FUTC, the 
experiments were designed to address two 
specific issues.  First, a large trace cache 
size whose performance lagged due to its 
large latency had to be picked for use with 
the later FUTC runs, as computing resources 
for running the simulations were limited.  
Second, the combination of FUTC size and 
FUTC promotion threshold that provided the 
best performance was sought.  Once this 
combination was found, its performance was 
compared to the most reasonable design 
alternatives, the standard L1 trace cache 
(approximated with a FUTC of threshold 0) 
and a monolithic trace cache, to see whether 
the cost of implementing the FUTC would 
be worth the performance gain (if any).  The 
standard L1 trace cache was approximated 

in the sense that its traces were only updated 
on a read hit in the L2 trace cache (as with 
the FUTC), instead of updating on all trace 
cache fills.  As described in Section 2, this 
decision was made to avoid an extra write 
port on the FUTC, and because simulation 
showed performance was not degraded. 
 
In picking the trace cache size that would be 
used for the later FUTC runs, two sets of 
inputs were used.  First, the dependence of 
IPC on trace cache size was evaluated for 
trace caches with ideal single-cycle latencies 
(Figure 1).  This data was used to determine 
how much performance was ideally 
available.  Second, the same IPC 
dependence was generated for trace caches 
with non-ideal latencies that scaled with size 
(Figure 2, Table 1).  Together, these two 
data points provided a trace cache size that 
would have approximately ideal 
performance if it were not dampened by its 
latency.  The size that seemed most 
appropriate was 1MB, since it shows the last 
major gain in ideal performance with a 
significant degradation when latency is 
considered. 
 
Unfortunately, lack of computing resources 
limited the number of benchmarks that could 
be run. However, a very representative set of 
SPEC2000 with reduced data sets was 
completed.  The combination of sizes and  
thresholds was found using an exhaustive 
run for FUTC sizes varying from 8KB to 
64KB (a range deemed suitable for single-
cycle access) with thresholds from zero to  
 
Size (KB) Latency (Cycles) 
32 1 
64 1 
128 2 
256 3 
512 5 
1024 8 
2048 12 

Table 1: TC Latency vs. Size 
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Note: This parameter is incorrect, but was 
discovered too late in simulation.  However, 
since it is constant across all runs, we 
believe our results are still valid. 

 
 
 
 
 

Parameters For Trace Cache Runs Description 
-bpred mgag -bpred:mgag 1 14 1 3 Sets the branch predictor to multiple GAG 

mode, 1 BHR of width 14, XOR the address 
with the BHR, 3 predictions/cycle 

-cache:trace tc:<size>:16:3:1:l:n Defines a trace cache named tc of size <size>, 
16 instructions and 3 branches per line, direct-
mapped, LRU with normal matching 

-cache:tracelat <latency> Sets the latency of the trace cache 
-cache:futc futc:<size>:2:<thr>:l Defines a FUTC with name futc, size <size>, 2-

way associative, threshold <thr>, LRU 
Universal Parameters Description 

-fetch:ifqsize 256 Sets the ifetch queue size to 256 
-decode:width 32 -issue:width 32  Sets the decode/issue width to 32 
-commit:width 32 Sets commit width to 32 
-ruu:size 64 Sets RUU size to 64 
-res:ialu 16 -res:imult 8 Creates 16 integer ALUs and 8 integer 

multipliers 
-res:memport 8 -mem:lat 50 2 Creates 8 memory ports with an initial memory 

latency of 50 cycles, with data returning every 2 
cycles after that 

-res:fpalu 16 -res:fpmult 8 Creates 16 FP ALUs and 8 FP multipliers 
-fetch:mplat 3 Default misprediction latency 
-fetch:speed 1 Default front/backend relative speed 
-bpred:ras 8 -bpred:btb 512 4 Default RAS/BTB parameters 
-issue:inorder false -issue:wrongpath 
true 

Default OOO issue parameters 

-lsq:size 8 (See note) Default LSQ size 
-cache:dl1 dl1:128:32:4:l –
cache:dl1lat 1 

Default L1 D$ 

-cache:il1 il1:512:32:1:l –
cache:il1lat 1 

Default L1 I$ 

-cache:dl2 ul2:1024:64:4:l –
cache:dl2lat 6 -cache:il2 dl2 

Default unified L2$ 

-cache:flush false -cache:icompress 
false 

Default flushing/compression options 

-mem:width 8 Default memory bus width configuration 
-tlb:itlb itlb:16:4096:4:l -tlb:dtlb 
dtlb:32:4096:4:l -tlb:lat 30 

Default TLB configuration 
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eight.  The primary data points generated 
were for the ammp, vpr and mcf programs, 
with some points of secondary importance 
given for the small test programs that 
accompany the SimpleScalar tool set. 
 
Additionally, the back ends for all 
simulations were set to approximate infinite 
execution resources as compared to the 
instruction fetch mechanism.  This allows 
the full impact of the fetch method to be 
shown.  The configuration included support 
for an instruction fetch queue of 256 entries, 
16 integer ALUs, 8 integer multipliers, 8 
memory ports, 16 FP ALUs and 8 FP 
multipliers.  The branch predictor was a 
directly implemented large mGAG 
predictor[2] with a 14-wide BHR indexing a 
full 214 entry PHT.  The predictor generates 
three predictions per cycle, in accordance 
with the trace cache line limit of three 
branches.  The trace cache held a maximum 
of 16 instructions/3 branches per line (the 
configuration found optimal in [1], and used 
a standard matching policy (i.e. every 
branch prediction must match the trace 
cache branch flags, or the line does not hit, 

unless the branch is at the end of the line). 
 
The parameters used to run the modified 
version of sim-outorder are shown in Table 2.  
Parameters enclosed by "<>" were varied for 
each run.  All others were constant.  The -
bpred:mgag, -cache:trace, -cache:tracelat and -
cache:futc parameters are the only ones 
added to the original SimpleScalar 
parameter set. 
 
4 Analysis 
 
Figures 4&5 show the results of the FUTC 
size and threshold experiments.  The 
immediate conclusion that can be drawn 
from the data is that an increasing threshold 
generally decreases performance.  Though 
some cases fluctuate slightly, this trend is 
otherwise universal.  There are several 
possible factors that may cause this.  First, 
the programs available for simulation are 
generally of very small size.  This means 
that contention in the L1 trace cache (which 
helped motivate the FUTC) does not affect 
performance to the same degree as with a
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Miss Rate vs FUTC Size/Threshold
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large program.  Thus, increasing the 
promotion threshold merely makes the 
FUTC have a longer “warm-up time” than a 
standard L1. 
 
Additionally, most of the simulated 
programs spend a lot of their time in 
localized loops that, once finished, tend not 
to be executed again for a long time, if ever.  
One possible effect of this property may be 
in its interplay with the algorithm for 
updating the traces in the FUTC.  Poor 
interactions at this level may be causing at 
least part of the FUTC misses that lead to 
the poor performance. Recall that 
instructions are filled into the trace cache on 
commit, but not into the FUTC.  The FUTC 
traces are updated when a promotion 
happens from the trace cache.  Hence, if a 
trace inside one of these localized loops is 
placed into the FUTC and not replaced, and 
the actual program trace changes, then the 
FUTC trace for that address will be 
incorrect.  Assuming the branch predictor 
begins correctly predicting the trace, misses 
will start to occur in the FUTC; indeed, 

Figure 5 shows this to occur.  Further 
simulation would be required to decide 
whether this update algorithm degrades 
performance.  If it were found that updating 
the FUTC entries on TC commits to lines 
with similar tags is beneficial, the benefit of 
implementing it would need to be weighed 
against the cost of the additional FUTC 
write port needed to do it efficiently.  
 
However, whatever the effect of the exact 
mechanics of filling, the high miss rates are, 
for the most part, obviously attributable to 
the higher promotion threshold itself causing 
fewer valid traces to be present in the FUTC 
at any given time.  When a localized loop is 
present in the FUTC and the program moves 
on, it must begin re-filling the FUTC with 
the new traces that it is executing.  The 
counters may prevent this filling from 
happening quickly, and if the program 
moves on it will suffer misses while it is 
constantly forced to warm up the FUTC. 
 
In any case, regardless of the reasons for the 
poor performance of the FUTC-augmented  
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Best-Case FUTC vs L1 and TC
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machine, it seems clear that while the FUTC 
did provide some benefit over a machine 
with only a simple trace cache mechanism, it 
did not generally out-perform a fetch 
mechanism equipped with a “classical” 
L1/L2.  Figure 6 compares normal TC 
performance against that of the FUTC- and 
L1-augmented systems.  In all cases, both 
setups containing an auxiliary trace cache 
structure outperformed machines with a 
general TC fetch structure, gains which 
seem clearly due to the presence of any 
small, fast auxiliary TC at all.  More 
importantly, however, this graph illustrates 
that in general there are no gains to be had 
by using a FUTC over an L1 TC.  The data 
for FUTC runs represents the optimal 
performance of the FUTC for a given 
application (while the TC+L1 data merely 
come from configurations with 
corresponding second-level structure sizes).  
Even in this situation, in basically all cases 
the L1 outperforms the FUTC.  Furthermore, 

if one examines Figure 4, the relative 
superiority of the L1 is even more clearly 
displayed – the best case L1 configuration 
always achieves greater performance on a 
given benchmark than the best case FUTC 
configuration. 
 
Despite the relatively poor performance 
exhibited by the FUTC on this set of 
benchmarks, there may be some hope for it 
yet. It seems likely that the FUTC would 
exhibit different characteristics on extremely 
large programs, or more precisely programs 
with large or varied instruction memory 
working sets, where contention would 
dominate the L1/FUTC miss rate.  However, 
unavailability of such programs and 
extremely limited simulation resources 
rendered testing this hypothesis impossible.  
Similarly, trace line matching policies such 
as partial matching and inactive issue 
drastically increase the trace cache hit rate, 
making L1 contention a much larger 
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bottleneck and perhaps paving the way for 
FUTC-based performance improvements.  
For now, however, this is only conjecture, 
and must be borne out by experimentation 
before given overmuch weight.  
  
5 Conclusions & Future Work 
 
As alluded to in the previous section, the 
improvement in IPC presented by both the 
FUTC and the L1 trace cache over the base 
configuration clearly  illustrates the presence 
of performance gains to be had with some 
form of small fast auxiliary trace cache 
structure.  This bodes well for the general 
issue of overcoming the latency issues 
caused by increasing trace cache sizes and 
process scaling (or lack thereof).  However, 
as a specific means  of ameliorating TC 
latency issues, the FUTC clearly failed the 
litmus test.  In failing to outstrip a simple 
additional L1 trace cache, the FUTC was 
shown to be only useful inasmuch as it 
provides fast auxiliary TC storage; indeed, it 
seems to be little more than a slow-to-warm-
up L1 trace cache.  Thus, modulo later 
testing with larger programs and other 
matching schemes, the FUTC should be 
abandoned  in favor of other forms of fast 
TC auxiliary.  Beyond the effective simple 
L1 trace caches, there are a host of other 
caching optimizations that can and should be 
tried.  After all, if one “classical” 
optimization shows positive results, why 
might another not be even more favorable?  
At the very least, it is clear that the problem 
of hiding increasing trace cache latency is 
far from closed. 
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