Freguently Used
Trace Cache

| ef urbi sh@oss sinplesim2.0]> w -| trace_cache.c
666

Advanced Computer Architecture,
under Dr. Scott Rixner

Marc Power
Eric Furbish
|ndraneal Datta

L arge trace caches suffer increased latency

L owers performance below ideal

Norm. IPC vs TC Size (1-cycle lat.) Norm. IPC vs TC Size (variable lat.)

1.05

—e— ammp
1 —e— test-math

—e— ammp
test-fmath
test-llong

mcf

—x— test-lswir test-fmath

—e— test-math test-llong

—+— test-printf

—¥— test-Isw Ir

IPC Normalized to Max
IPC Normalized to Max

—+— test-printf

We' d like to minimize the performance lost to latency.

To recover from theill effects of latency in the trace cache,
we need some low |latency means of getting at the same data.

Normally, solve by implementing L1/L 2 cache hierarchy

« Contention in the L1 can evict frequently used lines with infrequently
used ones

« Contention could possibly be reduced by intelligently filling the L1
Frequently Used Trace Cache (FUTC) —

* Single-cyclelatency, small L1
e Judicioudly filled from L2 with frequently used lines

Given the new gizmo, we hoped:
« IPC(TC,+ FUTC) > IPC(TC, + L1TC) > IPC(TC))

One saturating counter per trace cache line

| ncremented on read hit
Counters cleared on TC writes

Rewrites not propagated into FUTC

e Savesread port
« Maintainslogical meaning of counters (apply to a specific trace)

* Lineswith counters over threshold are promoted
* Promoted on aread hit

e Counter is not reset

firaxm
FETCH FETCH FETCH
ADDRESS ninstructions } ADDRESS INSTRUCTION LATCH ADDRESS

FUTC TRACE CACHE CORE FETCH UNIT

couniers

branch larget branch larget

I address Mk address
| FILL LOGIC] hranch | MERGE LOGIC] INSTR CACHE

figgs fall-thru
akdress 'l‘

| LINE-FILL BUFFER | tag | LINE-FILL BUFFER |

\

fall-thru

¥ ¥

| R B e L2 2R l) [, i (H‘mskfinterchange.-‘shil’t}
: [T LoGic f— :[HIT U}Giﬂ)— Fromote
Lo
. - - Y ”
v

—

' predictions 'm predictions

froam LT
PREDICTOR PREDICTOR

INSTRUCTH N LATCH

ty DPECODER

Figure Modified from (E. Rotenbert, S. Bennett, J. Smith. Trace cache: alow latency approach to high bandwidth instruction
fetching. Tech Report 1310, CS Dept., Univ. of Wisc.-Madison, 1996)

Size of FUTC (8-64KB Isreasonable) in order to
remain under single-cycle latency

Counters consume 1-3KB for 1MB trace cache

¢ Assumes threshold of 1-8 (1-3 bits)

Power cost Is minimal

No worse than L1 trace cache

Single-ported for speed and power

Use “iInfinite’ backend to stress fetch mechanism
Select ‘Optimal’ TC Size

Based on ideal (single-cycle) performance vs.
performance with latency accounted for

Pick best candidate for improvement with FUTC
Run varying “approximate L1” sizes (8-64KB)
L1 =FUTC with threshold O

Run varying FUTC sizes (8-64KB) with thresholds
of 1,2,4and 8

Compare TC/FUTC and LI/JFUTC

Branch predictor accuracies of 90-99%

» Exactly the range we would expect
Performance and trace cache hit rates very

similar to trace cache paper

Dispatch and commit streams are identical
to unmodified sim-outorder

 Program flow Is guaranteed to be correct

It has seen hillions of 1nstructions without
flaws

IPC vs. FUTC size/Threshold

—— test-fmath
- —_— T —=—test-llong
@ T, % H._?\K\,\K test-lswir
- test-math
—— test-printf
——ammp

e ey ey ey

—— mcf

—t

CORNDMORPORNDMOWORNMODORNIMO®
x o R N
W A A A

0]

Size/Threshold

FUTC Miss Rate vs FUTC Size/Threshold

—— test-fmath

—=—test-llong
test-Iswir
test-math

—— test-printf

—s—ammp

—— Vpr

—— mcf

Miss Rate

Size/Threshold

Best-Case FUTCvs L1and TC

O TC Only
BL1TC
O FUTC

Normalized IPC

mcf test-printf test-math

* Run larger programs

* |Increased contention could make FUTC
effective

« Use partial matching and inactive issue

* Higher TC hit rate = more promotions = more
contention

* Hypothesis was partly correct
« Small auxiliary cache always helpsover TC

« Contention in L1 outweighed by FUTC
“warmup”

* New Hypothesis:
IPC(TC,+ L1 TC) > IPC(TC, + FUTC) > IPC(TC)
 Redly: IPC(TC, + AUX-TC) > IPC(TC)

