
Advanced Computer Architecture,
under Dr. Scott Rixner

Marc Power
Eric Furbish

Indraneel Datta

[efurbish@hoss simplesim-2.0]> wc -l trace_cache.c
666

Frequently Used
Trace Cache

Motivation
• Large trace caches suffer increased latency

• Lowers performance below ideal

Norm. IPC vs TC Size (1-cycle lat.)

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

1.0200

256 512
102

4
204

8
409

6
819

2
163

84
Size

IP
C

 N
or

m
al

iz
ed

 to
 M

ax

ammp

test-fmath

test-llong

test-lswlr

test-math

test-printf

• We’d like to minimize the performance lost to latency.

Norm. IPC vs TC Size (variable lat.)

0.8

0.85

0.9

0.95

1

1.05

Size

IP
C

 N
o

rm
al

iz
ed

 t
o

 M
ax ammp

test-math

mcf

test-fmath

test-llong

test-lsw lr

test-printf

Concept & Hypothesis

• To recover from the ill effects of latency in the trace cache,
we need some low latency means of getting at the same data.

• Normally, solve by implementing L1/L2 cache hierarchy

• Contention in the L1 can evict frequently used lines with infrequently
used ones

• Contention could possibly be reduced by intelligently filling the L1

• Frequently Used Trace Cache (FUTC) –

• Single-cycle latency, small L1

• Judiciously filled from L2 with frequently used lines

• Given the new gizmo, we hoped:

• IPC(TCs + FUTCi) > IPC(TCs + L1TCi) > IPC(TCs)

FUTC Implementation

• One saturating counter per trace cache line

• Incremented on read hit

• Counters cleared on TC writes

• Rewrites not propagated into FUTC

• Saves read port

• Maintains logical meaning of counters (apply to a specific trace)

• Lines with counters over threshold are promoted

• Promoted on a read hit

• Counter is not reset

FUTC @ 10000 ft.

Figure Modified from (E. Rotenbert, S. Bennett, J. Smith. Trace cache: a low latency approach to high bandwidth instruction
fetching. Tech Report 1310, CS Dept., Univ. of Wisc.-Madison, 1996)

Area and Power Costs

• Size of FUTC (8-64KB is reasonable) in order to
remain under single-cycle latency

• Counters consume 1-3KB for 1MB trace cache

• Assumes threshold of 1-8 (1-3 bits)

• Power cost is minimal

• No worse than L1 trace cache

• Single-ported for speed and power

Methodology
1. Use “infinite” backend to stress fetch mechanism

2. Select ‘Optimal’ TC Size

• Based on ideal (single-cycle) performance vs.
performance with latency accounted for

• Pick best candidate for improvement with FUTC

3. Run varying “approximate L1” sizes (8-64KB)

• L1 = FUTC with threshold 0

4. Run varying FUTC sizes (8-64KB) with thresholds
of 1, 2, 4 and 8

5. Compare TC/FUTC and L1/FUTC

Verification

• Branch predictor accuracies of 90-99%

• Exactly the range we would expect

• Performance and trace cache hit rates very
similar to trace cache paper

• Dispatch and commit streams are identical
to unmodified sim-outorder

• Program flow is guaranteed to be correct

• It has seen billions of instructions without
flaws

Results
IPC vs. FUTC size/Threshold

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8K
B

0 1 2 4 8 16K
B

0 1 2 4 8 32K
B

0 1 2 4 8 64K
B

0 1 2 4 8

Size/Threshold

IP
C

test-fmath
test-llong
test-lswlr
test-math
test-printf
ammp
vpr
mcf

Results (cont.)

FUTC Miss Rate vs FUTC Size/Threshold

0.5

0.6

0.7

0.8

0.9

1

1.1

8
K

B
0 1 2 4 8 1
6
K

B
0 1 2 4 8 3
2
K

B
0 1 2 4 8 6
4
K

B
0 1 2 4 8

Size/Threshold

M
is

s
R

at
e

test-fmath
test-llong
test-lswlr
test-math
test-printf
ammp
vpr
mcf

Best-Case FUTC Examined

Best-Case FUTC vs L1 and TC

0
0.2

0.4
0.6
0.8

1

1.2
1.4
1.6

1.8
2

ammp mcf test-printf test-math

N
o

rm
al

iz
ed

 IP
C

TC Only

L1 TC

FUTC

32KB

16KB 16KB 16KB

Future Work

• Run larger programs

• Increased contention could make FUTC
effective

• Use partial matching and inactive issue

• Higher TC hit rate = more promotions = more
contention

Conclusions

• Hypothesis was partly correct

• Small auxiliary cache always helps over TC

• Contention in L1 outweighed by FUTC
“warmup”

• New Hypothesis:
• IPC(TCs + L1 TCi) > IPC(TCs + FUTCi) > IPC(TCs)

• Really: IPC(TCs + AUX-TCi) > IPC(TCs)

