
FLAP: Flow Look-Ahead Prefetcher

Rice University – ELEC 525 Final Report
Sapna Modi, Charles Tripp, Daniel Wu, KK Yu

Abstract – In this paper, we explore a method 
for improving memory latency hiding as well as 
increasing  instructions  per  clock  cycle  in  a 
processor. Our proposed architecture combines 
the  techniques  of  branch prediction and load 
prefetching.  If  the  processor  regularly  misses 
on  a  particular  load,  and  if  we  can  correctly 
predict  the  address  of  this  load,  then  the 
prefetcher  will  mark  the  instruction  for 
prefetching. Using the branch predictor to run 
ahead of  the program instruction stream, the 
prefetcher  will  speculatively  issue  the  load 
before the processor reaches it again. The main 
component  we  added  to  the  baseline 
architecture is  a load tracking table,  which is 
located  off  the  critical  path.  Using  Simple 
Scalar,  we  simulated  three  SPEC2000 
benchmarks  and  found  that  for  applications 
with  high  cache  miss  rates,  with  an  accurate 
address  predictor,  we  can  achieve  large 
speedups. 

I. INTRODUCTION

a. Motivation

Advances  in  modern  processing 
techniques are creating a greater demand for 
data to be returned at low latencies, but as the 
gap  between  the  performance  of  processors 
and  memory  subsystems  widens,  this  is 
becoming  difficult  to  do.  For  over  a  decade, 
architects  and  engineers  have  implemented 

enhancements such as out-of-order execution, 
VLIW  compilers,  expanded  issue  widths, 
highly-accurate  branch  prediction,  and  much 
more  in  order  to  increase  microprocessor 
performance.  However,  these  advantages  can 
only  be  realized  if  the  underlying  memory 
system  can  provide  data  quickly  enough  to 
keep  the  processor  busy.  As  main  memory 
latencies  increase  to  hundreds  of  processor 
cycles,  memory  accesses  become  extremely 
costly.  For  this  reason,  efficient  prefetching 
techniques are necessary to help reduce main 
memory  accesses  that  other  methods  cannot 
target.  Figure  1[1] compares  compute  time 
against  time  spent  waiting  on  memory;  it  is 
obvious that this problem cannot be ignored. 

b. Hypothesis

We  believe  that  we  will  be  able  to 
increase IPC and hide load-associated memory 
latency by predicting and prefetching loads far 
in advance of when the data is needed by the 
processor; this will be accomplished via the use 
of  an  accurate  branch  predictor  to  predict 
future  program  flow,  and  a  load  address 
predictor  to  issue expected  loads  in  advance. 
Note that we are not trying to make the cache 
more  efficient;  we  are  simply  attempting  to 
hide  as  much  memory  latency  as  possible, 
especially  on  loads  which  are  responsible  for 
compulsory misses. 

1 of 9



Benchmark Mem. Latency L2 Miss Rate Simulation Cycles IPC Possible Increase

GZIP – 
smred.program 1

1 14.86% 1666287596 1.5638 -

GZIP – 
smred.program 1

200 14.86% 3993170848 .6526 140%

VPR – smred 1 0.71% 105134799 1.1510 -

VPR – smred 200 0.71% 111325030 1.0870 5.8%

       Table 1: Effect of memory latency on IPC

Total number of L2 cache misses with X prior correct branch 
predictions

Benchmark Cache Size L2 Miss 
Rate

0 1 2 3 4 5+

GZIP-sm-
red.program 1

64k 14.86% 581943 364786 594324 558057 302547 11611031

GZIP-sm-
red.program 1

256k 0.58% 35607 19290 14169 13402 12198 449825

VPR – smred 64k 0.71% 13710 6729 4563 3433 2114 8883

VPR – smred 256k 0.13% 2715 977 577 407 228 2182

 Table 2: Correct branch predictions before L2 miss

c. Preliminary Findings

Before implementing our design, we ran 
simulations  with  two  SPEC2000 benchmarks 
to  verify  that  memory  latency  was  indeed  a 
problem that affected IPC, which our proposed 
architecture has the potential to improve. We 
ran tests on GZIP and VPR with the memory 
latency set to one cycle vs. the memory latency 
set  to  two  hundred  cycles.  The  results  are 
summarized in Table 1. On GZIP, which had a 
significant L2 miss rate, there is a potential for 
a 140% IPC increase. On VPR, however, since 
the miss rate was extremely low, the increase in 
latency had a minor effect on the IPC, but still 
showed possible improvement.

These  tests  were  implemented  with  a 
cache  size  of  64KB,  which  we  believe  is 
reasonable,  considering  the  small  size  of  the 
input files we are using. We did not want the 
input to fit into cache. 

Next,  we  tracked  the  total  number  of 
successful  branch  predictions  prior  to  an  L2 
cache  miss,  which  again  illustrates  the 
potential  for  improvement.  We  used  an  11-
entry  gshare  branch  history  table  with  2K 

entries, and we compared the results with the 
smaller,  64KB cache,  as well  as with a larger 
size,  256KB.  Table  2  verifies  that  the 
occurrence of many missing loads instructions 
can be predicted several branches in advance.

The remainder of this paper is organized 
as follows: Section II describes in detail the ar-
chitectural specifications of the FLAP, Section 
III  discusses  which  experiments  and  bench-
marks we ran to evaluate our hypothesis, Sec-
tion  IV  analyzes  the  results  of  these  simula-
tions, and we conclude with Section V, which 
presents a cost analysis and suggests possibili-
ties for future work. 

II. ARCHITECTURE

a. Load-Tracking Table

The additions we have implemented in 
the simulator are located off the critical path. 
The most important feature is the load-tracking 
table which is used to cache the PC of previous-
ly  encountered  loads  and  perform  stride  ad-
dress prediction.  The table is indexed by load 

2 of 9



PC,  and  also  contains  the  data  required  to 
make stride address predictions, as well as two 
confidence counters. The default table used is a 
2-way, 4096-entry content-addressable memo-
ry  that  uses  pseudo-random  replacement. 
Based on several  preliminary trials,  we found 
this to be a good configuration.

All loads which miss in the L2 cache are 
put  into  the  table.  However,  all  loads  are 
snooped; when a  load instruction is  executed 
by the processor, it is looked up in the table. If 
the load hits in the table, its stride prefetching 
data is updated. We have used a stride-based 
address prediction scheme capable of predict-
ing memory address strides with 9 bit resolu-
tion.  Through  experimentation,  we  have  dis-
covered that  almost  all  strided loads fall  into 
this category. Once in the table, the load entry 
is tracked with two 2-bit confidence counters. 
One is used to see how many times the proces-
sor has missed on this load, and the other is 
used to see if the stride address predictor can 
return  the  correct  address.  This  provides  a 
safeguard  against  cache  pollution  in  the  L2. 
Therefore, once there have been four misses on 
the load,  and the address has  been predicted 
correctly  three times in a  row, only then will 
that  load  instruction  be  prefetched  when en-
countered by the controller. 

b. Controller

The other component of the FLAP is the 

controller.  The  controller  is  responsible  for 
running ahead of  the processor and querying 
its branch predictor. Since we would be sharing 
the processor's branch predictor but not it's PC, 
we  needed  to  keep  our  own  return  address 
stack, which the controller also manages. Each 
cycle, the controller tries to advance its PC by 
several (4 by default) instructions. In order to 
accomplish  this,  each  instruction  must  be 
checked in the BTB to see if it is a branch. If the 
instruction hits in the BTB, the branch predic-
tor is queried to predict the branch. If the in-
struction  is  not  a  branch,  the  FLAP  table  is 
queried (the BTB and FLAP table queries can 
occur in parallel).  PCs which hit in the FLAP 
are  known  loads,  and  if  they  pass  the  afore-
mentioned  confidence  criterion,  and  would 
stride  outside  of  a  cache line  boundary,  they 
are issued. If a PC is neither found in the BTB 
or the FLAP table,  then the instruction is  ig-
nored and the FLAP PC is advanced. We also 
use a run-ahead limiter which caps number of 
instructions  the  FLAP  can  run  ahead  of  the 
processor's  PC  (100 is  the  default);  this  also 
helps  to  prevent  cache  pollution  due  to 
prefetches that are either too far ahead to be 
used before they get evicted from the cache or 
whose  occurrence  is  incorrectly  predicted  by 
the branch predictor. The controller is also re-
sponsible for resetting the FLAP PC to the pro-
cessor’s PC every time there is  a branch mis-
prediction.

Figure 2: FLAP Implementation

3 of 9



Figure 3: FLAP Components

III. EXPERIMENTAL METHODOLOGY

a. Simple Scalar

We implemented our  architecture  with 
SimpleScalar's sim-outorder source because we 
needed its features to access the branch predic-
tor,  snoop  addresses,  and  issue  loads.  Since 
sim-outorder runs slowly, one of the drawbacks 
was that we needed to run our tests with small 
input data sets and therefore used small cache 
sizes so that the datasets would not fit into the 
cache. The FLAP table was implemented as an 
array,  loads  were  monitored  in  the  sim-out-
order  load  instruction  handling  subroutine, 
and prefetches were issued through the L2 us-
ing the cache_access function. 

There  are  many  variables  to  the  FLAP 
architecture – Table 3 lists the default values of 
our  parameters  and  the  different  variations 
that we tested. The full set of simplescalar pa-
rameters used can be found in the appendix. 
We chose  a  good  baseline  configuration,  and 
then proceeded to vary each parameter individ-
ually to see how it would affect the FLAP per-
formance. Most of the changes had an effect on 
cache  pollution,  how  much  latency  could  be 
hidden, and the coverage and accuracy of the 
prefetcher.

b. Benchmarks

Three applications from the SPEC2000 bench-
mark suite are used to assess the architectural 
modifications  we  implemented.  All  three 
benchmarks belong to the integer component 
of the SPEC2000 suite: 175.vpr (VPR) which is 
used for FPGA circuit placement and routing, 
181.mcf (MCF) which is used for combinatorial 
optimization,  and  164.gzip  (GZIP)  which  is 
used  for  compression.  MCF  has  a  high  miss 
rate  and  highly-strided  loads,  and  therefore 
stands  to  improve  the  most  from  the  FLAP. 
VPR has an extremely small miss rate with very 
irregular loads, whereas GZIP falls in the mid-
dle with a modest miss rate and mildly strided 
loads.  These  factors  contribute  to  the  results 
shown in the next section.

Parameters Default Variations

No. of PC's to skip ahead/clock 4 2

Max instruction look ahead 100 30, 200

Table associativity 2-way 1-way, 4-way

Table size 4096 entry 1024 entry, 16384 en-
try

Counter width 2-bit 4-bit

FLAP location Between L2 and main memory Between L1 and L2

L2 cache size 64K 256K

L1 data cache size 16K, 4-way  ---

L1 instruction cache size 16K, direct-mapped  ---

Branch Predictor G-Share with 2k entry  --- 

Address Predictor Stride (9-bit)  ---

Table 3: FLAP Parameters

4 of 9



IV. EXPERIMENTAL ANALYSIS

a. Base Configuration Results

In  order  to  discover  how  effective  the 
FLAP was at increasing IPC in an out-of-order 
superscalar  processor,  we  ran  several  bench-
mark simulations.  Figure 4 compares simula-
tions  of  the  unmodified  version  of  sim-out-
order, sim-outorder with the FLAP implemen-
tation, and an ideal  situation where the main 
memory latency of all loads is one cycle.

Figure 4: IPC comparison with 64K L2

Using  a  64K L2 cache,  VPR and GZIP 
experienced very minor performance degrada-
tions,  which  are  due  to  cache  pollution,  but 
MCF experienced a 29% increase in IPC. To see 
if we could get rid of the loss in performance 
due  to  cache  pollution,  we  ran  these  bench-
marks again using an L2 size of 256K; these re-
sults are shown in Figure 5.

Figure 5: IPC comparison with 256K L2

This time there was almost no degrada-
tion for VPR or GZIP, and even the ideal ver-
sion didn't do too much better. The most inter-
esting thing to note is the 87% increase in IPC 
for MCF. The result shows that our technique 
can increase IPC, especially for processors with 
reasonably  sized  caches  running  applications 
with high miss rates and predictable load ad-
dresses. The results with MCF serve as a proof-
of-concept for the FLAP. Using more accurate 
address predictors and better controls on cache 
pollution, it is obvious that the FLAP can bene-
fit any program which suffers from memory la-
tency related stalls.

b. Parameter Variation Results

In order to judge the effect of the myriad 
of FLAP parameters, we have simulated several 
FLAPs  whose  parameters  have  been  varied 
from the base configuration. The following two 
graphs compare all of the variations of the pa-
rameters listed in Table 3, using a 64K cache. 
Figure 6 is for all three benchmarks, and Figure 
7 shows a closer look at the results for MCF.

5 of 9



Figure 6: Comparison of FLAP variations

  Figure 7: FLAP variations for mcf

Again, VPR and GZIP experience little or 
no performance change when each of the pa-
rameters is varied. 

However,  there  are  a  few  interesting 
things to note about the results shown in Fig-
ure  7.  First,  varying the  size  of  the table has 
very little effect, revealing that there is only a 
very small amount of load instructions which 

cause the majority of misses. Therefore, a hard-
ware implementation can achieve good results 
with  a  simple  1K  entry  direct-mapped  table. 
Also important is the fact that decreasing the 
FLAP IPC from 4 to 2 resulted in a negligible 
drop in performance. A hardware implementa-
tion with a FLAP IPC of 2 would put less strain 
on the BTB, branch predictor, and FLAP table 
by requiring these structures to have less bank-
ing and read ports. However, a related parame-
ter,  the  run-ahead amount,  does  have a  sub-
stantial effect: too short  of a distance doesn’t 
hide  enough  latency;  too  large  of  a  distance 
causes data to be prefetched into the cache ei-
ther so early that it is evicted before it can be 
used,  or  for  loads  which  are  not  actually  en-
countered. This tension is a central issue with 
the  implementation  of  the  FLAP.  Future  de-
signs must pay close attention to how far ahead 
of  the  processor  they  are  and  how  confident 
they  are  that  a  given  load  will  be  reached. 
When the FLAP is moved between the L1 and 
L2, it doesn't perform as well, losing 7% com-
pared to its default location, but it is still able 
to increase IPC. This is interesting considering 
the  small  memory  latency  of  the  L2  and the 
very small size of the L1.

c. Experimental Concerns

Our  primary  experimental  concerns 
were time constraints and cache pollution. Be-
cause we were working with the slow-running 
sim-outorder, we were forced to use small data 
sets and therefore small cache sizes. With the 
64K L2 cache, we saw the effects of cache pol-
lution decrease performance on GZIP and VPR, 
as well as limiting the performance increase on 
MCF.  Larger  caches  allowed  for  better  FLAP 
performance. Another alternative which should 
be explored is using a separate buffer for the 
speculative  loads to store  data  in.  The buffer 
could  be  accessed  for  missing  L2  loads,  or, 
more aggressively, in parallel with the L2. This 
buffer  would  eliminate  cache  pollution  prob-
lems. 

Additionally,  the  FLAP's  performance 
depends heavily on the coverage and accuracy 
of its address predictor. With a better address 
predictor,  the  FLAP  will  be  able  to  prefetch 

6 of 9



more useful loads. Tables 4 and 5 show the cov-
erage  (the  percentage  of  missing  loads  the 
FLAP was able to prefetch) and accuracy (what 
percentage of prefetched loads the FLAP accu-
rately  predicted)  for  both  64K  and  256K  L2 
caches, using the 9-bit stride address predictor. 
We use a stride predictor because of its ease of 
implementation and because it performed well 
according to the statistics provided[2]. 

We  believe  that  the  main  reason  why 
GZIP  did  not  experience  a  performance  in-
crease is that, unlike MCF, its individual load 
instructions do not have very strided accesses, 
despite its fairly sequential memory access pat-
tern.  Looking at  Tables 4 and 5,  one can see 
that while the FLAP was able to accurately pre-
dict program flow, its stride address predictor 
was unable to accurately predict the addresses 
many missing loads.  Therefore, if  more accu-
rate  and  higher  coverage  address  predictors 
were  used,  other  applications  will  also  show 
performance improvements. Given more time, 
we would have liked to run more applications, 
use larger data sets, larger caches, use a sepa-
rate buffer, and a higher coverage load-address 
predictor.

Benchmark Coverage Accuracy Bandwidth 
Increase %

Branch 
Predictor 
Accuracy %

MCF 19.000 58.000 13.000 95.330

GZIP 0.0000 - 17.000 96.600

VPR 0.0000 - 6.0000 95.210

Table 4: Prefetch Stats with 64K L2

Benchmark Coverage Accuracy Band-
width In-
crease %

Branch 
Predictor 
Accuracy %

MCF 27.000 76.000 8.4000 95.660

GZIP 1.0000 0.70000 141.00 96.640

VPR 0.0000 - 0.37000 95.210

Table 5: Prefetch Statistics with 256K L2 

V. CONCLUSIONS

a. Hypothesis Evaluation

For MCF we saw a large speedup, prov-
ing that the addition of the FLAP has the po-

tential of significantly improving IPC. Our hy-
pothesis, as stated in Section I,  was validated 
for applications with high miss rates and highly 
strided loads. The FLAP was able to significant-
ly  increase  IPC  by  hiding  a  large  amount  of 
memory latency. This was possible because the 
FLAP  controller  was  able  to  use  the  BTB, 
branch predictor,  and FLAP table to prefetch 
many loads far ahead of their execution. How-
ever, on applications which did not exhibit high 
miss  rates,  or  whose  loads  were  not  pre-
dictable, there is no significant change in IPC. 
This can be seen especially for GZIP and VPR 
with a 256K L2 cache.

b. Cost Analysis 

In  order  to  conclusively  determine 
whether the cost of the FLAP is worth its po-
tential benefits, more experiments would need 
to be  conducted.  In  considering its  hardware 
implementation,  the  FLAP  table  for  our  base 
configuration is 4-way and 4096 entries. With 
77 bits per entry, this yields a total capacity of 
38.4KB.  This  is  a  small  size,  and  our  tests 
demonstrated that it can even be reduced to a 
direct-mapped 1024 entries  (9.63KB) without 
loosing  much  performance.  This  is  not  very 
costly, especially when compared to the size of 
modern L1 caches. One major implementation 
concern is the branch predictor. Since we are 
using the processor's branch predictor but have 
our own PC, an additional return address stack 
is required for this implementation. Due to the 
number of accesses to the BTB (and potentially 
the rest of the branch predictor), the BTB may 
need to  be  multi-ported or  multi-banked;  we 
may even require a duplicate branch predictor 
to avoid access conflicts with the processor. To 
reduce the strain on these components, a lower 
FLAP IPC could be used (as seen in section IV, 
b), thus reducing the number of queries per cy-
cle to the BTB, branch predictor, and FLAP ta-
ble.  We believe that a smart hardware imple-
mentation,  especially  with  an  improved  ad-
dress  predictor,  would be  a  worthwhile  addi-
tion to any aggressive processor design which 
suffers from load-based memory latency stalls.

7 of 9



c. Future Work

There is still much more to study about 
the FLAP. Our results suggest that this concept 
has great potential; with further work, we be-
lieve  all  applications can show a positive im-
provement. In addition to applications with a 
larger data set, we feel that media applications 
could  also  benefit  greatly  from  the  FLAP.  A 
larger  L2 as well  as a  separate buffer  for  the 
speculative loads would reduce cache pollution 
and therefore allow for better performance. An 
improved branch predictor would allow us to 
follow the program flow more accurately,  be-
cause (as we showed in Section IV) our results 
are heavily dependent on the accuracy and cov-
erage of our address predictor. Also, using the 
correct look-ahead distance is very important, 
and  having  a  better  method  to  control  this 
would be beneficial.  Rather than just limiting 
the  number  of  instructions  we  go  ahead,  it 
would be  good to  try  limiting the  number of 
branches  ahead and pending load prefetches. 
This might provide a better way of balancing 
the need to hide latency while avoiding cache 
pollution and wasting memory bandwidth.

If these experiments are carried out, we 
are confident that with accurate predictors and 
larger  caches,  the  FLAP  can  greatly  enhance 
processor performance by improving memory 
latency hiding and increasing IPC.

REFERENCES:

[1] Yuan Chou, Brian Fahs, and Santosh Abraham, “Mi-
croarchitecture Optimizations for Exploiting Memory-
Level Parallelism”, Proceedings of the 31st International 
Symposium on Computer Architecture, June 2004.

[2] Glenn Reinman and Brad Calder, “Predictive Tech-
niques for Aggressive Load Speculation”, Proceedings of 

the 31st International Symposium on Microarchitec-
ture, November 1998. 

[3] Glenn Reinman, Todd Austin, and Brad Calder, “A 
Scalable Front-End Architecture for Fast Instruction De-

livery”, Proceedings of the 26th International Sympo-
sium on Computer Architecture, May 1999.

[4] Tse-Yu Yeh and Yale Patt, “A Comparison of Dynam-
ic Branch Predictors that use Two Levels of Branch His-

tory”, Proceedings of the 20th International Symposium 
on Computer Architecture, May 1993. 

8 of 9



 APPENDIX:

Full simplescalar configuration:
-fetch:ifqsize 4 # instruction fetch queue size (in insts)

-fetch:mplat 3 # extra branch mis-prediction latency

-fetch:speed 1 # speed of front-end of machine relative to execution core

-bpred 2lev # branch predictor type {nottaken|taken|perfect|bimod|2lev|comb}

-bpred:2lev 1 2048 11 1 # 2-level predictor config (<l1size> <l2size> <hist_size> <xor>)

-bpred:ras 8 # return address stack size (0 for no return stack)

-bpred:btb 512 4 # BTB config (<num_sets> <associativity>)

# -bpred:spec_update <null> # speculative predictors update in {ID|WB} (default non-spec)

-decode:width 4 # instruction decode B/W (insts/cycle)

-issue:width 4 # instruction issue B/W (insts/cycle)

-issue:inorder false # run pipeline with in-order issue

-issue:wrongpath true # issue instructions down wrong execution paths

-commit:width 4 # instruction commit B/W (insts/cycle)

-ruu:size 16 # register update unit (RUU) size

-lsq:size 8 # load/store queue (LSQ) size

-cache:dl1 dl1:128:32:4:l # l1 data cache config, i.e., {<config>|none}

-cache:dl1lat 1 # l1 data cache hit latency (in cycles)

-cache:dl2 ul2:256:64:4:l # l2 data cache config, i.e., {<config>|none}

-cache:dl2lat 6 # l2 data cache hit latency (in cycles)

-cache:il1 il1:512:32:1:l # l1 inst cache config, i.e., {<config>|dl1|dl2|none}

-cache:il1lat 1 # l1 instruction cache hit latency (in cycles)

-cache:il2 dl2 # l2 instruction cache config, i.e., {<config>|dl2|none}

-cache:il2lat 6 # l2 instruction cache hit latency (in cycles)

-cache:flush false # flush caches on system calls

-cache:icompress false # convert 64-bit inst addresses to 32-bit inst equivalents

-mem:lat 200 2 # memory access latency (<first_chunk> <inter_chunk>)

-mem:width 8 # memory access bus width (in bytes)

-tlb:itlb itlb:16:4096:4:l # instruction TLB config, i.e., {<config>|none}

-tlb:dtlb dtlb:32:4096:4:l # data TLB config, i.e., {<config>|none}

-tlb:lat 30 # inst/data TLB miss latency (in cycles)

-res:ialu 4 # total number of integer ALU's available

-res:imult 1 # total number of integer multiplier/dividers available

-res:memport 2 # total number of memory system ports available (to CPU)

-res:fpalu 4 # total number of floating point ALU's available

-res:fpmult 1 # total number of floating point multiplier/dividers available

9 of 9


