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Abstract— If the trace cache size is not large enough to 
contain  all of the basic blocks of running application, a 
judicious hit  and replacement logic becomes very important.  
This report proposes a weight-based technique to select the 
victim line in trace cache for the replacement logic. It also 
presents a judicious line-fill buffer logic which is found to 
decrease the redundancy in the trace cache.  We did the 
performance study by simulating these techniques on 
SimpleScalar. For SimpleScalar test benchmarks applications, 
a trace cache with the proposed replacement and line-fill 
buffer logic was found to provide 1-5% better IPC than a 
trace cache with a Least Recently Used replacement logic. 

 
1 INTRODUCTION 

 
Superscalar processors are now capable of executing 

a large number of instructions per cycle.  In order to 
benefit fully from instruction-level parallelism (ILP) 
techniques, we must prevent the instruction fetch 
performance from becoming a bottleneck.  There are a 
number of factors that limit the capabilities of current 
instruction fetch mechanisms.  These factors include 
instruction cache hit rate, branch prediction accuracy, 
branch throughput, noncontiguous instruction 
alignment, and fetch unit latency [1]. 

One possible solution for addressing some of these 
issues is the trace cache as proposed by Rotenberg, 
Bennett, and Smith [1].   The trace cache provides a 
method of storing the dynamic instruction stream 
making otherwise non-contingous instructions appear 
continguous.  It operates by storing up to n instructions 
per trace cache line and using m branch predictions per 
cycle.  The line is filled when a new address is 
encountered and typically contains m branch outcomes.  
The line from the trace cache is then sent to the decoder 
when the same starting address for the line is 
encountered and the branch predictions are matched 
correctly.  An implementation of the trace cache fetch 
mechanism can be seen in Figure 1. 

To increase the performance of trace cache, many 
techniques have been proposed by Rotenberg et al [1] 
and others [2,4]. However, none of the proposed 
techniques deal with the hit and replacement logic or 

line-fill-buffer logic explicitlty.  The following section 
introduces why the hit and replacement logic is 
important and proposes an outline for a possible 
solution. 

 
2 MOTIVATION AND HYPOTHESIS 

 
By  comparing the size of SPEC2000 applications 

with those of  previous years, we can easily see a trend 
towards large-sized applications. The trace cache will 
give ideal performance when it is large enough to keep 
all of the basic blocks of the application. Since 
applications are very large and trace caches are very 
limited in size, better logic must be provided to control 
which basic blocks should be placed in the trace cache 
based upon some hit and replacement logic. The 
performance of applications will benefit from a trace 
cache having a judicious hit and replacement logic.  
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Figure 1: The trace cache fetch mechanism[1] 
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(b) 

The simple Least Recently Used (LRU) based 
technique to identify the victim line in trace cache may 
not be very helpful if the trace cache size is very small.  
This is due to the fact that there may be many trace 
cache lines with fewer basic blocks than the line can 
store, and thus wasting trace cache capacity.  Similarly, 
a trace cache line may have a block sequence with 
many non-taken branches, thus logically giving a 
continuous stream.  We can use these properties of the 
lines to decide how to select a victim line in the trace 
cache to be replaced with the new line.  As a result, we 
are proposing a weight-based technique as the 
replacement logic.  

The other problem which becomes more prominent in 
the case of having small trace cache is shown in Figure 
3 and explained in more detail in the next section.  It 
involves redundancy in the trace cache due to the 
presence of multiple entries of same basic block.  To 
avoid this redundancy, we propose a more judicious 
line-fill buffer logic.   

Therefore, we hypothesize that a weighted 
replacement logic and a modification in the line-fill 
buffer logic will increase peformance.  Our hypothesis 
was based upon the techniques of selecting the victim 
line and avoiding redundancy in the trace cache 
judiciously.  Using an extremely large trace cache, 
where no replacement policy is required because blocks 
will always have room to be entered into the trace 
cache, and a large number of execution resources, the 
possible performance improvement by the trace cache 
can be seen.  In Figure 2, there is room for an average  
performance increase of 10-20% over the case of a 

processor with a limited size trace cache using LRU 
replacement policy. 

The techniques proposed will benefit most scientific 
applications which are comprised of numerous loops 
and non-contiguous code.  If there are not a lot of cyclic  
calls or loops in the application code, then an LRU-
based policy may be more useful.  However, in such 
applications, a trace cache will only have marginal 
improvements. 

 
3 ARCHITECTURE 

 
3.1 The basic trace cache design 

 
The trace cache was implemented in a similar manner 

as depicted in Figure 1 with full associativity.  In our 
implementation m is 3 and n is 16.  The core fetch unit 
is the same as the fetch unit used in the SimpleScalar 
simulator [3].  It fetches instruction from only one 
instruction cache line per cycle.  If there is a miss in the 
instruction cache, then it blocks until the miss is 
completed.  Once the instructions are fetched, they are 
placed in a dispatch (or decode) queue.  If the fetch unit 
encounters a branch, it utilizes the branch predictor to 
obtain the correct cache line to access. 

The trace cache is filled by taking instructions after 
the committed stage.  Past research has found that this 
does not improve or worsen the hit percentage.  The 
length of the line-fill buffer is limited by either the 
number of instructions n or the number of basic blocks 
m, whichever comes first. 

Once the line-fill buffer is filled, the line is flushed to 
the trace cache. If there is an empty line in the trace 

Figure 2:  Possible Improvement with Trace Cache (a) SPEC2000 Benchmarks (b) SimpleScalar Test Benchmarks 
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cache, this line is simply copied to that position, else the 
replacement logic will determine which line it will 
replace. 

Our trace cache also utilizes a partial matching 
policy, where a block of instructions will hit in the trace 
cache even though the entire line in the trace cache does 
not hit.  For example, if a trace cache line contains 

ABC instruction blocks, and the predictor predicts 
ABD, then the trace cache will allow blocks A nd B to 
hit and sent to the decoder.  As presented in [2], this 
should improve processor performance over a trace 
cache without this capability. 

In addition, the current trace cache combines blocks 
in such a way that multiple copies of the same basic 
block reside in the trace cache.  For example, as seen in 
Figure 3, a loop with five basic blocks could potentially 
create five different combinations all in the trace cache 
at the same time.   

The trace cache is highly dependent on the accuracy 
of the branch predictor.  In our implementation, the 
mulitple branch predictor (located in the core fetch unit) 
uses a two level adaptive predictor, which has been 
shown to achieve a high degree of accuracy [4].  This 
adaptive predictor uses a global history register and 
pattern history table to make its prediction.  As seen in 
Figure 4, the global history register is made up of k bits 
(k depends on how many branches will be predicted).   

For example, if 3 branch predictions are desired, then 
3 bits are needed.  These bits predict  the first branch.  
The next 2 bits predict two possible branches.  Using 
the first branch, the second branch is predicted.  The 
third branch is predicted in a similar manner using the 
last bit of the global history register and the previous 
two branches.  Although this representation of the 

branch predictor does not scale well, there are other 
implementations of this branch predictor that will allow 
the hardware to scale to more predictions. 

The rest of the processor remains unchanged from the 
architecture used in the SimpleScalar simulator [3].  As 
a basis to compare our results and to provide a picture 
of the processor, Table 1 shows the parameters used in 
our baseline processor. 

Table 1: Baseline SimpleScalar Configuration 

Processor Core 
Instr Fetch Queue Size 4 RUU Size 16 
Branch Mispred 
Penalty 

3 Load/Store Queue 8 

Ratio: Front End Speed 
to Execution Core 

1 Number of Integer 
ALUs 

4 

Decode Width 4 Number of Integer 
Multipliers/Dividers 

1 

Issue Width 4 Number of memory 
system ports 

2 

Issue Inorder False Number of Floating 
Point ALUs 

4 

Issue Wrongpath True Number of Floating 
Point 
Multipliers/Dividers 

1 

Commit Width 4   
Memory Hierarchy 
L1 Data config dl1:128:32:4:l L1 D-cache Latency 1 
L2  Data config ul2:1024:64:4:l L2 D-cache Latency 6 
L1 Instr config il1:512:32:1:l L1 I-cache Latency 1 
L2 Instr config dl2 L2 I-cache Latency 6 
Instr TLB itlb:16:4096:4:l 
Data TLB dtlb:32:4096:4:l 

Instr/Data TLB 
Miss Latency 

30 

Memory Bus Width 8 
Memory Latency (first, rest) 18, 2 
Branch Prediction 
Branch Prediction Type 2-level adaptive 
2-level Predictor Config 1 1024 10 0 
Return Stack Size 8 
BTB config 512 4 
Speculative Update <null> 

Figure 3:  Loop creating five possible segments[4] 
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Figure 4: Two-level adaptive branch predictor 
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In Table 1, the memory configuration settings for the 
data and instruction caches and the TLBs are described 
as <cache name>:<no. of sets>:<block 
size>:<associativity>:<replacement policy> (in our case 
l is used for LRU).  The 2-level predictor configuration 
specifies <l1size> <l2size> <hist_size> <xor> (where 
l1size: number of entries in the first-level table (Global 
History Register), l2size: number of entries in the 
second-level table (Pattern History Table), hist_size: 
history width, xor: to xor history and the address in the 
second level of the predictor).  The BTB configuration 
specifies <sets> <assoc> (the number of sets and 
associativity). 

 
3.2 Weight-based hit and replacement logic 

 
To identify the victim line for replacement, we 

associate a weight to every trace cache line and declare 
the line with  minimum weight as the victim one.  The 
weight function logically encaptures the question, “how 
important is the line that it needs to be present in the 
trace cache?”  We have identified following factors to 
decide a line’s importance: 

• Expected future use: We store a 2-bit counter 
to keep track of the number of times that the 
line was hit recently.  We maintain a time 
stamp that states when the line was hit last. 
This time stamp is used to identify whether the 
hit-counter value represents a recent hit or not. 

• Number of basic blocks: If a line consists of m 
basic blocks, we consider that line as using the 
trace cache resources more optimally than a 
line with a fewer number of basic blocks.  
However, it is possible for a line to have  
fewer than m basic blocks.  This will be 
explained further in section 3.3 when we 
introduce the line-fill-buffer logic to avoid 
redundancy in the trace cache. 

• Non-contiguity of the line:  We consider a line 
to be fully non-contiguous if every basic block 
in that line starts with a taken-branch. The 
more number of 1’s in the branch-prediction 
values of the line, the more non-contiguous it 
is.  Therefore, we give higher weight to the 
more non-contiguous line.  Normally, if a line 
is continuous, it would have been fetched from 
the I-cache equally fast without blocking. 

To help calculate the weight of a line, each line 
maintains four extra fields apart from the ones kept in 
the basic trace cache design.  Appendix A shows the 
code used to calculate the weights.  The four extra  
fields are basic block count, zero-count in the branch-
prediction values, hit-count, and last-time-hit 
sim_cycle.  

There is one global field, called active_window_size.  
This field logically maintains an estimate of how far 
back the application flow needs to go to execute the 
loops, i.e. how much temporal locality the application 
contains.  This field, associated with last-time_hit 
sim_cycle, states whether the value of hit_count 
corresponds to the recent uses of the line or not. We 
have used this to be 500 for our experiments.   

The cost to maintain these fields and how many 
cycles required to identify the victim line will be 
discussed in the section 3.4. 

 
3.3 Line-fill-buffer logic: avoiding redundancy 

 
Consider the loop shown in Figure 2.  The basic trace 

cache design will lead to multiple block sequences, 
having a lot of redundancies.  This can be avoided by 
not allowing such blocks to enter the line-fill buffer. 

Whenever a branch instruction is committed, a new 
basic block is started in the line-fill buffer of the basic 
trace cache design.  If adding this new block violates 
the trace cache line constraints, such as the limit on m 
and n, the line fill buffer is saved in the trace cache 
before starting a fresh line in the line-fill buffer with the 
new basic block.  Therefore, the only constraints which 
governs the flushing of the line-fill buffer to the trace 
cache are the constraints m and n.  

We add an additional constraint here in order to flush 
the line-fill buffer: if the new block’s starting address 
and the corresponding branch-prediction value match 
those of an existing entry in the trace cache, the line-fill 
buffer is immediately flushed to the trace cache.  If the 
existing entry in the trace cache is the starting block of 
a line, then we do not start the block in the line-fill 
buffer because this would mean that the new block is 
the starting point of more than one block (like block A 
in Figure 2).  This new constraint will lead to trace 
cache lines with a fewer number of basic blocks than m, 
and this may seem to waste trace cache line capacity.  
However, this logic combined with the weight-based 
replacement logic will make such lines (with fewer 
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number of basic blocks) to be removed from the trace 
cache as the victim line, thus optimizing the use of trace 
cache resources. 

 
3.4 Technology cost of the proposed changes 

 
To implement the proposed weight-based replacement 

logic, four extra fields for each trace cache line need to 
be maintained.  These fields together will cost around 
three bytes per line, which is not a significant overhead.  
The main concern is the cost of  implementing the 
weight-calculation utilizing these field values.  For this, 
additional arithmetic logic will be required for every 
line, which may be exhorbitant.  This can avoided by 
using a simple approximated weight function.  

Similarly, the space requirement for implementing the 
line-fill buffer logic is not significant, but the logic that 
compares the start address of newly arrived basic 
blocks with existing entries in the trace cache may be 
costly to implement.  An approximate approach, which  
compares the newly arrived block with only the starting 
block of every trace cache line will be simpler to 
implement, and will remove the redundancy problem to 
some extent. 

Once the logic is in place for our proposed 
modification, it will be handle a larger trace cache 
without the need to add additional hardware.  
Therefore, we do expect it to scale well with future 
technology. 

 
4 EXPERIMENTAL METHODOLOGY 

 
A trace cache architecture, as described in the 

previous section, was added to the SimpleScalar 
simulator.  Using the same parameters as the baseline 
architecture, we simulated the performance of the 
processor with a trace cache without any of our 
proposed modifications.  In this case, the replacement 
logic of the trace cache utilized a Least Recently Used 
policy.   

In order to fully evaluate the potential of the trace 
cache, we modified the baseline to remove the 
possibility of the execution resources becoming a 
bottleneck.  This involved increasing the parameters as 
shown in Table 2. 

 
 
 

Table 2: Basline configuration with large number of 
execution resources  

 
The unmodified and modified trace cache (both large 

and small as well) were simulated with this large 
number of execution resources.  This places an upper 
bound on how much improvement can be achieved by  
each type of  trace cache.  

Using this large number of execution resources, a 
trace cache with our proposed weights was simulated.  
To illustrate the importance of the weight parameters, 
we compare the baseline with two different policies.  
The first policy uses the weights proposed in the section 
3.1.  The second policy is based on the distance 
between instructions (i.e. the further an instruction is 
from the one just executed, the more likely it will be 
removed from the trace cache).   

In addition, we evaluated a modified policy for the 
line-fill buffer logic.  In this case, if a new block enters 
the line-fill buffer which contains the same starting 
address as that of the first block of a line already in the 
trace cache, the line-fill buffer will be flushed into the 
trace cache.  The new block will not be put in the line 
fill buffer.  Earlier in the line fill buffer logic proposed 
in section 3.2, we used to compare the starting address 
of the new block with any existing block in the trace 
cache.  The modified policy is simple to implement. 

SPEC2000 benchmarks [5] were used to evaluate the 
performance of the processors.  Specifically, two 
integer benchmarks and one floating point benchmark 
were used (reduced data sets were used).  (Note: The 
mcf benchmark was only run to half completion due to 
memory constraints).  In addition to the SPEC2000 
benchmarks, some test benchmarks provided by 
SimpleScalar were used. 

 

Instruc Fetch Queue Size 2048 
Instruc Decode Width 16 
Instruc Issue Width 16 
Instruc Commit Width 16 
RUU Width 256 
Load/Store Queue 128 
L1 Data Config dl1:1024:256:4:1 
L2 Data Config ul2:8192:512:4:1 
L1 Instruc Config il1:512:32:1:1 
Number of Integer ALUs 8 
Number of Integer Mult/Div 8 
Number of Floating Point ALUs 8 
Number of Floating Point Mult/Div 8 



 6

5 EXPERIMENTAL ANALYSIS 
 
For measuring performance, we used instructions per 

cycle (IPC).  The harmonic mean was used to average 
the performance of the benchmarks.  For all the results 
presented, the baseline refers to a processor with a large 
number of execution resources.  For all our simulations, 
this baseline was much higher than a baseline without 
the large number of execution resources.   

Even with an unmodified trace cache, the experiments 
show that the fetch queue gets filled up early during the 
execution of the program.  Once the fetch queue is 
filled, the benefits from the trace cache are limited 
because even though there are trace cache hits, we are 
unable to place those instructions in the fetch queue.  
Even with increased execution resources, the fetch 
queue was still filled, but at a later stage.  This problem 
will allow very little performance improvement, even 
with a modified trace cache. 

In Figure 5a (which is the same as Figure 2a), we see 
that even with a more realistic trace cache of 64 lines, 
there is still a significant performance improvement 
over the baseline.  However, it illustrates the fact that 
improvement to the trace cache can provide 
performance enhancements.  There is an interesting 
result in the figure which shows equal performance with 
the ammp benchmark even with a smaller trace cache.  
Normally, we would expect performance to decrease 
with a smaller trace cache.  However, the reason for 

this result is that the ammp benchmark has few loops 
and branches and does not need a large trace cache. 

With an even smaller trace cache (for smaller 
benchmarks), Figure 5b (which is the same as Figure 
2b), we also see that the opportunity for performance 
enhancement is large.  One interesting result is the test-
printf benchmark.  With a small trace cache the 
performance is actually worse than the baseline.  This 
is attributed to the fact that the trace cache is too small 
such that many of elements in the trace cache are 
removed before they are used again.  In addition, the 

Figure 5:  IPC Improvement with Smaller Trace Cache (a) 64 Entry with SPEC2000 Benchmarks (b) 32 Entry with 
Simplescalar Test Benchmarks 
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Figure 6:  Trace Cache using different weightings to 
determine replacement logic 
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trace cache uses multiple branch prediction as 
compared to the baseline which uses a single branch 
prediction.  The multiple branch prediction leads to 
higher mispredictions, lowering performance. 

Using the SimpleScalar test benchmarks and the 32 
entry trace cache, we now turn to evaluating the 
effectiveness of the trace cache with our proposed 
weights.  We actually compare our weights to another 
weighting which uses the distance between instructions 
as a possible weight.  Figure 6 shows the results of our 
simulations. 

From the figure, our proposed weights either matches 
the performance of the baseline or shows an 
improvement over the baseline.  However, the distance 
weighting actually performs worse than the baseline 
[TC(32)].  This is the result of the fact that some 
branches may select an instruction that is large distance 
from itself.  In this case, many of the lines in the trace 
cache will be eventually removed as it begins to fill 
instructions from the farther branch.  This combined 
with the larger mispredictions of a multiple branch 
predictor explains the lowering of performance.  
Therefore, this shows the importance of utilizing an 
appropriate weighting scheme. 

For anagram and test-lswlr, there is little or no 
improvement.  These benchmarks are inherently not 
able to take advantage of the trace cache.  As seen in 
Figure 5b with the 1024 entry trace cache, there is little 
improvement that can be made on these benchmarks. 

Now that the trace cache performance has improved 
with a weighted replacement logic, the line-fill buffer  
logic needs to be addressed.  By modifying this logic, 
we can extract even greater performance improvement.  
As seen in Figure 7, the modified line-fill buffer logic as 
described in Section 4, either matches or improves the 
performance of the trace cache. 

Again, for anagram and test-lswlr, there is little or no 
improvement.  Because of the improvement potential 
shown in Figure 5b, it is expected that these 
benchmarks will not show significant improvement. 

Based on the preliminary results with the test 
benchmarks, the proposed change in the trace cache 
will be able to encompass a variety of applications that 
contain numerous loops and branches.  These 
applications include, but are not limited to, scientific 
applications. 

Overall, our proposed weighting scheme and line-fill 
buffer logic does improve trace cache performance.  
However, we were not able to complete a full 
evaluation using the SPEC2000 benchmarks and their 
complete data sets.  Given the performance on the 
SimpleScalar test benchmarks, we expect that even 
greater performance improvement can be achieved with 
the SPEC2000 benchmarks.  The SPEC2000 
benchmarks and most applications will execute a 
greater number of loops and branches and hence can 
benefit more from the judicious use of the trace cache 
that this paper proposes.  How much improvement 
these benchmarks show will utlimately determine if the 
logic needed to implement our proposal is worth the 
time and cost to develop in hardware. 

 
6 CONCLUSIONS 

 
The idea to utilize the trace cache in a more judicious 

manner is not without merit.  There is no question that 
from our results, the upper bound of performance 
improvement for the trace cache is pretty significant.  
However, determining the best method for allocating 
trace cache resources is a challenge.  We have proposed 
a possible solution that does show performance 
improvement on most of the test benchmarks.  In order 
to more fully evaluate the benefits of our proposal, 
more simulations must be completed on the latest 
benchmarks. 

However, with our proposed solution, the simulations 
on the test benchmarks do show performance 

Figure 7:  Trace Cache using weights for replacement 
logic and a modified line-fill buffer logic 
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improvement is marginal.  This initially leads to the 
conclusion that the hardware needed to implement the 
weightings in the replacement logic and modifying the 
line-fill buffer logic will not be worth the costs.  
Because these test benchmarks are not a good 
representative of real applications, the possible 
improvements in real applications as represented by 
SPEC2000 benchmarks may yield very different 
results.  Therefore, our initial hypothesis does not need 
to be changed until an evaluation can be completed on 
the SPEC2000 benchmarks. 

Our results do show that the amount of improvement 
that our proposal can produce is highly dependent on 
the type of applications.  We have also showed that the 
type of weightings used can have a significant affect on 
the performance.  Therefore, more work may also need 
to be done to evaluate the cause of only marginal 
improvements and perhaps develop a better weighing 
algorithm.  In general, we have shown that there is a lot 
of potential for performance improvement resulting 
from a more judicious use of trace cache resources. 
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Appendix A 
 

/* 
 * This method calculates the weight for a given  trace cache line. 
 * It considers three factors : block count, discontiguity and future usage of 
 * the line 
 */ 
int get_trace_cache_line_weight( index, line_no ) 
    int index ; 
    int line_no ; 
{ 
 
        int block_count_weight,branch_pred_weight=0, hit_weight ; 
        int count = 0 ; 
        int temp = 10001 ; 
        // all weights normalized over 10  except hit_weight 
 
        // Number of basic blocks in the trace cache line. 
        block_count_weight = trace_cache[index][line_no].no_of_BB * 10 / MAX_PREDICTIONS ; 
 
        // Discontiguity factor : 
        // => more the number of 1s in branch_prediction array of a trace-cache 
        // line, more discontiguous is the line, so it is given more weight 
        for(count=0; count<trace_cache[index][line_no].no_of_BB; ++count) 
        { 
           temp = pow(10,count+1) * trace_cache[index][line_no].branch_pred_val[count]  ; 
        } 
        switch( temp ) 
        { 
            case 10001 : branch_pred_weight = 0 ; break ; 
            case 10011 : branch_pred_weight = 2 ; break ; 
            case 10101 : branch_pred_weight = 4 ; break ; 
            case 10111 : branch_pred_weight = 6 ; break ; 
            case 11001 : branch_pred_weight = 4 ; break ; 
            case 11011 : branch_pred_weight = 6 ; break ; 
            case 11101 : branch_pred_weight = 8 ; break ; 
            case 11111 : branch_pred_weight = 10 ; break ; 
        } 
 
        // hit_weight 
        hit_weight = 0 ; 
        if( (current_sim_cycle - trace_cache[index][line_no].partial_hit_lru[0]) < active_window_size ) 
        { 
            if(trace_cache[index][line_no].partial_hit_count[tc_m] > 3 ) 
               hit_weight = 10 ; 
            else if (trace_cache[index][line_no].partial_hit_count[tc_m] == 1 ) 
              hit_weight = 2 ; 
            else hit_weight = 5 ; 
        } 
 
        // return the sum of aboave weight factors 
        return block_count_weight + branch_pred_weight + hit_weight ; 
} 


