
 1

Abstract— If the trace cache size is not large enough to
contain all of the basic blocks of running application, a
judicious hit and replacement logic becomes very important.
This report proposes a weight-based technique to select the
victim line in trace cache for the replacement logic. It also
presents a judicious line-fill buffer logic which is found to
decrease the redundancy in the trace cache. We did the
performance study by simulating these techniques on
SimpleScalar. For SimpleScalar test benchmarks applications,
a trace cache with the proposed replacement and line-fill
buffer logic was found to provide 1-5% better IPC than a
trace cache with a Least Recently Used replacement logic.

1 INTRODUCTION

Superscalar processors are now capable of executing

a large number of instructions per cycle. In order to
benefit fully from instruction-level parallelism (ILP)
techniques, we must prevent the instruction fetch
performance from becoming a bottleneck. There are a
number of factors that limit the capabilities of current
instruction fetch mechanisms. These factors include
instruction cache hit rate, branch prediction accuracy,
branch throughput, noncontiguous instruction
alignment, and fetch unit latency [1].

One possible solution for addressing some of these
issues is the trace cache as proposed by Rotenberg,
Bennett, and Smith [1]. The trace cache provides a
method of storing the dynamic instruction stream
making otherwise non-contingous instructions appear
continguous. It operates by storing up to n instructions
per trace cache line and using m branch predictions per
cycle. The line is filled when a new address is
encountered and typically contains m branch outcomes.
The line from the trace cache is then sent to the decoder
when the same starting address for the line is
encountered and the branch predictions are matched
correctly. An implementation of the trace cache fetch
mechanism can be seen in Figure 1.

To increase the performance of trace cache, many
techniques have been proposed by Rotenberg et al [1]
and others [2,4]. However, none of the proposed
techniques deal with the hit and replacement logic or

line-fill-buffer logic explicitlty. The following section
introduces why the hit and replacement logic is
important and proposes an outline for a possible
solution.

2 MOTIVATION AND HYPOTHESIS

By comparing the size of SPEC2000 applications

with those of previous years, we can easily see a trend
towards large-sized applications. The trace cache will
give ideal performance when it is large enough to keep
all of the basic blocks of the application. Since
applications are very large and trace caches are very
limited in size, better logic must be provided to control
which basic blocks should be placed in the trace cache
based upon some hit and replacement logic. The
performance of applications will benefit from a trace
cache having a judicious hit and replacement logic.

Rajnish Kumar, Amit Kumar Saha, Jerry T. Yen

Towards a More Efficient Trace Cache

Department of Computer Science and Electrical Engineering
George R. Brown School of Engineering, Rice University

{rajnish, amsaha, yen}@rice.edu

Figure 1: The trace cache fetch mechanism[1]

 2

(b)

The simple Least Recently Used (LRU) based
technique to identify the victim line in trace cache may
not be very helpful if the trace cache size is very small.
This is due to the fact that there may be many trace
cache lines with fewer basic blocks than the line can
store, and thus wasting trace cache capacity. Similarly,
a trace cache line may have a block sequence with
many non-taken branches, thus logically giving a
continuous stream. We can use these properties of the
lines to decide how to select a victim line in the trace
cache to be replaced with the new line. As a result, we
are proposing a weight-based technique as the
replacement logic.

The other problem which becomes more prominent in
the case of having small trace cache is shown in Figure
3 and explained in more detail in the next section. It
involves redundancy in the trace cache due to the
presence of multiple entries of same basic block. To
avoid this redundancy, we propose a more judicious
line-fill buffer logic.

Therefore, we hypothesize that a weighted
replacement logic and a modification in the line-fill
buffer logic will increase peformance. Our hypothesis
was based upon the techniques of selecting the victim
line and avoiding redundancy in the trace cache
judiciously. Using an extremely large trace cache,
where no replacement policy is required because blocks
will always have room to be entered into the trace
cache, and a large number of execution resources, the
possible performance improvement by the trace cache
can be seen. In Figure 2, there is room for an average
performance increase of 10-20% over the case of a

processor with a limited size trace cache using LRU
replacement policy.

The techniques proposed will benefit most scientific
applications which are comprised of numerous loops
and non-contiguous code. If there are not a lot of cyclic
calls or loops in the application code, then an LRU-
based policy may be more useful. However, in such
applications, a trace cache will only have marginal
improvements.

3 ARCHITECTURE

3.1 The basic trace cache design

The trace cache was implemented in a similar manner

as depicted in Figure 1 with full associativity. In our
implementation m is 3 and n is 16. The core fetch unit
is the same as the fetch unit used in the SimpleScalar
simulator [3]. It fetches instruction from only one
instruction cache line per cycle. If there is a miss in the
instruction cache, then it blocks until the miss is
completed. Once the instructions are fetched, they are
placed in a dispatch (or decode) queue. If the fetch unit
encounters a branch, it utilizes the branch predictor to
obtain the correct cache line to access.

The trace cache is filled by taking instructions after
the committed stage. Past research has found that this
does not improve or worsen the hit percentage. The
length of the line-fill buffer is limited by either the
number of instructions n or the number of basic blocks
m, whichever comes first.

Once the line-fill buffer is filled, the line is flushed to
the trace cache. If there is an empty line in the trace

Figure 2: Possible Improvement with Trace Cache (a) SPEC2000 Benchmarks (b) SimpleScalar Test Benchmarks

(a)

IPC Improvement With 64 Entry Trace Cache

0

0.5

1

1.5

2

2.5

ammp mcf* vpr mean

SPEC2000 Benchmark

IP
C

Baseline

TC(1024)

TC(64)

IPC Improvement with 32 Entry Trace Cache

0

0.5

1

1.5

2

2.5

anagram test-fmath test-llong test-lswlr test-math test-printf mean

Test Benchmarks

IP
C

Baseline

TC(1024)

TC(32)

 3

cache, this line is simply copied to that position, else the
replacement logic will determine which line it will
replace.

Our trace cache also utilizes a partial matching
policy, where a block of instructions will hit in the trace
cache even though the entire line in the trace cache does
not hit. For example, if a trace cache line contains

ABC instruction blocks, and the predictor predicts
ABD, then the trace cache will allow blocks A nd B to
hit and sent to the decoder. As presented in [2], this
should improve processor performance over a trace
cache without this capability.

In addition, the current trace cache combines blocks
in such a way that multiple copies of the same basic
block reside in the trace cache. For example, as seen in
Figure 3, a loop with five basic blocks could potentially
create five different combinations all in the trace cache
at the same time.

The trace cache is highly dependent on the accuracy
of the branch predictor. In our implementation, the
mulitple branch predictor (located in the core fetch unit)
uses a two level adaptive predictor, which has been
shown to achieve a high degree of accuracy [4]. This
adaptive predictor uses a global history register and
pattern history table to make its prediction. As seen in
Figure 4, the global history register is made up of k bits
(k depends on how many branches will be predicted).

For example, if 3 branch predictions are desired, then
3 bits are needed. These bits predict the first branch.
The next 2 bits predict two possible branches. Using
the first branch, the second branch is predicted. The
third branch is predicted in a similar manner using the
last bit of the global history register and the previous
two branches. Although this representation of the

branch predictor does not scale well, there are other
implementations of this branch predictor that will allow
the hardware to scale to more predictions.

The rest of the processor remains unchanged from the
architecture used in the SimpleScalar simulator [3]. As
a basis to compare our results and to provide a picture
of the processor, Table 1 shows the parameters used in
our baseline processor.

Table 1: Baseline SimpleScalar Configuration

Processor Core
Instr Fetch Queue Size 4 RUU Size 16
Branch Mispred
Penalty

3 Load/Store Queue 8

Ratio: Front End Speed
to Execution Core

1 Number of Integer
ALUs

4

Decode Width 4 Number of Integer
Multipliers/Dividers

1

Issue Width 4 Number of memory
system ports

2

Issue Inorder False Number of Floating
Point ALUs

4

Issue Wrongpath True Number of Floating
Point
Multipliers/Dividers

1

Commit Width 4
Memory Hierarchy
L1 Data config dl1:128:32:4:l L1 D-cache Latency 1
L2 Data config ul2:1024:64:4:l L2 D-cache Latency 6
L1 Instr config il1:512:32:1:l L1 I-cache Latency 1
L2 Instr config dl2 L2 I-cache Latency 6
Instr TLB itlb:16:4096:4:l
Data TLB dtlb:32:4096:4:l

Instr/Data TLB
Miss Latency

30

Memory Bus Width 8
Memory Latency (first, rest) 18, 2
Branch Prediction
Branch Prediction Type 2-level adaptive
2-level Predictor Config 1 1024 10 0
Return Stack Size 8
BTB config 512 4
Speculative Update <null>

Figure 3: Loop creating five possible segments[4]

K

k-2

k-1

K
Select

Select

Tertiary Branch
Prediction

Secondary
Branch Prediction

Primary Branch
Prediction

2

Global History
Register

Pattern History
Table

Figure 4: Two-level adaptive branch predictor

 4

In Table 1, the memory configuration settings for the
data and instruction caches and the TLBs are described
as <cache name>:<no. of sets>:<block
size>:<associativity>:<replacement policy> (in our case
l is used for LRU). The 2-level predictor configuration
specifies <l1size> <l2size> <hist_size> <xor> (where
l1size: number of entries in the first-level table (Global
History Register), l2size: number of entries in the
second-level table (Pattern History Table), hist_size:
history width, xor: to xor history and the address in the
second level of the predictor). The BTB configuration
specifies <sets> <assoc> (the number of sets and
associativity).

3.2 Weight-based hit and replacement logic

To identify the victim line for replacement, we

associate a weight to every trace cache line and declare
the line with minimum weight as the victim one. The
weight function logically encaptures the question, “how
important is the line that it needs to be present in the
trace cache?” We have identified following factors to
decide a line’s importance:

• Expected future use: We store a 2-bit counter
to keep track of the number of times that the
line was hit recently. We maintain a time
stamp that states when the line was hit last.
This time stamp is used to identify whether the
hit-counter value represents a recent hit or not.

• Number of basic blocks: If a line consists of m
basic blocks, we consider that line as using the
trace cache resources more optimally than a
line with a fewer number of basic blocks.
However, it is possible for a line to have
fewer than m basic blocks. This will be
explained further in section 3.3 when we
introduce the line-fill-buffer logic to avoid
redundancy in the trace cache.

• Non-contiguity of the line: We consider a line
to be fully non-contiguous if every basic block
in that line starts with a taken-branch. The
more number of 1’s in the branch-prediction
values of the line, the more non-contiguous it
is. Therefore, we give higher weight to the
more non-contiguous line. Normally, if a line
is continuous, it would have been fetched from
the I-cache equally fast without blocking.

To help calculate the weight of a line, each line
maintains four extra fields apart from the ones kept in
the basic trace cache design. Appendix A shows the
code used to calculate the weights. The four extra
fields are basic block count, zero-count in the branch-
prediction values, hit-count, and last-time-hit
sim_cycle.

There is one global field, called active_window_size.
This field logically maintains an estimate of how far
back the application flow needs to go to execute the
loops, i.e. how much temporal locality the application
contains. This field, associated with last-time_hit
sim_cycle, states whether the value of hit_count
corresponds to the recent uses of the line or not. We
have used this to be 500 for our experiments.

The cost to maintain these fields and how many
cycles required to identify the victim line will be
discussed in the section 3.4.

3.3 Line-fill-buffer logic: avoiding redundancy

Consider the loop shown in Figure 2. The basic trace

cache design will lead to multiple block sequences,
having a lot of redundancies. This can be avoided by
not allowing such blocks to enter the line-fill buffer.

Whenever a branch instruction is committed, a new
basic block is started in the line-fill buffer of the basic
trace cache design. If adding this new block violates
the trace cache line constraints, such as the limit on m
and n, the line fill buffer is saved in the trace cache
before starting a fresh line in the line-fill buffer with the
new basic block. Therefore, the only constraints which
governs the flushing of the line-fill buffer to the trace
cache are the constraints m and n.

We add an additional constraint here in order to flush
the line-fill buffer: if the new block’s starting address
and the corresponding branch-prediction value match
those of an existing entry in the trace cache, the line-fill
buffer is immediately flushed to the trace cache. If the
existing entry in the trace cache is the starting block of
a line, then we do not start the block in the line-fill
buffer because this would mean that the new block is
the starting point of more than one block (like block A
in Figure 2). This new constraint will lead to trace
cache lines with a fewer number of basic blocks than m,
and this may seem to waste trace cache line capacity.
However, this logic combined with the weight-based
replacement logic will make such lines (with fewer

 5

number of basic blocks) to be removed from the trace
cache as the victim line, thus optimizing the use of trace
cache resources.

3.4 Technology cost of the proposed changes

To implement the proposed weight-based replacement

logic, four extra fields for each trace cache line need to
be maintained. These fields together will cost around
three bytes per line, which is not a significant overhead.
The main concern is the cost of implementing the
weight-calculation utilizing these field values. For this,
additional arithmetic logic will be required for every
line, which may be exhorbitant. This can avoided by
using a simple approximated weight function.

Similarly, the space requirement for implementing the
line-fill buffer logic is not significant, but the logic that
compares the start address of newly arrived basic
blocks with existing entries in the trace cache may be
costly to implement. An approximate approach, which
compares the newly arrived block with only the starting
block of every trace cache line will be simpler to
implement, and will remove the redundancy problem to
some extent.

Once the logic is in place for our proposed
modification, it will be handle a larger trace cache
without the need to add additional hardware.
Therefore, we do expect it to scale well with future
technology.

4 EXPERIMENTAL METHODOLOGY

A trace cache architecture, as described in the

previous section, was added to the SimpleScalar
simulator. Using the same parameters as the baseline
architecture, we simulated the performance of the
processor with a trace cache without any of our
proposed modifications. In this case, the replacement
logic of the trace cache utilized a Least Recently Used
policy.

In order to fully evaluate the potential of the trace
cache, we modified the baseline to remove the
possibility of the execution resources becoming a
bottleneck. This involved increasing the parameters as
shown in Table 2.

Table 2: Basline configuration with large number of
execution resources

The unmodified and modified trace cache (both large

and small as well) were simulated with this large
number of execution resources. This places an upper
bound on how much improvement can be achieved by
each type of trace cache.

Using this large number of execution resources, a
trace cache with our proposed weights was simulated.
To illustrate the importance of the weight parameters,
we compare the baseline with two different policies.
The first policy uses the weights proposed in the section
3.1. The second policy is based on the distance
between instructions (i.e. the further an instruction is
from the one just executed, the more likely it will be
removed from the trace cache).

In addition, we evaluated a modified policy for the
line-fill buffer logic. In this case, if a new block enters
the line-fill buffer which contains the same starting
address as that of the first block of a line already in the
trace cache, the line-fill buffer will be flushed into the
trace cache. The new block will not be put in the line
fill buffer. Earlier in the line fill buffer logic proposed
in section 3.2, we used to compare the starting address
of the new block with any existing block in the trace
cache. The modified policy is simple to implement.

SPEC2000 benchmarks [5] were used to evaluate the
performance of the processors. Specifically, two
integer benchmarks and one floating point benchmark
were used (reduced data sets were used). (Note: The
mcf benchmark was only run to half completion due to
memory constraints). In addition to the SPEC2000
benchmarks, some test benchmarks provided by
SimpleScalar were used.

Instruc Fetch Queue Size 2048
Instruc Decode Width 16
Instruc Issue Width 16
Instruc Commit Width 16
RUU Width 256
Load/Store Queue 128
L1 Data Config dl1:1024:256:4:1
L2 Data Config ul2:8192:512:4:1
L1 Instruc Config il1:512:32:1:1
Number of Integer ALUs 8
Number of Integer Mult/Div 8
Number of Floating Point ALUs 8
Number of Floating Point Mult/Div 8

 6

5 EXPERIMENTAL ANALYSIS

For measuring performance, we used instructions per

cycle (IPC). The harmonic mean was used to average
the performance of the benchmarks. For all the results
presented, the baseline refers to a processor with a large
number of execution resources. For all our simulations,
this baseline was much higher than a baseline without
the large number of execution resources.

Even with an unmodified trace cache, the experiments
show that the fetch queue gets filled up early during the
execution of the program. Once the fetch queue is
filled, the benefits from the trace cache are limited
because even though there are trace cache hits, we are
unable to place those instructions in the fetch queue.
Even with increased execution resources, the fetch
queue was still filled, but at a later stage. This problem
will allow very little performance improvement, even
with a modified trace cache.

In Figure 5a (which is the same as Figure 2a), we see
that even with a more realistic trace cache of 64 lines,
there is still a significant performance improvement
over the baseline. However, it illustrates the fact that
improvement to the trace cache can provide
performance enhancements. There is an interesting
result in the figure which shows equal performance with
the ammp benchmark even with a smaller trace cache.
Normally, we would expect performance to decrease
with a smaller trace cache. However, the reason for

this result is that the ammp benchmark has few loops
and branches and does not need a large trace cache.

With an even smaller trace cache (for smaller
benchmarks), Figure 5b (which is the same as Figure
2b), we also see that the opportunity for performance
enhancement is large. One interesting result is the test-
printf benchmark. With a small trace cache the
performance is actually worse than the baseline. This
is attributed to the fact that the trace cache is too small
such that many of elements in the trace cache are
removed before they are used again. In addition, the

Figure 5: IPC Improvement with Smaller Trace Cache (a) 64 Entry with SPEC2000 Benchmarks (b) 32 Entry with
Simplescalar Test Benchmarks

(b) (a)

IPC Improvement with Trace Cache Using Various Weights

0

0.2

0.4

0.6

0.8

1

1.2

1.4

anagram test-fmath test-llong test-lswlr test-math test-printf mean

Test Benchmark

IP
C

TC(32)
TC(32) + Distance Weight

TC(32) + Weights

IPC Improvement with 32 Entry Trace Cache

0

0.5

1

1.5

2

2.5

anagram test-fmath test-llong test-lswlr test-math test-printf mean

Test Benchmarks

IP
C

Baseline

TC(1024)

TC(32)

Figure 6: Trace Cache using different weightings to
determine replacement logic

IPC Improvement With 64 Entry Trace Cache

0

0.5

1

1.5

2

2.5

ammp mcf* vpr mean

SPEC2000 Benchmark

IP
C

Baseline

TC(1024)

TC(64)

 7

trace cache uses multiple branch prediction as
compared to the baseline which uses a single branch
prediction. The multiple branch prediction leads to
higher mispredictions, lowering performance.

Using the SimpleScalar test benchmarks and the 32
entry trace cache, we now turn to evaluating the
effectiveness of the trace cache with our proposed
weights. We actually compare our weights to another
weighting which uses the distance between instructions
as a possible weight. Figure 6 shows the results of our
simulations.

From the figure, our proposed weights either matches
the performance of the baseline or shows an
improvement over the baseline. However, the distance
weighting actually performs worse than the baseline
[TC(32)]. This is the result of the fact that some
branches may select an instruction that is large distance
from itself. In this case, many of the lines in the trace
cache will be eventually removed as it begins to fill
instructions from the farther branch. This combined
with the larger mispredictions of a multiple branch
predictor explains the lowering of performance.
Therefore, this shows the importance of utilizing an
appropriate weighting scheme.

For anagram and test-lswlr, there is little or no
improvement. These benchmarks are inherently not
able to take advantage of the trace cache. As seen in
Figure 5b with the 1024 entry trace cache, there is little
improvement that can be made on these benchmarks.

Now that the trace cache performance has improved
with a weighted replacement logic, the line-fill buffer
logic needs to be addressed. By modifying this logic,
we can extract even greater performance improvement.
As seen in Figure 7, the modified line-fill buffer logic as
described in Section 4, either matches or improves the
performance of the trace cache.

Again, for anagram and test-lswlr, there is little or no
improvement. Because of the improvement potential
shown in Figure 5b, it is expected that these
benchmarks will not show significant improvement.

Based on the preliminary results with the test
benchmarks, the proposed change in the trace cache
will be able to encompass a variety of applications that
contain numerous loops and branches. These
applications include, but are not limited to, scientific
applications.

Overall, our proposed weighting scheme and line-fill
buffer logic does improve trace cache performance.
However, we were not able to complete a full
evaluation using the SPEC2000 benchmarks and their
complete data sets. Given the performance on the
SimpleScalar test benchmarks, we expect that even
greater performance improvement can be achieved with
the SPEC2000 benchmarks. The SPEC2000
benchmarks and most applications will execute a
greater number of loops and branches and hence can
benefit more from the judicious use of the trace cache
that this paper proposes. How much improvement
these benchmarks show will utlimately determine if the
logic needed to implement our proposal is worth the
time and cost to develop in hardware.

6 CONCLUSIONS

The idea to utilize the trace cache in a more judicious

manner is not without merit. There is no question that
from our results, the upper bound of performance
improvement for the trace cache is pretty significant.
However, determining the best method for allocating
trace cache resources is a challenge. We have proposed
a possible solution that does show performance
improvement on most of the test benchmarks. In order
to more fully evaluate the benefits of our proposal,
more simulations must be completed on the latest
benchmarks.

However, with our proposed solution, the simulations
on the test benchmarks do show performance

Figure 7: Trace Cache using weights for replacement
logic and a modified line-fill buffer logic

IPC Improvement with Modified Line-Fill Buffer Logic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

anagram test-fmath test-llong test-lswlr test-math test-printf mean

Test Benchmark

IP
C TC(32)+Weights

TC(32)+Weights+Modified
Line-Fill Buffer Logic

 8

improvement is marginal. This initially leads to the
conclusion that the hardware needed to implement the
weightings in the replacement logic and modifying the
line-fill buffer logic will not be worth the costs.
Because these test benchmarks are not a good
representative of real applications, the possible
improvements in real applications as represented by
SPEC2000 benchmarks may yield very different
results. Therefore, our initial hypothesis does not need
to be changed until an evaluation can be completed on
the SPEC2000 benchmarks.

Our results do show that the amount of improvement
that our proposal can produce is highly dependent on
the type of applications. We have also showed that the
type of weightings used can have a significant affect on
the performance. Therefore, more work may also need
to be done to evaluate the cause of only marginal
improvements and perhaps develop a better weighing
algorithm. In general, we have shown that there is a lot
of potential for performance improvement resulting
from a more judicious use of trace cache resources.

REFERENCES

[1] E. Rotenberg, S. Bennett, and J. Smith. Trace

Cache: a Low Latency Approach to High
Bandwidth Instruction Fetching. IEEE, pp. 24-34,
1996.

[2] D. Friendly, S. Patel, and Y. Patt. Alternative
Fetch and Issue Policies for the Trace Cache Fetch
Mechanism. IEEE, pp. 24-33, 1997.

[3] D. Burger and T. Austin. The SimpleScalar Tool
Set, Version 2.0. University of Wisconsin-
Madison Computer Sciences Department
Technical Report, pp. 1-21, June 1997.

[4] S. Patel, D. Friendly, and Y. Patt. Critical Issues
Regarding the Trace Cache Fetch Mechanism.
University of Michigan Department of Electrical
Engineering and Computer Science Technical
Report.

[5] J. Henning. SPEC CPU2000: Measuring CPU
Performance in the New Millennium. IEEE
Computer, pp. 28-35, 2000.

 9

Appendix A

/*
 * This method calculates the weight for a given trace cache line.
 * It considers three factors : block count, discontiguity and future usage of
 * the line
 */
int get_trace_cache_line_weight(index, line_no)
 int index ;
 int line_no ;
{

 int block_count_weight,branch_pred_weight=0, hit_weight ;
 int count = 0 ;
 int temp = 10001 ;
 // all weights normalized over 10 except hit_weight

 // Number of basic blocks in the trace cache line.
 block_count_weight = trace_cache[index][line_no].no_of_BB * 10 / MAX_PREDICTIONS ;

 // Discontiguity factor :
 // => more the number of 1s in branch_prediction array of a trace-cache
 // line, more discontiguous is the line, so it is given more weight
 for(count=0; count<trace_cache[index][line_no].no_of_BB; ++count)
 {
 temp = pow(10,count+1) * trace_cache[index][line_no].branch_pred_val[count] ;
 }
 switch(temp)
 {
 case 10001 : branch_pred_weight = 0 ; break ;
 case 10011 : branch_pred_weight = 2 ; break ;
 case 10101 : branch_pred_weight = 4 ; break ;
 case 10111 : branch_pred_weight = 6 ; break ;
 case 11001 : branch_pred_weight = 4 ; break ;
 case 11011 : branch_pred_weight = 6 ; break ;
 case 11101 : branch_pred_weight = 8 ; break ;
 case 11111 : branch_pred_weight = 10 ; break ;
 }

 // hit_weight
 hit_weight = 0 ;
 if((current_sim_cycle - trace_cache[index][line_no].partial_hit_lru[0]) < active_window_size)
 {
 if(trace_cache[index][line_no].partial_hit_count[tc_m] > 3)
 hit_weight = 10 ;
 else if (trace_cache[index][line_no].partial_hit_count[tc_m] == 1)
 hit_weight = 2 ;
 else hit_weight = 5 ;
 }

 // return the sum of aboave weight factors
 return block_count_weight + branch_pred_weight + hit_weight ;
}

