Towards a More Efficient

!'_ Trace Cache

Amit Saha
Jerry Yen

Rajnish Kumar
ELEC/COMP 525 April 24, 2001

i Motivation

= Exploiting ILP
s Current limitations of instruction fetch
mechanisms

branch cutcomesjump addresses

!.L

Instruction -
= = =
Decode

Instruction

Buffer({s)

From: Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching by Rotenberg, et al. 1996

i Hypothesis

Trace cache implemented by:

= Glving weights to entries based on past
use and future usage prediction (branch
prediction) and

= Using the weights for the line fill and
replacement buffer logic

will enhance processor performance

Architecture

FETCH Troum FEITH
ADDRESS INSTRUCTION LATCH ADDRESS

TRACE CACHE CORE FETCH UNIT [T Flace CaC h e

twan:h t:-mtf a:ladrf:; 1 Ml—:ltl"-E-L_i'I'(_"-[:] r - | lNSTﬂ.‘. KL:ACHE . 1 O 24 O r 3 2
ol entries

v f:""::f;:l —]

g\ T , i::!fi*fi—t_l@

- = Max 3

b blocks per

pid x| v
2 interchangedshill
h“"‘"‘-.h-(‘ I n asiruciings t
q,'llrl"].:']l."]i('fl" - st en ry

'% e Ani i
b) H
m prediction 1] : -, [| M aX 16

¥

::I;_IDIC”]‘(JR | - |.1”‘l:-u_um;umu i n St r u Cti O n
[msRucTONLATCH | pe r e ntry

Y
o DECTHDER

i Branch Predictor

= Two Level Adaptive Branch Predictor

Global History Pattern History
Register ~~ Table

eeeeee

Primary Branch
Prediction

i Weight Parameters

= Number of basic blocks

= Non-contiguity of the line
= Zero-count in branch-prediction values

= Expected future use
= 2-bit hit counter
= Active-window-size field

i Implementation

= Separate fields for different parameters

= Total weight of trace cache line Is sum of
= Basic_block count weight
= Branch prediction values mapped to weights

= Number of hits in last x number of cycles
= X IS active_window_size.

i Redundancy in Trace-Cache

= Line-fill-buffer logic
changed :

= If a block is the point of
multiple entry, like B here
start a new trace cache
line with B.

Possible segments
ABC
DEB
CDhE
BCD
EBC

i Implementation

Example :
[ABC] - [ABC, DE]
v
[ABC, DE, BCD]
v
[BCD]

Possible segments

i Methodology

= Baseline
= Increased execution resources

= Baseline with TC
= Baseline with modified TC

= Unmodified Trace Cache
= LRU replacement policy

|deal case

Possible IPC Improvement with 1024 Entry Trace Cache

25

15

O Baseline
B TC(1024)

IPC

0.5

ammp mcf* vpr mean
SPEC2000 Benchmark

* Small sized trace cache

IPC Improvement With 64 Entry Trace Cache

2.5
2
1.5
OBaseline
£ mTC(1024)
OTC(64)

ammp mcf* vpr mean
SPEC2000 Benchmark

[tests/ benchmarks ideal case

Possible IPC Improvement with 1024 Entry Trace Cache

2.5

15

OBaseline
B TC(1024)

IPC

0.5

anagram test-fmath test-llong test-Iswir test-math test-printf mean
Test Benchmark

i Small sized trace cache

IPC

2.5

IPC Improvement with Trace Cache

1.5

0.5 +

anagram

OBaseline
ETC(1024)
OTC(32)

test-fmath test-llong test-Iswlr test-math test-printf mean

Test Benchmark

i Various weights used

IPC Improvement with Trace Cache Using Various Weights

ETC(32)
BTC(32) + Distance W eight
OTC(32) + W eights

IPC

anagram test-fmath test-llong test-lswlir test-math test-printf mean
Test Benchmark

1.4

1.2

IPC

i Modified Ifb logic

IPC Improvement with Modified Line-Fill Buffer Logic

anagram

test-fmath

test-llong

test-Iswlir

Test Benchmark

test-math

test-printf

mean

OTC(32)+Weights

BTC(32)+Weights+Modified
Line-Fill Buffer Logic

i In conclusion

= Fetch Q Is the bottleneck

= Hypothesis partially valid
= Better results for Spec2000 ?

= Better combination of proposed
welights ?

= New weights ?

= Same weights to work across multiple
benchmarks ?

i L earning experience

= Difficult to increase IPC beyond what a
nase trace cache offers.

= How to proceed with such research
orojects

= Why man-months are so important in
architecture research ?

