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i Motivation

= Exploiting ILP
s Current limitations of instruction fetch
mechanisms

branch cutcomesjump addresses
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From: Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching by Rotenberg, et al. 1996



i Hypothesis

Trace cache implemented by:

= Glving weights to entries based on past
use and future usage prediction (branch
prediction) and

= Using the weights for the line fill and
replacement buffer logic

will enhance processor performance




Architecture
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i Branch Predictor

= Two Level Adaptive Branch Predictor

Global History Pattern History
Register ~~ Table
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Primary Branch
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i Weight Parameters

= Number of basic blocks

= Non-contiguity of the line
= Zero-count in branch-prediction values

= Expected future use
= 2-bit hit counter
= Active-window-size field



i Implementation

= Separate fields for different parameters

= Total weight of trace cache line Is sum of
= Basic_block count weight
= Branch prediction values mapped to weights

= Number of hits in last x number of cycles
= X IS active_window_size.



i Redundancy in Trace-Cache

= Line-fill-buffer logic
changed :

= If a block is the point of
multiple entry, like B here
start a new trace cache
line with B.

Possible segments
ABC
DEB
CDhE
BCD
EBC



i Implementation

Example :
[ABC] - [ABC, DE]
v
[ABC, DE, BCD]
v
[BCD]

Possible segments



i Methodology

= Baseline
= Increased execution resources

= Baseline with TC
= Baseline with modified TC

= Unmodified Trace Cache
= LRU replacement policy




|deal case

Possible IPC Improvement with 1024 Entry Trace Cache
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* Small sized trace cache

IPC Improvement With 64 Entry Trace Cache
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[tests/ benchmarks ideal case

Possible IPC Improvement with 1024 Entry Trace Cache
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i Small sized trace cache
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i Various weights used

IPC Improvement with Trace Cache Using Various Weights
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i Modified Ifb logic

IPC Improvement with Modified Line-Fill Buffer Logic
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i In conclusion

= Fetch Q Is the bottleneck

= Hypothesis partially valid
= Better results for Spec2000 ?

= Better combination of proposed
welights ?

= New weights ?

= Same weights to work across multiple
benchmarks ?



i L earning experience

= Difficult to increase IPC beyond what a
nase trace cache offers.

= How to proceed with such research
orojects

= Why man-months are so important in
architecture research ?




