
Towards a More Efficient
Trace Cache

Amit Saha
Jerry Yen

Rajnish Kumar
ELEC/COMP 525 April 24, 2001

Motivation

n Exploiting ILP
n Current limitations of instruction fetch

mechanisms

From: Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching by Rotenberg, et al. 1996

Hypothesis

Trace cache implemented by:
n Giving weights to entries based on past

use and future usage prediction (branch
prediction) and

n Using the weights for the line fill and
replacement buffer logic

will enhance processor performance

Architecture

n Trace Cache
n 1024 or 32

entries
n Max 3

blocks per
entry

n Max 16
instruction
per entry

Branch Predictor

n Two Level Adaptive Branch Predictor

K

k-2

k-1

K
Select

Select

Tertiary Branch
Prediction

Secondary
Branch Prediction

Primary Branch
Prediction

2

Global History
Register

Pattern History
Table

Weight Parameters

n Number of basic blocks
n Non-contiguity of the line

n Zero-count in branch-prediction values

n Expected future use
n 2-bit hit counter
n Active-window-size field

Implementation

n Separate fields for different parameters
n Total weight of trace cache line is sum of

n Basic_block_count weight
n Branch prediction values mapped to weights
n Number of hits in last x number of cycles

n x is active_window_size.

Redundancy in Trace-Cache

n Line-fill-buffer logic
changed :
n If a block is the point of

multiple entry, like B here,
start a new trace cache
line with B.

Implementation

Example :
[ABC] à [ABC, DE]

[ABC, DE, BCD]

[BCD]

Methodology

n Baseline
n Increased execution resources

n Baseline with TC
n Baseline with modified TC
n Unmodified Trace Cache

n LRU replacement policy

Ideal case
Possible IPC Improvement with 1024 Entry Trace Cache

0

0.5

1

1.5

2

2.5

ammp mcf* vpr mean

SPEC2000 Benchmark

IP
C Baseline

TC(1024)

Small sized trace cache
IPC Improvement With 64 Entry Trace Cache

0

0.5

1

1.5

2

2.5

ammp mcf* vpr mean

SPEC2000 Benchmark

IP
C

Baseline

TC(1024)

TC(64)

./tests/ benchmarks ideal case
Possible IPC Improvement with 1024 Entry Trace Cache

0

0.5

1

1.5

2

2.5

anagram test-fmath test-llong test-lswlr test-math test-printf mean

Test Benchmark

IP
C Baseline

TC(1024)

Small sized trace cache
IPC Improvement wi th Trace Cache

0

0.5

1

1.5

2

2.5

anagram test-fmath test-l long test-lswlr test-math test-printf mean

Test Benchmark

IP
C

Basel ine

TC(1024)

TC(32)

Various weights used

I P C I m p r o v e m e n t w i t h T r a c e C a c h e U s i n g V a r i o u s W e i g h t s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a n a g r a m test- fm a th test- l long test- lswlr test-m a t h test-pr int f m e a n

T e s t B e n c h m a r k

IP
C

TC(32)

TC(32) + D is tance W eight

TC(32) + W eights

Modified lfb logic

IPC Improvement with Modified Line-Fill Buffer Logic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

anagram test-fmath test-llong test-lswlr test-math test-printf mean

Test Benchmark

IP
C TC(32)+Weights

TC(32)+Weights+Modif ied
Line-Fil l Buffer Logic

In conclusion
n Fetch Q is the bottleneck
n Hypothesis partially valid

n Better results for Spec2000 ?
n Better combination of proposed

weights ?
n New weights ?
n Same weights to work across multiple

benchmarks ?

Learning experience

n Difficult to increase IPC beyond what a
base trace cache offers.

n How to proceed with such research
projects

n Why man-months are so important in
architecture research ?

