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1.0 Motivation 
 
As we rapidly approach the milestone of one billion transistors on a single chip, the 
subject of power consumption is becoming an increasingly important issue.  No longer 
is it possible to cool a modern microprocessor with simple heat sinks and fans, and with 
the recent explosion in mobile computing the problem is only exacerbated.  Figure 1 
below shows power consumption trends of general purpose processors from 1990 - 
1997.1  Extrapolating this data out to the year 2010 shows that, even by conservative 
estimates, general purpose processors will be consuming well over 100 Watts of power. 
This level of power consumption is unacceptable in portable devices for two reasons.  
First, barring any unforeseen advances in battery technology, the idea of all day 
computing becomes unachievable due to the amount of power required by the system.   
Secondly, due to the power consumption per unit area of die, the means of cooling the 
processor begins to seriously hinder the portability of such a device. 
 
 

Figure 1:  Processor power consumption vs. year 

 
 
In recent years, architectures have emerged which claim to drastically reduce processor 
power consumption.  In the authors’ opinion, however, many of these techniques 
appear to be rather brute force in nature and improperly focused.  One popular trend is 
to allow the processor to run at multiple frequencies, switching to the lower clock 
speeds when attempting to conserve power.  Examples of this include Intel’s 
SpeedStep technology in the Pentium III processor, and Transmeta’s LongRun 
technology in the TM5400 series processors.2,3  Although scaling clock frequency 
clearly reduces overall processor power consumption, in many cases system 
performance suffers accordingly. In this paper, we propose a solution which attacks the 
issue with a finer level of granularity, i.e. at the architectural level, and is cognizant of 
system performance.  By doing this, we hope to decouple processor power 
consumption and application performance. 
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2.0 Hypothesis 
 
Looking at the transistor budgets for today’s modern microprocessors, excluding vector 
based architectures, it is clear that the majority of transistors are being used in caches 
of various types4,5.  It is no surprise then, that a major portion of processor power is 
consumed by the cache due to repeated cycling of the clock to cache cells, regardless 
of whether they hold any useful information or not.  Furthermore, with today’s 
applications ranging from multimedia and word processing applications to scientific 
workloads it, should be no surprise that caching needs are not homogeneous across 
the board. 
 
In this paper, we propose a data cache which can be dynamically reconfigured at 
runtime with respect to an application’s memory footprint.  By dynamically reallocating 
data cache resources, areas of the data cache which have not been allocated can be 
“turned off” to conserve power. The availability of such an architectural feature makes 
the following property important:  given an arbitrarily large data cache, an application 
will achieve a given level of performance.  Further increasing the data cache size will no 
longer improve application performance, as the entire working set of the application 
now resides in data cache and storage space is no longer an issue.   
 
Combining the information given above, we hypothesize that there exist cases in which 
the amount of memory referenced by an application over a given period of time is far 
smaller than the total data cache size.  By profiling an application’s memory access 
patterns over various input data sets, we hope to gain insight into not only it’s overall 
data cache requirements, but also the data cache requirements at various points 
throughout it’s execution.   Knowing the data caching requirements throughout the 
application, we can dynamically reallocate subsets of the total data cache such that the 
majority of the application’s working set fits in data cache.  If the working sets of the 
application are smaller in size that the total available data cache, then we should be 
able to reduce power consumption considerably due to the amount of non allocated 
data cache, which will be powered down during runtime.  Furthermore, since the lower 
bound on the allocated data cache size is approximately the active working set of the 
application, performance loss should be minimal.   
 
We anticipate the greatest power savings to be on multimedia type applications due to 
the small amount of temporal locality for cached data.   Scientific applications will most 
likely yield minimal results.  This is expected due to the fact that many of these type 
applications use very large data sets, and are compiled with explicit knowledge of the 
underlying processors cache resources.  Techniques such as loop blocking are often 
employed when a loops working data set is larger in size than the processors data 
cache, and very often make efficient use of the available data cache. 
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3.0 Architecture 
 
All simulations were performed with the Simplescalar simulator, version 3.0, available 
for download at www.simplescalar.org.  In order track the amount of power consumed 
by each of the processors resources, the Wattch tool set version 1.02 was integrated 
into Simplescalar as well.  The Wattch toolset is available for download at 
www.ee.princeton.edu/~dbrooks/.  
 
Table 1 below lists the parameters used during Simplescalar simulations.   Parameters 
were chosen to closely resemble the features of many modern general purpose 
processors. 
 

Table 1:  Simplescalar Simulation Parameters 
Simulation Parameters Values 
L1 inst. cache size Varied, 8K – 128K 
L1 inst. cache structure Varied,  direct mapped, fully associative, two way, four way 
L1 inst. cache replacement policy Least recently used 
L1 data cache size Varied, 8K – 128K 
L1 data cache structure Varied,  direct mapped, fully associative, two way, four way 
L1 data cache replacement policy Least recently used 
L2 unified cache size Fixed, 256K  
L2 unified cache structure Four way associative 
L2 cache sets  64 
L2 cache line length 1024 bytes 
Process technology ����� � 
Clock speed 600 MHz 
Clocking method Aggressive conditional, with leakage. 
Integer ALU’s 4 + 1 integer multiply 
Floating point ALU’s 4 + 1 floating point multiply 
Memory ALU’s 2 
Decode / issue / commit width 4 instructions 
Register update unit 16 entries 
Load / store queue size 8 entries 
Branch predictor bimodal, 2K entries + 8 entry return buffer, 512 entry BTB 
TLB size 4K 
TLB structure Four way associative 
TLB replacement policy Least Recently Used 

 
 
In order to facilitate the powering down of the data cache, we propose the use of 
multiple address decoders interfaced to the data cache via a single multiplexor.  If the 
data cache can be run in one of four different sizes, for example, then we propose the 
use of four decoders.  Each decoder will map values into the data cache according to 
the active data cache size.  This implementation will work well when the active data 
cache size is scaled down, but when the active data cache size is increased, 
complications may arise.   Consider the following:  when the data cache size is 
increased, a new address decoder is selected to map addresses into data cache.  
Values that resided in data cache before the data cache’s size was increased will still 
reside in the same locations.  The new decoder, however, may map the same 
addresses to locations recently turned on and thus register a data miss due to the fact 
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that the same data was loaded into the cache earlier, but by a different decoder.  This 
issue is considered beyond the scope of our research, however the topic is further 
addressed in the conclusions section. 
 
The powering down of the data cache itself consists of simply stopping the cycling of 
the clock to areas of the data cache which are not to remain active.  Data held within 
this portion of the cache will be preserved, and again be accessible if and when this 
portion of the data cache is again made active.  Some leakage of clock current is 
expected, however, most likely on the order of five to ten percent.  This is addressed 
with the clocking method parameter in table 1 above.   
 
Because the amount of transistors added to the baseline architecture is minimal, 
neither die area nor increased power consumption should not be much of an issue .  
Though multiple address decoders will be required for the data cache, the transistor 
budgets of modern architectures will more than accommodate this.  The use of a 
multiplexor interface between the address decoders and the data cache prevents the 
need for additional read and write ports on the data cache.   By not adding ports to the 
baseline data cache, cache hit time will be preserved assuming the additional delay of 
the multiplexor and address decoders is negligible.  Due to the simplicity of this design 
and the fact that the underlying data cache is not modified, this implementation should 
scale well to future architectures. 
 
 
4.0 Experimental Framework 
 
The project was divided into multiple stages of experimentation, each of which built 
upon the results obtained in the previous stage.  By working in this manner, it was 
unlikely that research would pursue down a dead end path, and be based on improper 
speculation as opposed to known fact.  If the previous stage of experiments didn’t 
suggest what had been anticipated, perhaps the direction of research should be 
reconsidered.  Furthermore, by breaking the project down into more manageable 
milestones, it was less likely that research would fall behind scheduled deadlines.   
 
All experiments were performed on a subset of benchmarks taken from the SPEC 2000 
suite.  This working subset consisted of 188.ammp, 181.mcf, 197.parser, and 175.vpr.  
Only four benchmarks were used due to the number of simulations which were to be 
run, the amount of computation time each simulation required, and the time frame of 
the project.  A brief description of each benchmark is given in table 2 below. 
 

Table 2:  Benchmark types and descriptions 
Benchmark Type Description  

188.ammp Floating point Molecular dynamics simulation. 
181.mcf Integer Vehicle scheduling in public mass transportation 

system. 
197.parser Integer Syntactic parser of English language. 
175.vpr Integer Integrated circuit CAD design program. 
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5.0 Validity of Hypothesis 
 
The first round of experiments were designed to test whether or not the proposed 
hypothesis was valid.  More specifically, the issues of what percentage of total 
processor power was dedicated to powering the data cache, and how much of the 
processors data cache were these benchmarks actually using.  To determine what 
percentage of total processor power was being consumed by the data cache, we ran 
simulations of each of the benchmarks with fully associative L1 data and instruction 
caches of size 8KB, 16KB, 32KB, 64KB, and 128KB each, keeping all other parameters 
fixed.  Figure 2 below show how much power each of the processors major resources 
consumed as data cache size varied for the 181.mcf benchmark.  Table 3 contains the 
symbol key for figure 2.  The results for the 181.mcf benchmark were typical of each 
benchmark used, thus we have chosen to omit plots for each benchmark individually. 
 

Figure 2:  Processor resource power consumption for 181.mcf 
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Table 3:  Key of Names for Figure 3 
Name Processor Resource 

Rename Rename buffer 
Brpred Branch prediction hardware 
Window Instruction fetch, decode window. 
Lsq Load store queue 
Regfile Register file 
Icache L1 instruction cache 
DCache L1 data cache 
Unified Unified L2 instruction and data cache 
Int Alu Integer alu’s 
Float Alu Floating point alu’s 
Res Bus Result bus 
Clock Processor Clock 
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In figure 2 we can see that when L1 data cache is less than 16KB, its power 
consumption is substantial but not overwhelming.  When L1 data cache is increased to 
the 64KB - 128KB range however, it becomes the dominating factor in overall processor 
power consumption.  This proves that the cache is one of the more power hungry 
processor resources today, and if we are to begin reducing overall processor power 
consumption this is prime area in which to focus our efforts.  
 
In order to estimate the amount of total L1 data cache being utilized by these 
benchmarks, we ran simulations of each of the benchmarks with fully associative, two 
way, and four way associative L1 data and instruction caches.  In addition to varying the 
cache structure, we again varied the L1 data and instruction cache size using values of 
8KB, 16KB, 32KB, 64KB, and 128KB.  For each of the simulations we measured 
average IPC and average power consumption.  Figures 3a - 3d below show the results 
obtained for average IPC, and figures 4a –4d show the results obtained for average 
power consumed. 
 
 

 
Figure 3a:  Average IPC for 181.mcf   Figure 3b:  Average IPC for 175.vpr 
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Figure 3c:  Average IPC for 188.ammp  Figure 3d:  Average IPC for 197.parser 
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Figure 4a:  Average Power for 181.mcf             Figure 4b:  Average Power for 175.vpr 
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Figure 4c:  Average Power for 188.ammp            Figure 4d:  Average Power for 197.parser 

8

16

32

64

128

1

2

4

0

5

10

15

20

25

Cache size (KB)

ammp

Cache ways

A
ve

ra
ge

 p
ow

er

  
8

16

32

64

128

1

2

4

0

10

20

30

Cache size (KB)

parser

Cache ways

A
ve

ra
ge

 p
ow

er

 
 
 
For 175.vpr, it is apparent that anything larger than a 16KB L1 data and instruction 
cache is not necessary, as there is no improvement to average IPC above this 
threshold.  Looking at the corresponding average power consumption for 175.vpr,  by 
operating with 16KB L1 data and instruction caches will reduce total processor power 
consumption by almost fifty percent, with minimal drop in IPC.  Going so far as to 
further reduce L1 data and instruction cache sizes to the 8K range reduces IPC 
somewhat, but reduces total processor power consumption by as much as sixty six 
percent.  In the other benchmarks the decrease in IPC was less drastic than in 175.vpr, 
while reduction in power consumption was similar.  From this we conclude that even 
better results are attainable, and 175.vpr exhibits the most conservative of the four 
cases. 
 
 
6.0 Experimental Analysis 
 
Expanding upon the idea that there exist cases in which application performance can 
be maintained while data cache size is decreased, it became apparent that a more in 
depth analysis of an applications caching behavior was necessary.  At this point it was 
decided that further research efforts would focus only on fully associative data caches.  
This decision was made with regard to the large amount of programming and 
debugging that was necessary, as well as the increasing number of simulations that 
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would be required, each of which costing vast amounts of computation time.  Additional 
comments on multiple way and direct mapped data caches will be further addressed in 
the conclusions and future work sections of the paper. 
 
The first step in obtaining a better understanding of caching behavior was to obtain 
execution traces for the suite of benchmarks used.  Modifications were made to 
Simplescalar’s sim-outorder simulator to generate a trace of load and store operations 
for a given benchmark’s execution.  Care was taken to only consider those operations 
which were committed rather than speculatively executed and discarded.  In addition to 
creating a trace of memory operations, a simulator for arbitrarily sized fully associative 
data caches was incorporated into sim-outorder as well, hereupon referred to as the 
ideal data cache.  Ideal data cache line length was chosen to be of unit size, where a 
unit can be any arbitrarily sized data type, for reasons that will soon become apparent.   
 
The replacement policy for the ideal data cache is derived from L.A. Belady’s offline 
page replacement policy, better known as the MIN algorithm6.  This algorithm was 
chosen due to the similarities between mapping memory loads into a fully associative 
cache with unit sized line length and register allocation over straight line blocks of code.  
If one considers the benchmark’s memory operation trace to be a straight line block of 
code, and each unit sized cache line to be a register, then the problem becomes one of 
register allocation over basic blocks.  The algorithm works as follows:  the ideal data 
cache is initialized to be empty.  At each load instruction, data is loaded into an empty 
ideal data cache line.  Once all ideal data cache lines are full, at each subsequent load 
operation a data value currently in ideal data cache must be evicted.  In order to 
determine which value to evict from the ideal data cache, the algorithm checks to see if 
any ideal data cache entries are never referenced again further ahead in the instruction 
trace.  If there exist entries which are never referenced again, then one of these entries 
is evicted and the data from the outstanding load instruction is stored in said cache line.  
If all entries currently in the ideal data cache are referenced further ahead in the 
instruction trace, then the cache line holding the data which is referenced furthest 
ahead in the instruction trace is evicted, and the data from the outstanding load 
instruction is stored in said cache line.   
 
Simply knowing what data resides in the ideal data cache at any given time does not 
provide adequate insight into an application’s caching behavior, however.  Combining 
the knowledge of what data resides in the ideal data cache at any given time with the 
knowledge of what percentage of the data residing in the ideal data cache is actually 
referenced again in the upcoming instruction stream is far more beneficial.  In order to 
gather this information, additional modifications were made to the sim-outorder 
simulator.  A feature named “liveness” was added which analyzes the contents of the 
ideal data cache and reports the number of ideal data cache entries which are 
referenced above a specified threshold number of times in the upcoming specified 
number of instruction.  This tool also works off of the generated memory reference 
instruction traces mentioned earlier.  Figures 5a - 5d below show the results of the 
liveness analysis for each benchmark in the suite.  It should be noted that due to the 
amount of computation time it required to run simulations with liveness information, the 
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plots for all but 175.vpr are incomplete.  They have been included to illustrate caching 
trends however.  Liveness analysis was run using a 64KB fully associative ideal data 
cache. Cache contents were analyzed after every five thousand instructions, and the 
instruction look ahead window was twenty thousand instructions.  A value residing in 
ideal cache was counted as useful if it was referenced once or more in the look ahead 
window.   
 

  Figure 5a: Liveness plot for 181.mcf            Figure 5b:   Liveness plot for 175.vpr 
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Figure 5c:  Liveness plot for 188.ammp        Figure 5d:  Liveness plot for 197.parser 
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Clearly, in 181.mcf there is very little temporal locality in cached data until the end of the 
plot, where the spikes occur.  For this case, very little if any data cache is needed 
during the beginning of computation.  Looking at 188.ammp, there are just over 200 
useful values in cache until approximately ten million instructions have been executed, 
at which point that figure jump to just below three hundred.  These results correspond 
with our initial hypothesis that there are significantly sized portions of execution time in 
which the amount of useful data stored in the L1 data cache varies.  It is unfortunate, 
however, that our simulations required so much time and more data could not be 
analyzed.  In hind sight, this is due to the overall method chosen to analyze cache data.  
Simply analyzing the data at fixed intervals of instructions requires far to much 
computation time, as time is directly proportional to simulated cache size and look 
ahead window size.  A better implementation would have been to profile the 
benchmarks, as opposed to creating traces for them.  Data cache requirements could 
then be determined on a procedure by procedure basis.  Considering only those 
procedures which execute for significant portions of time, we could then tailor the data 
cache size accordingly. 
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Using the information in figures 5a – 5d above, we ran simulations for all of the 
benchmarks while varying data cache size throughout program execution.  The 
framework for measuring power consumption while dynamically enabling and disabling 
processor resources worked as follows.  At the start of a simulation, the Wattch toolset 
initializes data cache power consumption coefficients according to the size and 
configuration of the data cache, and initializes data cache power consumption to zero.  
At each data cache access, the simulated data cache access cost is added to the 
running total, based on the calculated power consumption coefficients.  In order to 
model dynamic data cache access costs, whenever data cache size was changed, the 
coefficients used to determine data cache access cost were recalculated.  The new 
cost of a data cache access was then added to the running total cost at each access. 
 
In addition to accounting for the varying power costs for a data cache access, it was 
also necessary to simulate what happened to data residing in data cache when the data 
cache was resized.  A pessimistic model was chosen in which during a data cache size 
switch, all data residing in cache was flushed.  Unfortunately, due to an error which was 
caught in our earlier simulations, time which had been allocated to simulating the 
dynamically resizable data cache had to be used to correct for the earlier simulations.   
 
We hypothesized that by dynamically resizing the L1 data cache at various point during 
program execution, we would be able to maintain average IPC while reducing the total 
power consumed by the processor.  It was already proven that IPC could be maintained 
while data cache size was reduced from 128K, even if data cache was not dynamically 
resized during program execution.  Looking at the plots of liveness information in 
figures 5a –5d, if a line were drawn horizontally across the plot at the level of the 
highest peak, one could conceivably consider all area between the horizontal line and 
the peaks in the plot to be error, or wasted power.  We originally hoped to be able to 
remove this wasted power by resizing the data cache dynamically. 
 
Although results for dynamically resizing the L1 data cache were not obtained, there are 
a number of things which should be considered.  The first of these is the liveness data 
obtained for each benchmark.  Assuming that liveness data was available for the entire 
execution of the benchmark, it may not have proved as useful as was originally hoped.  
One reason is that even if architectures L1 data cache were fully associative, if power 
consumption were an issue it would most likely not be designed with single unit line 
length.  This is due to the fact that if line length were of unit size, there would be as 
many tags to check on each access as there were lines in the data cache.  The power 
cost of repeated tag checks would be quite large.  Additionally, if non unit line length 
were used, the issue of spatial locality would come into play.  If there were large 
amounts of spatial locality in the cache data, then multiple values reported by liveness 
would most likely map to the same cache line.  If there were little spatial locality, 
however, it is likely that even if the fully associative data cache were somewhat larger 
than what liveness reported, not all data values reported by liveness would fit into data 
cache. 
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Another point to consider is the reduction in processor power consumption achieved by 
dynamically resizing the L1 data cache.  Early on, the total power consumption of the 
processor as a function of cache size and structure was shown.  Although the reduction 
in power consumption was substantial, one must keep in mind that both L1 data and 
instruction caches were resized.  It is true that L1 data cache consumed more power 
than L1 instruction cache on average, but if the simulations only varied L1 data cache 
size while L1 instruction cache size was held static, it would be very difficult if not 
impossible to achieve such drastic results.  Another factor attributable to varying the L1 
instruction cache size in parallel with L1 data cache size is the reduction in average IPC 
seen in figures 4a – 4d.  Because L1 instruction cache size was varied, instruction 
cache misses which occurred due to the smaller L1 cache sizes may have exaggerated 
the decrease in average IPC seen.  If L1 instruction cache size were held constant at 
128KB, a higher average IPC would most likely have been seen. 
 

 
 

8.0 Conclusions 
 
Although our final experiments did not complete in time, it was proved early on that our 
hypothesis was indeed correct.  For many benchmarks, data cache size can be 
reduced while maintaining average IPC and reducing total processor power 
consumption.  Were additional time available, however, there are a number of 
refinements which could be made to the research presented.  The first of these would 
be to run simulations again to determine average IPC and power consumption while 
varying L1 data cache size and holding L1 instruction cache size fixed.  These results 
would provide clearer insight into the total results achievable.  In addition to this, 
restructuring of the liveness analysis software would provide faster simulation times, 
The option to run liveness analysis over varied types of caches would prove to be 
useful as well.  This would eliminate the speculation involved in determining how direct 
mapped cache performance relates to two and four way cache performance.  A less 
pessimistic model of data cache size switching in the simulator, one which more closely 
correlates to our proposed architecture, would incur less penalty for data cache size 
switching as well. Finally, investigation into dynamically resizing data caches which are 
not fully associative would provide useful insight into this technology’s applications in 
modern architectures. 
 
The results presented in this paper may not be as drastic as originally hoped, but that 
should not overshadow the fact that it is indeed possible to reduce processor power 
consumption via configurable caches.  Even if data cache size is not dynamically 
reconfigured during program execution, statically setting the size before an application 
runs will provide significant improvements.  Furthermore, with the advent of billion 
transistor chips, cache size is only going to expand.  As this happens, increasing 
amounts of power will be consumed by the cache, and the benefits of the proposed 
technology will grow.  With some additional research, there is no reason that these 
techniques can not be applied to instruction caches as well.  In conclusion, we have 
only touched upon the benefits achievable with the use of dynamically configurable 
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caches.  We believe that architectural and compiler based advancements in the 
upcoming years should make such a technology feasible in many general purpose 
processors targeted at the low power market. 
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