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   Abstract – Modern architectures provide mecha-
nisms to allow a process to manipulate a portion of its 
memory as a stack through special registers and in-
structions. If the portion of memory that represents the 
stack were kept in a cache hierarchy separate from the 
traditional data cache, the so-called “stack cache” could 
be tuned to the specialized behavior of stack access 
patterns. We have simulated a simple stack cache 
within the SimpleScalar framework. For four of the 
SimpleScalar benchmark applications the stack cache 
we implemented produced speedups in the range of 1–
4%. 
 
1. Introduction 

 
Memory access patterns for stack data 

have both spatial locality and temporal local-
ity since the data occupies a small, contiguous 
area of memory near the top of the stack. The 
stack is heavily used in modern programs 
compiled from high-level languages for book-
keeping and parameter passing during func-
tion calls, allocating local variables and regis-
ter spilling.  

This paper focuses on implementing a 
stack cache to handle the specific nature of 
stack access patterns and alleviate pressure on 
the L1 data cache. 

 
1.2 Prior Work 

 
Cooper and Harvey identified an interest-

ing problem in the traditional assumption that 
compilers can do very little in the way of un-
derstanding run-time behavior of memory ac-
cesses[1]. This assumption ignores compiler 
inserted spills and fills from register alloca-
tion, parameter passing and procedure calls, 
all which observe the temporal locality of data 
with respect to the top of the stack. Their ap-
proach did not convince most readers that a 
“compiler controlled memory” would help 
solve this problem. Rather than repeat their 

experiments to verify this, we propose a 
purely architectural solution. 
 
1.3 Stack Cache Basics 
 

The stack cache acts as a window into the 
current stack memory of a program, contain-
ing the data that has most recently been used. 
Specifically it will contain all data within a 
certain offset from the top of the stack. As the 
stack grows, old data at the bottom of the 
stack cache must be evicted to make room. 
The stack cache can be viewed as a circular 
buffer with an index for the top of the stack 
and one for the bottom of the stack: 

Figure 1: A simple stack cache diagram 
 
Older entries in the stack can be preemp-

tively saved to the L2 cache as the stack cache 
gets full, predicting the necessity of spilling. 
When the stack shrinks, data will need to be 
loaded back into the cache from L2 or main 
memory, and again this can be done preemp-
tively - data can be prefetched into the stack 
cache before it is known that it is needed. This 
preemptive spilling and filling of the stack 
cache could greatly reduce latency of accesses 
to stack data by making sure the data is al-
ways available in the stack cache – assuming 
the program is accessing the stack data ac-
cording to the rules of stack temporal locality 
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(i.e. only a small window of the stack is in 
active use at a given time). 

 
1.4 Paper Overview 

 
Section 2 covers our motivation and hy-

potheses in depth. The details of the proposed 
hardware implementation are presented in 
Section 3, while the software implementation 
and simulator details are discussed in Section 
4. We analyze the simulation results in Sec-
tion 5, and draw our conclusion in Section 6.  

 
2. Motivation and Hypotheses 
 

In the previous sections we mentioned the 
possible usefulness of a cache for a particular 
type of memory access. In this section we go 
into more detail, including why current cache 
designs are ill-equipped to handle the tempo-
ral and spatial locality exhibited by stack ac-
cesses. 

 
2.1 Motivation 
 

A large amount of research in computer 
architecture of the past fifteen years has gone 
into overcoming the CPU-memory bottleneck, 
which not only increases latency of individual 
instructions, but limits instruction level paral-
lelism (ILP) through long-latency chains of 
data dependencies. The standard architectural 
element used to manage the increasing gap 
between CPU cycle times and memory access 
latencies is to cache a small subset of main 
memory within a fast memory more local to 
the CPU. 

However, many characteristics of memory 
use limit the extent to which locality can be 
exploited – conflict misses in particular are a 
limiting factor. One potential source of such 
misses is the conflict between stack data and 
heap data, which are, typically, logically sepa-
rate areas of a program’s memory space. Also, 
cache sizes and associativity have increased 
over the years in the attempt to decrease miss 
rates and improve performance, but this 
comes at the expense of increasing cache la-
tency and increasing power consumption. 

Originally, L1 data caches were designed to 
have single-cycle access latencies, but in typi-
cal state-of-the-art processors latencies of 3 
cycles are more common. 

L1 data caches have become all-purpose 
caches, catering to random-access data pat-
terns more than patterns with structure. Be-
cause of this they perform poorly with an even 
mix of stack and heap accesses. 

 
2.2 Hypotheses 
 

There are multiple benefits that could be 
seen from the stack cache, which we verify 
independently in Section 5.  The following are 
our hypotheses: 

 
1. The stack cache will have a faster access 

than modern L1 caches. The stack cache 
maps a contiguous window of memory 
representing the top of the stack, so it can 
be implemented as a fast direct-mapped 
cache. 
 

2. It will keep register spills and fills and 
other short-lived stack (memory) opera-
tions from evicting useful longer-term 
heap data from the L1 cache.  
 

3. The stack cache will be to greatly decrease 
the latency of accesses to stack data be-
cause of the more predictable nature of 
stack accesses. The preemptive filling and 
spilling mentioned in Section 1.3 will at-
tempt to keep the “current” stack data in 
the stack cache only when it is need, thus 
reducing latency to stack data for all stack 
accesses.  This reduced latency in turn will 
increase ILP by relieving data dependency 
pressure on the instruction stream. 

 
We hypothesize that these concepts operating 
in concert will improve performance mostly 
for user code, but possibly for scientific code 
as well. 
 
One important consideration in designing new 
architectural elements is that they integrate 
well with existing designs, scale well for the 



future, and require a minimum of compiler 
support (if any) to be taken full advantage of.  
We have designed our stack cache to com-
plement existing cache structures rather than 
modify or replace them. Additionally we will 
see that the stack cache is a small, simple 
structure, which allows it to scale well. Since 
the stack is a run-time memory structure, no 
compiler support is anticipated to be neces-
sary. 
 
3. Architectural Details 

 
The stack cache uses two pointers named 

Top and Bottom; they keep track of the top of 
the stack, and the bottom of the valid cached 
stack data, respectively. Data in the stack 
cache between the Bottom and Top pointers 
represents valid data that is coherent with the 
L2 cache. The entire cache structure maintains 
an array of the stack data as well as a match-
ing array of dirty bits to mark changes to stack 
data. Our policy for saving data to the L2 
cache is write-back. 

The stack cache can be implemented as a 
simple direct mapped cache since it maps to a 
contiguous window of memory that represents 
the top of the stack. Because of this, access 
times can be limited to one cycle unlike other 
modern cache designs. The stack cache is a 
circular buffer, allowing large increases in 
stack size to wrap around in the cache. 

The stack cache unit needs to monitor up-
dates to the stack pointer, which is sometimes 
ABI (Application Binary Interface) specific, 
OS-specific, or architecture-specific. We as-
sume for our study that the pointer to the top 
of the stack is always maintained in the same 
register. When the stack pointer is modified, 
the Top and Bottom pointers will need to be 
adjusted to reflect the new window of valid 
data. 

 The stack cache prefill/spill unit should 
look ahead in the instruction window to de-
termine if the stack is likely to grow or shrink 
in the near future. Using this information it 
can determine when to transfer data between 
the stack cache and the L2 cache in advance 
to prepare the stack cache for the sudden 

change in its data window. This is the feature 
that allows low latency stack accesses for data 
that would normally have missed the stack 
cache. 

Specifically, when the system is using the 
L2 access bus relatively infrequently the stack 
cache prefill/spill unit can begin the write-
back process for data that is marked dirty. 
This allows the data at the bottom or top of 
the current stack window to be evicted from 
the stack cache quickly in the event of a large 
increase or decrease in stack size. However 
until the stack window is modified the data 
will remain accessible and valid. 

 
4. Experimental Software Implementation 

 
We used the SimpleScalar 3.0 framework 

for implementing our design, given its thor-
ough support of SPEC benchmarks and im-
portant basic architectural features. Specifi-
cally we designed our stack cache into a sys-
tem that has two levels of cache and an out-
of-order core. 

 
4.1 Preliminary Analysis 
 

We used sim-cache to examine stack ac-
cess behavior of several SPEC benchmarks. 
The statistics verified our belief that a signifi-
cant portion of the memory accesses were to 
the stack (34-60% among the benchmarks we 
ran). Additionally we were able to measure 
how large the stack cache would have to be to 
effectively cover the range of stack accesses 
in a typical program. The following data 
shows stack access patterns for the equake 
benchmark:  
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Figure 2: Stack Pointer modification in bytes. 

 



The same tests with other benchmarks in-
dicate similar access patterns. Since the stack 
is accessed mostly in increments less than 
2Kb, it is reasonable to select a stack cache of 
approximately the same size. We tested the 
stack cache in sizes of 2Kb and 4Kb to get a 
good measure of the size requirement. 

Additionally we discovered that the Stack 
Pointer is usually modified once every 44 to 
141 instructions, which is ample time for the 
prefill/spill unit to aggressively predict modi-
fications to the stack window. These modifi-
cations to the stack pointer are mostly less 
than 400 bytes, which means that the pre-
fill/spill only needs to preemptively transfer 
data to cover a small percentage of the stack 
cache size. 
 
4.2 Implementation Simplifications 

 
We chose to implement the stack cache 

exclusive from the L1 cache: all accesses to 
memory locations that are offset from the 
stack pointer would be directed to the stack 
cache and never access the L1. This occurs 
even when the access would incur a miss in 
the stack cache. This is done to simplify the 
coherency issues that would occur if we al-
lowed the same data to reside in both the L1 
and the stack cache. All stack data resides in 
the stack cache or L2 cache, or in main mem-
ory. 

We additionally put limitations on our 
spill/fill strategy, making it conservative to 
avoid complicating our analysis in dealing 
with a saturated L2 bus. Instead of looking 
ahead in the instruction stream, it maintains a 
view of the valid portion of the stack cache at 
every cycle. When the stack cache contains 
less than 50% valid data, it begins to fill the 
stack cache from the L2 during periods of low 
usage of L2 bandwidth. 

When the stack cache contains more than 
50% valid data it begins spilling to L2, writ-
ing data that is marked as dirty and then reset-
ting each dirty bit. If the Stack Pointer is 
modified in an increment so large it invali-
dates the entire stack window, the stack cache 
must stall all access until the stack cache is 

made coherent with the L2 cache. Addition-
ally the L2 access bus is locked by the stack 
cache so it has highest priority to complete the 
stack data updates. 

Our implementation took approximately 
500 lines of code, plus some datalogging 
code. All of our additions were to sim-
outorder, which is the out-of-order portion of 
SimpleScalar. 
 
4.3 Simulated Hardware Configurations 

 
Each configuration uses some common 

hardware settings. We assume an architecture 
with a 512Kb, 8-way set-associative L2 cache 
(shared between data and instructions). The 
latency of the L2 is 12 cycles, and the latency 
between the L2 and main memory is 80 cycles 
(assuming modern access times for main 
memory, and a 1 GHz processor). The L1 in-
struction cache is always 16Kb, 4-way set-
associative. 

Our baseline test is an architecture with no 
stack cache and a 16Kb, 4-way L1 data cache. 
The baseline latency for the L1 data and in-
struction caches is 3 cycles. Our other con-
figurations consisted of varying the L1 data 
cache size, the L1 latency, the L1 associativ-
ity, and the stack cache size. Each other con-
figuration will be fully described as it is intro-
duced. 

 
5. Simulation Results and Analysis 

 
We present the data as charts comparing 

how the different configurations behave and 
perform. We had a number of surprising re-
sults, but we feel the data verifies our hy-
potheses. 

 
5.1 Varying Stack Cache Size 

 
Preliminary analysis showed that most 

stack accesses occur within 2Kb of the Stack 
Pointer, so we compared a 2Kb stack cache 
and a 4Kb stack cache to the baseline configu-
ration. In each configuration the stack cache 
had an access latency of 1 cycle, reflecting the 
fast lookup mechanism. 
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Figure 3: Varying stack cache size 

 
It is clear from these results that the stack 

cache has somewhat varying effects on overall 
performance. In some cases a 2KB stack 
cache performs as well as a 4KB stack cache, 
and in other cases the doubling in size of the 
stack cache shows an improvement. The two 
benchmarks in which increasing the size of 
the stack cache does show an improvement 
are from SpecFP which is consistent with our 
data for the stack access patterns of floating 
point versus integer code. 

However the large performance difference 
between 2Kb and 4Kb stack caches is anoma-
lous considering our preliminary statistics that 
shows most data fitting within a 2Kb cache. 
This makes sense when one considers our pre-
fill/spill policy – we essentially only maintain 
the stack cache at 50% utilized for the major-
ity of execution. Thus a 4Kb cache behaves as 
a 2Kb should if it had an effective prefill/spill 
unit. 

 
5.2 Stack Cache / L1 Cache miss rates 
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Figure 4: Cache miss rates 

We measured the miss rates of the 2Kb 
and 4Kb stack cache configurations and com-
pared them to the miss rates of a 16Kb L1 
data cache and a 4Kb L1 data cache. The re-
sults are shown in Figure 4. The two floating 
point benchmarks, equake and ammp, showed 
the greatest decrease in cache misses between 
the 2Kb stack cache and the 4Kb stack cache. 
This correlates strongly with the increase that 
both these benchmarks see in execution speed 
in going from a 2Kb to 4Kb stack cache. 

The miss rate for the 16Kb and 4Kb L1 
data caches were very similar for each 
benchmark, indicating that programs have a 
hard time taking full advantage of a larger L1. 
Because of the memory bottleneck however, 
each extra cache hit helps and justifies the tra-
ditionally larger L1 size. The 4Kb stack cache 
outperforms the 16Kb L1 cache in reducing 
cache misses, which indicates that the stack 
cache is an extremely effective structure.  

 
5.3 L1 cache access counts 

 
This data shows how many memory ac-

cesses we are diverting from the L1 into the 
stack cache.  Specifically it’s a measure of 
how many stack accesses there are relative to 
heap accesses. 
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Figure 5: Total L1 accesses 

 
Anywhere from 1/3 to 2/3 of the memory 

accesses are stack data that the stack cache 
would handle. When the stack cache is en-
abled it greatly relieves cache conflict prob-
lems in the L1. 

 



5.4 Varying L1 associativity 
 
With the stack cache handling a great deal 

of data instead of the L1, we speculated that 
the L1 could potentially afford to have a lower 
associativity and therefore lower latency. The 
data in Figure 6 shows the effect of decreasing 
the L1 data cache associativity to 2-way, 
while also decreasing the latency from 3 cy-
cles to 2 cycles. Lower results are better. 
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Figure 6: Varying L1 associativity 

 
Clearly the results are mixed. The first two 

benchmarks show a marked decrease in per-
formance with the lower associativity, indicat-
ing that there are still a great deal of conflict 
misses within the L1 even without stack data 
taking up space. The second two benchmarks 
indicate that the lower latency of the 2-way 
L1 offset the lower associativity. The data is 
inconclusive for determining if the L1 should 
be made faster and simpler when a stack 
cache is used. 

 
5.5 Varying L1 latency 

 
We are also interested in how the stack 

cache compares to the traditional L1 data 
cache if the stack cache did not have its lower 
latency as an advantage. The following test 
examines a 1 cycle, 16Kb L1 with and with-
out a stack cache, compared to the baseline. 
The test was run only on the equake bench-
mark. 
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Figure 7: Varying L1 latency 

 
The test clearly indicates that even the 

4Kb stack cache doesn’t compare to a fast 
16Kb L1 data cache, and in fact hurts per-
formance when used in conjunction. This is 
likely due to the prefill/spill mechanism, 
which rears itself again as an imperfection in 
our simulator code. The mechanism as we im-
plemented it doesn’t look ahead in the instruc-
tion stream for Stack Pointer modifications, so 
when the stack window has to move the stack 
cache locks all accesses until it writes all 
dirty, evicted data to the L2. 

If the stack cache were doing its job right, 
the extra space available for data to be cached 
should increase performance, as well as the 
latency-hiding feature of the prefill/spill unit. 
This shortcoming in our simulation does not 
indicate a weakness of the stack cache, but 
rather the strength of a good prefill/spill unit. 

 
5.6 Dividing hardware resources 

 
The ultimate demonstration of the stack 

cache’s effectiveness is if it outperforms the 
baseline given the same overall architectural 
resources as the baseline. This means that the 
stack cache will have to take precious cache 
space away from the L1, which seems to indi-
cate a deleterious affect on performance in 
general. 

However, combined with the stack cache, 
a reduced L1 could still be quite effective. 
The following data shows the effect of split-
ting a 4Kb L1 data cache into room for a com-
bined 2Kb stack cache and 2Kb L1 data 
cache. 
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Figure 8: Shared resources 

 
Clearly a 4Kb L1 with no stack cache 

should perform worse than a 16Kb L1 with no 
stack cache (the baseline configuration). 
However when the 4Kb L1 is split into a 
smaller L1 and a 2Kb stack cache it performs 
worse in most cases. This is in part due to the 
fact that the L1 is under so much strain al-
ready at 4Kb, that reducing it to 2Kb only 
helps when the stack cache handles more than 
half of the L1 references (as is the case in vpr, 
see Figure 5). However, the performance de-
creases are very small here. 

Another factor in performance degradation 
is the fact that the large difference in a 2Kb 
and 4Kb stack cache was unknown before we 
ran this benchmark, so we were unable to 
measure the performance of a split 4Kb L1 
and 4Kb stack cache.  Additionally, the simu-
lator prevented us from defining an L1 cache 
that was not a power of two. Our preferred 
test would have taken the 16Kb L1 baseline 
and split it into a 12Kb L1 and 4Kb stack 
cache. 

 
6. Concluding remarks 

 
Our first hypothesis is an architectural fac-

tor that we can’t directly simulate. However 
we demonstrated that a stack cache can be in-
dexed as a contiguous buffer of memory, 
which means it can be implemented as a di-
rect-mapped cache. This, and its small size, 
allows us to trust that a stack cache could be 
implemented with 1 cycle access times. 

Our second hypothesis focuses on how 
much stack data was accessed compared to 

heap data. Our benchmark data shows that 
anywhere from 1/3 to 2/3 of the accesses to 
the L1 cache are stack data, which can be re-
moved from the L1 and directed to the stack 
cache. The L1 data cache likely benefits 
greatly from having decreased cache conflicts 
from stack data. 

Our third hypothesis was verified indi-
rectly. We discovered how much an effective 
prefill/spill unit could increase performance 
when we implemented a poor one. The L1 
latency benchmarks, indicated by Figure 7, 
show that a poor prefill/spill unit makes the 
stack cache perform much worse than ex-
pected – however it is still on par with the per-
formance of a fast L1 data cache. This indi-
cates that an effective spill/fill unit could 
make the stack cache outperform even the 
fastest L1 data cache. 

 
6.1 Is it worth it? 

 
The stack cache appears to be an effective 

means of accomplishing our hypotheses. The 
question is, are they important objectives? 
The most important factor in modern architec-
tures is still raw performance, and the results 
in Figure 3 indicate that a 4Kb stack cache (or 
2Kb stack cache with effective prefill/spill) 
provides a noticeable performance improve-
ment across the board. With more effective 
prefilling/spilling the stack cache could per-
form even better. 

Additionally as the L1 data cache becomes 
slower with the uneven scaling of transistors 
versus transmission lines, it will become in-
creasingly important to use more small, inde-
pendent structures for fast data caching. The 
stack cache is effective at a much smaller size 
than the L1 data cache, and it has a signifi-
cantly higher hit rate. This makes it better 
suited for scaling 

All evidence indicates that a stack cache is 
an extremely powerful structure. It could be 
especially effective in architectures that are 
more reliant on stack accesses, such as 
IA-32 (x86), due to more register pressure or  
stack-based calling conventions. 
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