
Implementing a Stack Cache

Alex Hemsath, Robert Morton, Jan Sjodin
Rice University: Elec525 – Advanced Microprocessor Architecture

 Abstract – Modern architectures provide mecha-
nisms to allow a process to manipulate a portion of its
memory as a stack through special registers and in-
structions. If the portion of memory that represents the
stack were kept in a cache hierarchy separate from the
traditional data cache, the so-called “stack cache” could
be tuned to the specialized behavior of stack access
patterns. We have simulated a simple stack cache
within the SimpleScalar framework. For four of the
SimpleScalar benchmark applications the stack cache
we implemented produced speedups in the range of 1–
4%.

1. Introduction

Memory access patterns for stack data

have both spatial locality and temporal local-
ity since the data occupies a small, contiguous
area of memory near the top of the stack. The
stack is heavily used in modern programs
compiled from high-level languages for book-
keeping and parameter passing during func-
tion calls, allocating local variables and regis-
ter spilling.

This paper focuses on implementing a
stack cache to handle the specific nature of
stack access patterns and alleviate pressure on
the L1 data cache.

1.2 Prior Work

Cooper and Harvey identified an interest-

ing problem in the traditional assumption that
compilers can do very little in the way of un-
derstanding run-time behavior of memory ac-
cesses[1]. This assumption ignores compiler
inserted spills and fills from register alloca-
tion, parameter passing and procedure calls,
all which observe the temporal locality of data
with respect to the top of the stack. Their ap-
proach did not convince most readers that a
“compiler controlled memory” would help
solve this problem. Rather than repeat their

experiments to verify this, we propose a
purely architectural solution.

1.3 Stack Cache Basics

The stack cache acts as a window into the
current stack memory of a program, contain-
ing the data that has most recently been used.
Specifically it will contain all data within a
certain offset from the top of the stack. As the
stack grows, old data at the bottom of the
stack cache must be evicted to make room.
The stack cache can be viewed as a circular
buffer with an index for the top of the stack
and one for the bottom of the stack:

Figure 1: A simple stack cache diagram

Older entries in the stack can be preemp-

tively saved to the L2 cache as the stack cache
gets full, predicting the necessity of spilling.
When the stack shrinks, data will need to be
loaded back into the cache from L2 or main
memory, and again this can be done preemp-
tively - data can be prefetched into the stack
cache before it is known that it is needed. This
preemptive spilling and filling of the stack
cache could greatly reduce latency of accesses
to stack data by making sure the data is al-
ways available in the stack cache – assuming
the program is accessing the stack data ac-
cording to the rules of stack temporal locality

Past Present Future

Stack Cache
Base pointer

L2 Cache unused

Memory representation
of the stack

Bottom Top

(i.e. only a small window of the stack is in
active use at a given time).

1.4 Paper Overview

Section 2 covers our motivation and hy-

potheses in depth. The details of the proposed
hardware implementation are presented in
Section 3, while the software implementation
and simulator details are discussed in Section
4. We analyze the simulation results in Sec-
tion 5, and draw our conclusion in Section 6.

2. Motivation and Hypotheses

In the previous sections we mentioned the
possible usefulness of a cache for a particular
type of memory access. In this section we go
into more detail, including why current cache
designs are ill-equipped to handle the tempo-
ral and spatial locality exhibited by stack ac-
cesses.

2.1 Motivation

A large amount of research in computer
architecture of the past fifteen years has gone
into overcoming the CPU-memory bottleneck,
which not only increases latency of individual
instructions, but limits instruction level paral-
lelism (ILP) through long-latency chains of
data dependencies. The standard architectural
element used to manage the increasing gap
between CPU cycle times and memory access
latencies is to cache a small subset of main
memory within a fast memory more local to
the CPU.

However, many characteristics of memory
use limit the extent to which locality can be
exploited – conflict misses in particular are a
limiting factor. One potential source of such
misses is the conflict between stack data and
heap data, which are, typically, logically sepa-
rate areas of a program’s memory space. Also,
cache sizes and associativity have increased
over the years in the attempt to decrease miss
rates and improve performance, but this
comes at the expense of increasing cache la-
tency and increasing power consumption.

Originally, L1 data caches were designed to
have single-cycle access latencies, but in typi-
cal state-of-the-art processors latencies of 3
cycles are more common.

L1 data caches have become all-purpose
caches, catering to random-access data pat-
terns more than patterns with structure. Be-
cause of this they perform poorly with an even
mix of stack and heap accesses.

2.2 Hypotheses

There are multiple benefits that could be
seen from the stack cache, which we verify
independently in Section 5. The following are
our hypotheses:

1. The stack cache will have a faster access

than modern L1 caches. The stack cache
maps a contiguous window of memory
representing the top of the stack, so it can
be implemented as a fast direct-mapped
cache.

2. It will keep register spills and fills and
other short-lived stack (memory) opera-
tions from evicting useful longer-term
heap data from the L1 cache.

3. The stack cache will be to greatly decrease
the latency of accesses to stack data be-
cause of the more predictable nature of
stack accesses. The preemptive filling and
spilling mentioned in Section 1.3 will at-
tempt to keep the “current” stack data in
the stack cache only when it is need, thus
reducing latency to stack data for all stack
accesses. This reduced latency in turn will
increase ILP by relieving data dependency
pressure on the instruction stream.

We hypothesize that these concepts operating
in concert will improve performance mostly
for user code, but possibly for scientific code
as well.

One important consideration in designing new
architectural elements is that they integrate
well with existing designs, scale well for the

future, and require a minimum of compiler
support (if any) to be taken full advantage of.
We have designed our stack cache to com-
plement existing cache structures rather than
modify or replace them. Additionally we will
see that the stack cache is a small, simple
structure, which allows it to scale well. Since
the stack is a run-time memory structure, no
compiler support is anticipated to be neces-
sary.

3. Architectural Details

The stack cache uses two pointers named

Top and Bottom; they keep track of the top of
the stack, and the bottom of the valid cached
stack data, respectively. Data in the stack
cache between the Bottom and Top pointers
represents valid data that is coherent with the
L2 cache. The entire cache structure maintains
an array of the stack data as well as a match-
ing array of dirty bits to mark changes to stack
data. Our policy for saving data to the L2
cache is write-back.

The stack cache can be implemented as a
simple direct mapped cache since it maps to a
contiguous window of memory that represents
the top of the stack. Because of this, access
times can be limited to one cycle unlike other
modern cache designs. The stack cache is a
circular buffer, allowing large increases in
stack size to wrap around in the cache.

The stack cache unit needs to monitor up-
dates to the stack pointer, which is sometimes
ABI (Application Binary Interface) specific,
OS-specific, or architecture-specific. We as-
sume for our study that the pointer to the top
of the stack is always maintained in the same
register. When the stack pointer is modified,
the Top and Bottom pointers will need to be
adjusted to reflect the new window of valid
data.

 The stack cache prefill/spill unit should
look ahead in the instruction window to de-
termine if the stack is likely to grow or shrink
in the near future. Using this information it
can determine when to transfer data between
the stack cache and the L2 cache in advance
to prepare the stack cache for the sudden

change in its data window. This is the feature
that allows low latency stack accesses for data
that would normally have missed the stack
cache.

Specifically, when the system is using the
L2 access bus relatively infrequently the stack
cache prefill/spill unit can begin the write-
back process for data that is marked dirty.
This allows the data at the bottom or top of
the current stack window to be evicted from
the stack cache quickly in the event of a large
increase or decrease in stack size. However
until the stack window is modified the data
will remain accessible and valid.

4. Experimental Software Implementation

We used the SimpleScalar 3.0 framework

for implementing our design, given its thor-
ough support of SPEC benchmarks and im-
portant basic architectural features. Specifi-
cally we designed our stack cache into a sys-
tem that has two levels of cache and an out-
of-order core.

4.1 Preliminary Analysis

We used sim-cache to examine stack ac-
cess behavior of several SPEC benchmarks.
The statistics verified our belief that a signifi-
cant portion of the memory accesses were to
the stack (34-60% among the benchmarks we
ran). Additionally we were able to measure
how large the stack cache would have to be to
effectively cover the range of stack accesses
in a typical program. The following data
shows stack access patterns for the equake
benchmark:

Stack Pointer Updates

0

100000

200000

300000

400000

500000

600000

700000

800000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 152 176 336 344 352 456 480 488 544 1968 2120 2504

SP offset in bytes

N
um

be
r o

f S
ta

ck
 P

oi
nt

er
 U

pd
at

es

Figure 2: Stack Pointer modification in bytes.

The same tests with other benchmarks in-
dicate similar access patterns. Since the stack
is accessed mostly in increments less than
2Kb, it is reasonable to select a stack cache of
approximately the same size. We tested the
stack cache in sizes of 2Kb and 4Kb to get a
good measure of the size requirement.

Additionally we discovered that the Stack
Pointer is usually modified once every 44 to
141 instructions, which is ample time for the
prefill/spill unit to aggressively predict modi-
fications to the stack window. These modifi-
cations to the stack pointer are mostly less
than 400 bytes, which means that the pre-
fill/spill only needs to preemptively transfer
data to cover a small percentage of the stack
cache size.

4.2 Implementation Simplifications

We chose to implement the stack cache

exclusive from the L1 cache: all accesses to
memory locations that are offset from the
stack pointer would be directed to the stack
cache and never access the L1. This occurs
even when the access would incur a miss in
the stack cache. This is done to simplify the
coherency issues that would occur if we al-
lowed the same data to reside in both the L1
and the stack cache. All stack data resides in
the stack cache or L2 cache, or in main mem-
ory.

We additionally put limitations on our
spill/fill strategy, making it conservative to
avoid complicating our analysis in dealing
with a saturated L2 bus. Instead of looking
ahead in the instruction stream, it maintains a
view of the valid portion of the stack cache at
every cycle. When the stack cache contains
less than 50% valid data, it begins to fill the
stack cache from the L2 during periods of low
usage of L2 bandwidth.

When the stack cache contains more than
50% valid data it begins spilling to L2, writ-
ing data that is marked as dirty and then reset-
ting each dirty bit. If the Stack Pointer is
modified in an increment so large it invali-
dates the entire stack window, the stack cache
must stall all access until the stack cache is

made coherent with the L2 cache. Addition-
ally the L2 access bus is locked by the stack
cache so it has highest priority to complete the
stack data updates.

Our implementation took approximately
500 lines of code, plus some datalogging
code. All of our additions were to sim-
outorder, which is the out-of-order portion of
SimpleScalar.

4.3 Simulated Hardware Configurations

Each configuration uses some common

hardware settings. We assume an architecture
with a 512Kb, 8-way set-associative L2 cache
(shared between data and instructions). The
latency of the L2 is 12 cycles, and the latency
between the L2 and main memory is 80 cycles
(assuming modern access times for main
memory, and a 1 GHz processor). The L1 in-
struction cache is always 16Kb, 4-way set-
associative.

Our baseline test is an architecture with no
stack cache and a 16Kb, 4-way L1 data cache.
The baseline latency for the L1 data and in-
struction caches is 3 cycles. Our other con-
figurations consisted of varying the L1 data
cache size, the L1 latency, the L1 associativ-
ity, and the stack cache size. Each other con-
figuration will be fully described as it is intro-
duced.

5. Simulation Results and Analysis

We present the data as charts comparing

how the different configurations behave and
perform. We had a number of surprising re-
sults, but we feel the data verifies our hy-
potheses.

5.1 Varying Stack Cache Size

Preliminary analysis showed that most

stack accesses occur within 2Kb of the Stack
Pointer, so we compared a 2Kb stack cache
and a 4Kb stack cache to the baseline configu-
ration. In each configuration the stack cache
had an access latency of 1 cycle, reflecting the
fast lookup mechanism.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

equake vpr ammp parser

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
in

 c
yc

le
s

Baseline 2Kb stack cache 4Kb stack cache

Figure 3: Varying stack cache size

It is clear from these results that the stack

cache has somewhat varying effects on overall
performance. In some cases a 2KB stack
cache performs as well as a 4KB stack cache,
and in other cases the doubling in size of the
stack cache shows an improvement. The two
benchmarks in which increasing the size of
the stack cache does show an improvement
are from SpecFP which is consistent with our
data for the stack access patterns of floating
point versus integer code.

However the large performance difference
between 2Kb and 4Kb stack caches is anoma-
lous considering our preliminary statistics that
shows most data fitting within a 2Kb cache.
This makes sense when one considers our pre-
fill/spill policy – we essentially only maintain
the stack cache at 50% utilized for the major-
ity of execution. Thus a 4Kb cache behaves as
a 2Kb should if it had an effective prefill/spill
unit.

5.2 Stack Cache / L1 Cache miss rates

0

0.05

0.1

0.15

0.2

0.25

equake vpr ammp parser

C
ac

he
 m

is
se

s
/ r

ef
er

en
ce

2Kb Stack Cache 4Kb Stack Cache 16 Kb L1 D$ (no SC) 4 Kb L1 D$ (no SC)

Figure 4: Cache miss rates

We measured the miss rates of the 2Kb
and 4Kb stack cache configurations and com-
pared them to the miss rates of a 16Kb L1
data cache and a 4Kb L1 data cache. The re-
sults are shown in Figure 4. The two floating
point benchmarks, equake and ammp, showed
the greatest decrease in cache misses between
the 2Kb stack cache and the 4Kb stack cache.
This correlates strongly with the increase that
both these benchmarks see in execution speed
in going from a 2Kb to 4Kb stack cache.

The miss rate for the 16Kb and 4Kb L1
data caches were very similar for each
benchmark, indicating that programs have a
hard time taking full advantage of a larger L1.
Because of the memory bottleneck however,
each extra cache hit helps and justifies the tra-
ditionally larger L1 size. The 4Kb stack cache
outperforms the 16Kb L1 cache in reducing
cache misses, which indicates that the stack
cache is an extremely effective structure.

5.3 L1 cache access counts

This data shows how many memory ac-

cesses we are diverting from the L1 into the
stack cache. Specifically it’s a measure of
how many stack accesses there are relative to
heap accesses.

0

200000000

400000000

600000000

800000000

1000000000

1200000000

1400000000

equake vpr ammp parser

of

 L
1

ca
ch

e
ac

ce
ss

es

L1 accesses (no SC) L1 accesses (with SC)

Figure 5: Total L1 accesses

Anywhere from 1/3 to 2/3 of the memory

accesses are stack data that the stack cache
would handle. When the stack cache is en-
abled it greatly relieves cache conflict prob-
lems in the L1.

5.4 Varying L1 associativity

With the stack cache handling a great deal

of data instead of the L1, we speculated that
the L1 could potentially afford to have a lower
associativity and therefore lower latency. The
data in Figure 6 shows the effect of decreasing
the L1 data cache associativity to 2-way,
while also decreasing the latency from 3 cy-
cles to 2 cycles. Lower results are better.

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

equake vpr ammp parser

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
(c

yc
le

s)

Baseline 2Kb SC, 16Kb 4-way L1 D$ 2Kb SC, 16Kb 2-way L1 D$

Figure 6: Varying L1 associativity

Clearly the results are mixed. The first two

benchmarks show a marked decrease in per-
formance with the lower associativity, indicat-
ing that there are still a great deal of conflict
misses within the L1 even without stack data
taking up space. The second two benchmarks
indicate that the lower latency of the 2-way
L1 offset the lower associativity. The data is
inconclusive for determining if the L1 should
be made faster and simpler when a stack
cache is used.

5.5 Varying L1 latency

We are also interested in how the stack

cache compares to the traditional L1 data
cache if the stack cache did not have its lower
latency as an advantage. The following test
examines a 1 cycle, 16Kb L1 with and with-
out a stack cache, compared to the baseline.
The test was run only on the equake bench-
mark.

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

equake

IP
C

Baseline 1 cycle L1 / no SC 1 cycle L1 / 2Kb SC 1 cycle L1 / 4Kb SC

Figure 7: Varying L1 latency

The test clearly indicates that even the

4Kb stack cache doesn’t compare to a fast
16Kb L1 data cache, and in fact hurts per-
formance when used in conjunction. This is
likely due to the prefill/spill mechanism,
which rears itself again as an imperfection in
our simulator code. The mechanism as we im-
plemented it doesn’t look ahead in the instruc-
tion stream for Stack Pointer modifications, so
when the stack window has to move the stack
cache locks all accesses until it writes all
dirty, evicted data to the L2.

If the stack cache were doing its job right,
the extra space available for data to be cached
should increase performance, as well as the
latency-hiding feature of the prefill/spill unit.
This shortcoming in our simulation does not
indicate a weakness of the stack cache, but
rather the strength of a good prefill/spill unit.

5.6 Dividing hardware resources

The ultimate demonstration of the stack

cache’s effectiveness is if it outperforms the
baseline given the same overall architectural
resources as the baseline. This means that the
stack cache will have to take precious cache
space away from the L1, which seems to indi-
cate a deleterious affect on performance in
general.

However, combined with the stack cache,
a reduced L1 could still be quite effective.
The following data shows the effect of split-
ting a 4Kb L1 data cache into room for a com-
bined 2Kb stack cache and 2Kb L1 data
cache.

0.9

0.92

0.94

0.96

0.98

1

1.02

equake vpr ammp parser

IP
C

Baseline 4Kb L1 / no SC 2Kb L1 / 2Kb SC

Figure 8: Shared resources

Clearly a 4Kb L1 with no stack cache

should perform worse than a 16Kb L1 with no
stack cache (the baseline configuration).
However when the 4Kb L1 is split into a
smaller L1 and a 2Kb stack cache it performs
worse in most cases. This is in part due to the
fact that the L1 is under so much strain al-
ready at 4Kb, that reducing it to 2Kb only
helps when the stack cache handles more than
half of the L1 references (as is the case in vpr,
see Figure 5). However, the performance de-
creases are very small here.

Another factor in performance degradation
is the fact that the large difference in a 2Kb
and 4Kb stack cache was unknown before we
ran this benchmark, so we were unable to
measure the performance of a split 4Kb L1
and 4Kb stack cache. Additionally, the simu-
lator prevented us from defining an L1 cache
that was not a power of two. Our preferred
test would have taken the 16Kb L1 baseline
and split it into a 12Kb L1 and 4Kb stack
cache.

6. Concluding remarks

Our first hypothesis is an architectural fac-

tor that we can’t directly simulate. However
we demonstrated that a stack cache can be in-
dexed as a contiguous buffer of memory,
which means it can be implemented as a di-
rect-mapped cache. This, and its small size,
allows us to trust that a stack cache could be
implemented with 1 cycle access times.

Our second hypothesis focuses on how
much stack data was accessed compared to

heap data. Our benchmark data shows that
anywhere from 1/3 to 2/3 of the accesses to
the L1 cache are stack data, which can be re-
moved from the L1 and directed to the stack
cache. The L1 data cache likely benefits
greatly from having decreased cache conflicts
from stack data.

Our third hypothesis was verified indi-
rectly. We discovered how much an effective
prefill/spill unit could increase performance
when we implemented a poor one. The L1
latency benchmarks, indicated by Figure 7,
show that a poor prefill/spill unit makes the
stack cache perform much worse than ex-
pected – however it is still on par with the per-
formance of a fast L1 data cache. This indi-
cates that an effective spill/fill unit could
make the stack cache outperform even the
fastest L1 data cache.

6.1 Is it worth it?

The stack cache appears to be an effective

means of accomplishing our hypotheses. The
question is, are they important objectives?
The most important factor in modern architec-
tures is still raw performance, and the results
in Figure 3 indicate that a 4Kb stack cache (or
2Kb stack cache with effective prefill/spill)
provides a noticeable performance improve-
ment across the board. With more effective
prefilling/spilling the stack cache could per-
form even better.

Additionally as the L1 data cache becomes
slower with the uneven scaling of transistors
versus transmission lines, it will become in-
creasingly important to use more small, inde-
pendent structures for fast data caching. The
stack cache is effective at a much smaller size
than the L1 data cache, and it has a signifi-
cantly higher hit rate. This makes it better
suited for scaling

All evidence indicates that a stack cache is
an extremely powerful structure. It could be
especially effective in architectures that are
more reliant on stack accesses, such as
IA-32 (x86), due to more register pressure or
stack-based calling conventions.

References
[1] - Keith D. Cooper and Timothy J. Harvey, “Compiler-Controlled Memory”, Proceedings of the
8th International Conference on Architectural Support for Programming Languages and Operating
Systems, October 1998.

