A scheme of predictor based stream buffers

Bill Hodges, Guogiang Pan, Lixin Su

April 24, 2002

1 Introduction

Cache misses, especially data cache misses are still one of the big factors
degrading modern microprocessor performance. The degradation of perfor-
mance caused by data cache misses can vary from a few to tens of percent
depending on which application is run by the microprocessor.

Two major approaches are used to reduce data cache misses. The first
approach involves redesigning the memory hierarchy by adding additional
units or modifying a specific unit already existing in the memory hierar-
chy. This includes additional levels of cache like the L2 cache and even L3
cache, victim cache, pseudo cache, stream buffer, data value predictor, etc.
Different microprocessors may choose to implement different type of units
or a combination of several types of units. People can also improve cache
performance by building a highly associative cache or a non-blocking cache.
The works by reducing misses and results in increasd overall performance.
The second approach usually doesnt deal with redesigning of the memory
system. The microprocessor implements aggressive out-of-order issue and
tries to explore instruction level parallelism. This hardware reordering is
also called dynamic instruction scheduling. The compiler can also perform
static instruction scheduling like boosting a load before a store to change the
data access sequences. Instruction scheduling and data access order change
can also help lower data cache misses.

The focus of our research is in trying to lower data cache misses and
improve microprocessor performance by adding a special unit, esp. a spe-
cially designed stream buffer into the memory hierarchy. We believe that
the data accesses of applications have their own patterns, and cache alone
do not capture all the patterns appeared. By prefetching data into stream
buffer based upon special predictions, the data cache misses can be lowered
and the microprocessor performance can be increased.

Our hypothesis is that data accesses to memory hierarchy have certain
patterns, like strides. There exist localized data accesses that may have
frequently used data with smaller strides for consecutive memory accesses.
There also exist the other group of non-localized data accesses. These global
data accesses are prone to have large strides for consecutive data accesses.
The reuse rate of fetched data with large strides are low. Besides strides,
we believe there may exist other data access patterns that may need to be
identified. Our work serves as a motivation for others to keep searching
these existing but still not identified patterns.

In concept of stream buffers is introduced in 1990 by Jouppi[3], where a
stream of data blocks is prefetched into a stream buffer by fetching the data
consecutive to a miss address and shifted into the cache as used. The buffer
handled further prefetches as it is emptying into the cache. However, the
stream buffer proposed by Jouppi still can be improved in many aspects.
In particular, large bodies of the work are targetted at avoiding agressively
flushing the stream buffer. Both Palacharla and Kessler[2] and Farkas et
al.[5] used stride length infomation and multiple buffers to achieve this.
Recently, Sherwood et al.[1] implemented a new form of stream buffer called
the Predictor-Directed Stream Buffer (PSB) as an extension to Farkas by
predicting the next fetch address in a stream.

Another area of study is the mechanism of how the data in the stream
buffer is kept. In usual implementations, when there is a hit in the stream
buffer head entry, the data block inside this entry will be saved into the L1
cache. However, if it is streaming data that is only used once, it will cause
cache pollution. A possible solution may need to add a filter between the
data stream buffer and the L1 cache.

In this project we implement a stream buffer with decoupled predictor.
The stream buffer is implemented as a side storage to L1 cache, while the
predictors correspond to the pages active in the TLB. This allows a more
complex predictor to be added without excessive overhead, and allows pos-
sible persistant predictor behaviour. The stream buffer is also seperate from
the L1 cache to ease implementation.

2 Previous Work

There exist diverse prefetching strategies proposed by different researchers.
Basically, the requirements of a good prefetching strategy include timing,
which means the data prefetching has to be timely and the data will be avail-
able when needed, and accuracy, which means the prefetched data should be

useful instead of waste memory bandwidth and pollute data caches. All the
prefetching strategies fall into two categories: static data prefetching and dy-
namic data prefetching. We only concentrate on dynamic data prefetching
techniques.

Dynamic data prefetching is implemented by hardware without the as-
sistance of compilers and preserves binary compatibility. It concentrates on
discovering the dynamic execution behaviour of a program to do a better
job then static prefetching in hope of dynamic behaviour can present more
features then static analysis.

Jouppi implemented a stream buffer as a special storage unit consisting
of several entries, with a tag, an available bit and a data line in each of
the entry. Whenever a miss occurs, the stream buffer starts prefetching.
The stream buffer prefetches the data consecutive to the miss address. The
entries of the stream buffer models a FIFO queue. The first entry will be
checked at a cache miss to see if it is the right data the operation needs.
If there is a hit in that entry, the data in this entry will be removed and
stored into L1 data cache and the data contained in the following entries
will be sequentially shifted one entry ahead of their original positions, and
the stream buffer filles itself by further prefetching.

From the prefetch block address calculation methods, dynamic prefetch-
ing can be divided into prefetching of sequential block, prefetching of a block
with a fixed stride from missed address, and predictor-based prefetching.
The predictor-based prefetching usually implements a predictor which pre-
dicts the next prefetching address based upon previous prefetching address
predictions.

Providing stride information to the stream buffer can allow the micro-
processor to know how many blocks it should skip before starting prefech-
ing a new block into the stream buffer. The stride information can be
obtained either according to the to-be-prefetched data address (Palacharla
and Kessler) or according to the PC address of the instruction that requests
a data prefetching into the stream buffer (Farkas et al.). Palacharla and
Kesslers approach employs an algorithm called minimum-delta. Specifically,
when a cache miss occurs, a stride calculator implemented along with the
stream buffer will calculates the difference between the current data address
and the previous prefetched data address. This difference is called stride
which can either positive or negative and decides the prefetch direction.
When the stride is less than the size of a block, a unit-stride is used to
prefetch new data block into the stream buffer. Farkas et al. in contrast
used a small fully associative buffer. Each entry of the buffer contains the
previous miss address of a certain load and a tag to identify this certain load

instruction. They calculate a stride specifically for a load instruction and
prefetch new data block into the stream buffer according to this calculated
stride.

Sherwoods’ stream buffer has a general next prefetch address predictor
and per-stream history buffer implemented along with the stream buffer.
When a cache miss occurs, the address predictor fetches the correspondent
data streams previous prediction results from the per-stream history buffer.
Then the predictor will give the next prefetch data address based on previous
prediction information. After the prediction, the predictor saves the current
prediction result into the per-stream history buffer for the next prefetch
prediction. The stream is identified by instruction PC addresses.

3 Our Implementation

This section describes an architectural model for the stream buffer and pre-
diction scheme. Figure 1 is a block diagram of our overall scheme. We im-
plemented a decoupled predictor and stream buffer. We hypothesized that
the behaviour of a stream can be easily gathered and used by observing the
data accesses to a block of memory between the size of a line and a page.
The size must be big enough to capture and efficiently reuse the stream
infomation, while small enough to minimize interference between multiple
streams. This leads itself to easily to implementing the preditor together
with the TLB, and keeping track of the same segment of memory as the
tlb'. The stream buffer is also seperate from the L1 cache and there is no
communication between them besides checking whether a piece of data is
already in the cache. When a miss is generated, the predictor corresponding
to the miss is queried on whether the miss address should be fetched into
the cache or stream buffer. Background prefetching is also applied in idle
bus cycles. We have not implemented any cache prefetching schemes since
they are orthogonal to our approach. For simulation purposes, the predic-
tor table is implemented as a 2-level table similiar to the page table and the
stream buffer is implemented in the cache. We check prefetches on every
cycle, and a prefetch is issued to the stream buffer if the bus to L2 cache is
free. (Of course, the stream buffer is allowed to ignore it as specified above.)
Our current implementation do not prefetch to cache, which will pose new
problems for filtering and replacement schemes.

1Sadly, this do not lead itself well to a superpage technique.

Predictor Update Information

¥

Virtaal
A ddress
TLE and Drata address
- =™ Predictor Table | ~— [_5} Level 1 Data Cache = 5
l | Data
I T
Drata address |_ . |
stride |
prefeteh? — Stream buffer — —
Fill Unit fee— — — _ Critical Data Path
Hon-critical Predictor Path

Figure 1: Block diagram

3.1 Predictor Tables

Our predictor is implemented as a state machine with four states as in
Figure 2. The four states can further be classified into two types, namely
predictable states and non-predictable states. The non-predictable states
are UNINIT and RANDOM. When a predictor is first instantiated, it is
set to the UNINIT (uninitialized) state. When the cache gives a predictor
update, UNINIT always goes to the RANDOM state. RANDOM is the
state in which a predictor sits if it exhibits no particularly predictable be-
havior, based on our prediction methods. On the other hand, STRIDE and
SEMISTRIDE are predictable states and request prefetches is queried.

The predictor collects infomation as the memory associated to the predi-
tor is accessed. On each memory access, the predictor entry associated with
the address is looked up and updated. We also store the last address we had,
and the cycle we last updated. On updates, a stride variable is calculated
by subtracting the previous memory address accessed from memory address
accessed. This current stride is compared with the stride of the previous two
addresses. If the strides are exactly equal, the predictor enters the STRIDE
state. If the strides are within a certain threshold, then the predictor enters
the SEMISTRIDE state.

stride
within threshold

stride is exact

Figure 2: State Diagram for Predictor

If the predictor is in the STRIDE state, then it will return the predicted
cycle until next line in the stream is accessed. To Compute this, the pre-
dictor requires a guess on the number of cycles between accesses. We use
the average of the last two cache access updates. If the stride is greater
than a certain threshold, then the predictor also specifies to use the stream
buffer, rather than prefetching into cache. When the predictor is in the
SEMISTRIDE state, behavior is almost exactly the same in these regards.
The only difference in querying is that the SEMISTRIDE state adds an off-
set to the predicted number of cycles until the next line is needed. This
gives a lower priority to SEMISTRIDE predictions compared to STRIDE
predictions.

The SEMISTRIDE state allows the streamed data access without fixed
stride to be prefetched to the extent where prefetching will be useful. When
a predictor in the SEMISTRIDE state receives a cache update, if the new
stride is different from the stored stride beyond the above mentioned allow-
able threshold, then the predictor is kicked into the RANDOM state again.
If the new stride is the exact same as the previous stride, then the predictor
jumps in the STRIDE state, giving it a higher priority. When a predictor
in the STRIDE state receives a cache update, however, it is more prone

to stay in the STRIDE state. When two consecutive inexact strides occur,
the predictor move into the SEMISTRIDE state, if the stride difference is
within the threshold, or the RANDOM state if otherwise. This tendency to
remain in the STRIDE state was motivated by a desire to keep good strides
from needing to be rediscovered if we reach the horizontal bound of a two
dimensional array, and wrap around, or in other such situations.

Because there are no data movement between stream buffer and cache,
it is important to decide which data to keep in cache and which data to
keep in stream buffers. We used the percieved stride length to make such
a decision. Data that have unit stride can be left in cache, and those have
longer stride can be left in the stream buffer, as a more tempory storage of
streamed data.

3.2 Stream Buffer

We implemented our stream buffer as a set of fully associative units, each
containing some number of cache-line sized entries. Because large fully asso-
ciative lookups cannot be implemented efficiently, we limit ourselves to look
at not too big (< 16) way associative lookups.

Each stream buffer unit consists of some number of tagged lines, just like
a cache entry. The lines are organized in a circular fashion, but replacement
is handled differently from the standard FIFO scheme. Instead of always
evict the oldest line and replace it with a new line whenever a fetch is
requested, we instead keep track of the most current line that have been
accessed. Whenever the unit is selected for fetching (and thus replacement),
the next line from that line is treated as the oldest line to be replacement.
Another way to look at this is that newly fetched lines are considered to be
old (in particular, oldest entry in the FIFQO), until it is accessed, after which
the line (and any line before it) is considered to be new lines.

This scheme has the advantage of limiting the ability of mis-predictions
in prefetching to pollute the buffer, since unused lines will be evicted soon if
needed. Of course, careful use of LRU can achieve the same effect, but the
implementation cost will be higher.

Excessive unnecessary prefetches (overfetching) are the bane to any
prefetch schemes. A standard approach to avoid overfetching is to use
prefetch filtering. Overfetching is detrimental to performance because it
both wastes bandwidth to the lower level and pollutes the buffer by fetch-
ing unnecessary stuff. Instead of a table based version, we implemented a
cheaper version based on address locality. To each line, we associate a times-
tamp, which is updated when the line is used. When checking for prefetch

replacements, (unlike on a miss), the lines with a recent timestamp are not
considered to be a candidate unless the address to be fetched is close to
the tag address of the line. This achieves two effects. Firstly, lines that
are currently being used (as in an active stream) will not likely be replaced
with prefetch data not in the stream. Secondly, Data in the same stream
is allowed to be prefetched. Of course, This scheme is not able to capture
the more global prefetch filtering infomation that a table based method can,
but it is able to be a quick and cheap filter for the clearly harmful fetches.

4 Simulation Results

4.1 Baseline Architecture

Our baseline architecture was a PISA (Portable ISA) based, 4-issue super
scalar machine simulated using Simple Scalar 3.0. Table 1 show the baseline
parameters used in our tests.

For our experiments, we used a L1 data cache size of 8 KB for our
reference machine, while our modified simulator used only a 4 KB L1 Data
Cache, assuming that our additions will take up at most the chip area or 4
KB of cache, and therefore testing our solution in an isocost environment.

4.2 Methodology

We ran portions of SPEC2000 benchmarks with reduced data sets using
our modified simulator. We varied first the cache sizes on the baseline
architecture from 4K Data L1 Cache to 8K Data L1, so we could see how we
compare to an architecture simpler to develop, yet adding more hardware.
Then we tested the scheme using the stream buffer and predictor table.
The parameters of stream buffer stride threshold (the stride required to use
the stream buffer over cache), SEMISTRIDE priority compared to STRIDE
(how many cycles to offset the SEMISTRIDE prefetch request by), and
SEMISTRIDE threshold (what the tolerable difference in stride is required
to allow SEMISTRIDE state).

After choosing an optimal set of parameters, we ran a suit on three
benchmarks on our system. We then went on to vary the SEMISTRIDE
threshold, in order to classify the actual memory accesses based on strides.
We also did limited tests on varying the size of the stream buffer to see im-
pact on performance, if chip area and power became very sensitive issues for
an implementation of our scheme. We then tested the baseline system with

L1 Data Cache (all caches uses LRU eviction)
L1 Instruction Cache

Unified L2 Cache

L2 Cache latency

Main Memory Latency

Memory bus width

Fetch, Decode, Issue, and Commit width
Branch mis-prediction latency

Bimodal branch predictor table size
Return address stack size

4-way associative, branch target buffer (sets)
Inorder

Register update unit size

Load Store queue size

Instruction TLB

Data TLB

Integer ALU’s

Integer Multiplier/dividers

Memory ports

FP ALU’s

FP Multiplier/dividers

8 (or 4) KB, 2 way set-assoc.
16 KB, direct-mapped

256 KB, 4 way set-assoc.

6 cycles

18/2

8 Bytes

4

3

1048

512

false

16

8
16:4096:4:1
32:4096:4:1

— R N

Table 1: Simple Scalar Configuration Used for Baseline Architecture

1.2000
1.1000
1.0000
0.9000
0.8000 17
0.7000
0.6000
0.5000 17
0.4000
0.3000 17
0.2000
0.1000
0.0000 T

— |EF 4K L1
[CJak L1w/sE
BeakL1

IPC

W
LA

il

=
=

Ammp
Benchmark

Figure 3: Performance Comparison (IPC)

a direct mapped cache, to compare our results with the effects of increases
associativity.

4.3 Results

The following section gives the results of our tests, as specified by our
methodology. The three benchmarks run were ammp, a program for doing
scientific calculations, solving differential equations, mcf a program used for
routing vehicles in mass transit systems, and vpr, an FPGA programming
tool.

From Figure 3, we can see that we have got modest (between 1% and
5%) improvements, but not as big as we hoped for. Still, the prefetching
done gives a comparable increase to doubling the size of the cache, while we
only increased 10% of the storage. We will try to analyze the reason of the
modest increase, and why certain applications works better then others.

Table 2 gives a distribution of the stride lengthes we have been requesting
to prefetch and the corresponding prefetches done. We can see that the
stride lengthes have a fairly wide distribution. Also, we are able to see

10

BM stride=8 8<stride< 32 stride=32
Req. PF | PF Done | Req. PF | PF Done | Req. PF | FP Done
vpr 4,196,590 49,124 1,956,374 | 142,838 | 4,920,951 | 255,372
mef | 16,460,868 | 7,530,754 | 9,239,329 41,531 2,504,918 | 1,756,205
ammp | 9,248,365 28,294 438,057 2,718 3,339,122 | 2,589,741
Table 2: Prefetch Distribution
Benchmark | Dec L1 Misses | Stream Hits | SB Prefetches | L1 Prefetches
vpr 39,976 190,001 398,210 49,124
mcf 546,259 535,237 3,234,279 7,530,754
ammp 16,584 461,067 2,615,366 28,294

Table 3: Cache and Stream Buffer Performance

that the number of useful prefetch requests are not that high for vpr and
ammp, whose IPC increase is small. We call the ratio between prefetches
done and prefetches requested the predictor efficiency. We can see that for
applications whose predictor efficiency is low, there is little chance of getting
significient performance increase.

In contrast to the predictor efficiency above, we take a look at the
prefetch efficiency in Table 3. Performance from prefetching comes from
the decreases of misses on memory accesses. We can see for different appli-
cations, the ratio of decreased misses to number of prefetches are reasonablty
consistant. But the increase do not all come from the hits into the stream
buffer, as the data shown. This shows that the stream buffer is just taking
data that would hit in the cache anyway in a lot of the cases. Another thing
we can note from the above two tables is that splitting the prefetching load
fairly between cache and stream buffer is hard, since a split based on the
length of the stride is unlikely to be fair for all applications. This indicates
adding data feeding pathes between the stream buffer and cache may be
good.

5 Conclusion

We have implemented the decoupled stream buffer and predictor in sim-
plescalar and it produced modest results. We have reached the following
conclusions, which verify most of our hypothesis, leaving some room for
future work:

1. Streams exist in applications, and have widely distributed strides.

11

. Prefetching strides is helpful for performance.

Decoupled predictors are not very efficient since they issue more re-
dundent prefetches for things already in the cache.

. More careful choice of items to fetch into stream buffers should be

done to filter out fetches friendly to the cache.

Prefetching stream increase performance at a reasonable cost.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

T. Sherwood, S. Sair and B. Calder Predictor-Directed Stream Buffers.
In Proceedings of the 33rd Annual International Symposium on Mi-
croarchitecture, December 2000

S. Palacharla and R. Kessler. Evaluating stream buffers as secondary
cache replacement. In 21st Annual International Symposium on com-
puter Architecture, April 1994.

N. Jouppi. Imprving direct-mapped cache performance by the addition
of a small fully associative cache and prefetch buffers. In Proceedings of

the 17th Annual International Symposium on Computer Architecture,
May 1990

T. Alexander and G. Kedem. Distributed prefetch-buffer /cache design
for high performance memory systems. In Proceedings of the Second In-
ternational Symposium on High-Performance Computer Architecture,
February 1996.

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. Memory-system
Design Considerations for Dynamically-scheduled Processors. In Pro-
ceedings of International Symposium on Computer Architecture, 1997.

S. P. Wiel and D. J. Lilja. When Caches Aren’t Enough: Data Prefetch-
ing Techniques. In IEEE Computers, 1997

T. F. Chen and J.-L. Baer. Effective Hardware-Based Data Prefetching
for High Performance Processors. IEEE Trans. Computers, May 1995.

N. Oren. A Survey of prefetching techniques. Technical Report TR-
Wits-CS-2000-10, July 2000

12

[9]

[10]

[11]

[12]

M. Bekerman et al. Correlated load-address predictors. In 26th Annual
International Symposium on Computer Architecture, May 1999

D. Joseph and D. grunwald. Prefetching using markov predictors. In
24th Annual International Symposium on Computer Architecture, Jun
1997

G. P. Jones and N. P. Topham. A comparison of data prefetching on
an access decoupled and superscalar machine. In 30th International
Symposium on Microarchitecture, December 1997

Y. Sazeides and J. E. Smith. The predictability of data values. In 305h
International Symposium on Microarchitecture, December 1997

13

