
A Scheme of Predictor Based
Stream Buffers

Bill Hodges, Guoqiang Pan, Lixin
Su

Outline

• Background and motivation
• Project hypothesis
• Our scheme of predictor-based stream

buffer
– Predictors
– Predictor table
– “Stream buffer”

• Results and analysis
• Research topics left

Contributors to Microprocessor
Performance Degradation

• Branch misprediction
• Different hazards
• TLB misses
• Cache misses

– Instruction cache misses

– Data cache miss rate (vary from a few to tens
of percent)

Techniques to Reduce Data Cache
Misses In Superscalar

• Redesign RF-Cache-DRAM memory
hierarchy
– Addition of L2 and L3 caches, move L2 onto

chip

– Victim cache, Pseudo cache
– Stream Buffer

• Aggressive instruction scheduling

How a Standard Stream Buffer
Works

From N. Jouppi

Stream Buffer Research Activities

• Where to start prefetching?
– Sequentially prefetching

– Prefetching with a stride
– Predictor based prefetching

• How to avoid frequent flushing of stream
buffer

• How to prevent pollution of L1 data cache?
• Decoupled or coupled predictors?

Project Hypothesis

• Memory accesses have patterns, like
strides.
– Localized data accesses have frequently used

data with smaller strides.

– Non-localized data accesses have
infrequently used data with larger strides

– Other access patterns may need to be
identified.

Our Scheme of Predictor Based
Stream Buffer

• Highlights
– Decoupled predictors from stream buffer
– Our stream buffer is a modified standard stream buffer.
– A group of predictors with each predictor responsible for

prediction falling within a “superline” (a consecutive range of
addresses across several blocks)

– Active predictors implemented in a table similar to TLB
– Predictor makes prefetching decision and choose L1 data cache

and stream buffer as prefetching target
– No data stored in stream buffer is promoted to L1 data cache.

Block Diagram

Predictors

• Decoupled predictors based upon data
addresses

• Predictor states
– Non-predictable states: UNINIT and RANDOM
– Predictable states: STRIDE and SEMISTRIDE
– Open to new states for new access patterns

• Look up and update a predictor on each memory
access

• Predicts to fetch into stream buffer for long
strides and into L1 data cache for short strides

Predictor State Transition Diagram

Predictor Table

• Virtual address indexed table
• A structure similar to TLB or even may be

implemented inside TLB
• It hosts a number of active predictors.

Our “Stream Buffer”

• A small fully associative buffer
• Replacement algorithms

– Track the latest accessed line
– Kick out the next line from the latest accessed

one

• Stream buffer is orthogonal with L1 data
access

Performance Comparison (IPC)

0.74950.76140.7477ammp

1.11501.11631.0839mcf

0.93410.93370.9326vpr

8k L1
4k L1 with

SB (12)
4k L1Benchmark

Prefetch Distribution

2,589,7413,339,1332,718438,05728,2949,248,365ammp

1,756,2052,504,91841,5319,239,3297,530,75416,460,868mcf

255,3724,920,951142,8381,956,37449,1244,196,590vpr

PF
Done

Req.
PF

PF
Done

Req.
PF

PF
Done

Req.
PF

stride�328<stride<32stride�8
BM

Cache and Stream Buffer
Performance

2,615,366

3,234,279

398,210

SB
Prefetches

16,584

546,259

39,976

Dec L1
Misses

28,294461,067ammp

7,530,754538,237mcf

49,124190,001vpr

L1
Prefetches

Stream HitsBenchmark

Data Analysis

• Distributions of strides exist in application
but show different characteristics in
different applications.

• Gained performance is modest but
comparable to the increase of the L1
cache size.

• Performance increase correlates to
prefetch prediction effciency and prefetch
efficiency.

Research Topics Left

• Implementation of better predictors like
Markov predictors

• Implementation of PC-coupled predictors
and compare with current performance.

• Redesign the structure of stream buffer
and see performance changes

• Search for more data access patterns and
add new predictor states

Conclusions

• There exist localized and non-localized
data accesses.

• Localized data tend to have smaller
strides.

• The distribution of stride sizes depend
upon applications.

• Predictor-based stream buffer can
increase performance.

