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Abstract 
 
Attempts to exploit instruction level parallelism 
(ILP) by executing more instructions per cycle 
using parallel functional units increases the 
pressure on the register file and necessitates 
increasing the register file size, both through 
number of ports and number of registers. The 
size of conventional register files grow linearly 
with respect to the number of registers and 
proportionally to the square of the number of 
ports, which is costly in terms of size and 
latency.  We believe a two-level, hierarchical 
register file structure implemented entirely in 
hardware can either increase the number of 
available registers for the same amount of space 
or decrease the size required for the same 
number of registers by splitting up register 
functionality into arithmetic and memory access 
sections, thereby decreasing the overall number 
of ports and therefore area and delay.  
Experiments were going to be run on 
Mediabench in RSIM to see if this could be 
implemented without introducing too much 
register overhead latency, but getting the 
simulator to work proved to be more challenging 
than expected and we ran out of time.  Despite 
this, we feel that this technique is a scalable way 
to combat the negative effects of register 
pressure and increasing access latency. 
 
 
 
1. Motivation and Hypothesis  
 
In the competitive general-purpose 
microprocessor market, CPUs with higher clock 
speed and better performance have an advantage 
over their competitors.  To increase speed and 
transistor density, developers using a smaller 
manufacturing process to scale down the feature 
size of the chips. The smaller the gate length of 
the transistor, the less time it takes for electrons 
to complete the connection between the collector 

and emitter, and the faster the signal can 
propagate through the connection. 

To achieve better performance, 
microprocessor developers have steadily 
increased the issue width, or number of 
instructions executed each cycle, of their 
microprocessors.  Current general-purpose 
microprocessors issue up to six instructions a 
cycle. Unfortunately, increasing speed and 
increasing issue width have negative side effects 
that combine to increase the latency of the 
register file.  If these trends continue, the 
traditional monolithic register file will need to be 
remodeled to avoid becoming a bottleneck. 
 
 
1.1 Clock Scaling vs Wire Delay 
 
The problem with smaller feature size is that 
signals must traverse metal wires as well as 
transistors.  The signal propagation time along a 
wire increases relative to the speed of switching 
logic as feature size decreases.  Signal 
propagation time is based on the RC time 
constant of switching the wire between high and 
low voltages.  As feature size decreases, the 
cross-sectional area of wire traces also decreases, 
which by the equation R= �/ (W x H) (where  is 
the resistivity of the conductive material, W is 
wire width, and H is wire height), means a 
higher resistance per unit length of wire.   

The capacitance of the wire depends on 
the layout of the circuit, making it more difficult 
to derive a general estimate, but [1] gives some 
optimistic values that nevertheless increase with 
each decrement in feature size.  This increase in 
the RC time constant means that less and less of 
the chip’s area can be accessed in one cycle, as 
seen in Figure 1 from [1].   

In Figure 1, f8 and f16 represent eight 
and sixteen fanout-of-four delays.  FO4 is a 
commonly used delay metric that allows 
comparisons between different processes 
because it scales with the technology.   
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Figure 1. Fraction of total chip area reachable 
in one cycle 

One FO4 is the time for an inverter to drive a 
capacitive load four times larger than its input 
capacitance.  It takes at least 5.5 FO4s to 
compute the result of a highly optimized 64-bit 
adder [3], so 8 FO4s is the lower bound for the 
clock speed of a highly pipelined microprocessor 
and 16 FO4s estimates the clock speed of a 
microprocessor with a shorter pipeline. fSIA is the 
clock speed projected by SIA roadmap.  This 
graph illustrates that with smaller processes, wire 
latency becomes increasingly significant and 
grows to be more of a factor than signal 
propagation through logic.  

In summary, with decreasing wire size 
and increasing clock speed, less area can be 
accessed in a single clock cycle, limiting the size 
of a single cycle accessible register file. 
 
 
1.2 ILP vs. Register File Size 
 

A second major approach to increasing 
microprocessor computational power, extracting 
and exploiting increasing amounts of ILP, also 
has a side effects that inadvertently increases the 
latency of a register file access.  Almost all mass 
produced modern processors try to take 
advantage of ILP by executing many instructions 
simultaneously on parallel functional units.  But 
to make full use of these functional units, the 
register file must have enough read and write 
ports to supply the maximum possible number of 
operands required in a single cycle.  Otherwise a 
functional unit will have to stall and wait for its 
operand value, and the register file will become a 
bottleneck.  More functional units requires more 
read and write ports in the register file for a full 
crossbar.  As we will explore in more detail in 
the next section, increasing the number of ports 

in each register of a register file greatly increases 
the size of the register file.  

Besides more ports being required to 
communicate with the increasing number of 
functional units, more registers are required to 
provide space for the increasing number of 
operands needed to supply in-flight instructions.  
While most microprocessors spill and fill 
registers to memory at every context switch, the 
Itanium [4] tries to reduce the frequency of this 
occurrence by using register stacking.  Register 
stacking allocates different sets of registers to 
different functions and only spills and to 
memory if it does not have a sufficient number 
of free registers to allocate to a function. To be 
effective this requires more than the minimum 
number of registers.   
 
 
1.3 Register File Size Estimation 
 
For our estimation of register file size, we 
borrow the model described by Rixner in [4].  In 
his model, the area of a register file is the 
product of the number of registers, the number of 
bits per register, and the size of a single-bit 
register cell.  As seen in Figure 2 from [4], the 
size of each register cell is a function of the 
width of the register cell without ports (w), the 
height of the register cell without ports (h), and 
the number of ports (p) squared.  

The area  (w x h) includes the storage 
space, power, and ground lines.  Each read and 
write port requires at least one metal trace in 
each dimensions: one for the bit line to access 
the data and the other for word line to address it.  
This estimation for register cell size yields the 
quadratic: p2 + (w + h) x p + w x h, which for 
large values of p is about p2.  This is a safe 
assumption for our purposes because we are 
basing our model on the need for a large multi-
ported register file.  Combining both parts of the 
register file size estimation yields a total area of 
Rp2, where R is number of registers times 
number of bits per register.  This means 
increasing the number of ports into a register file 
gives a much greater increase in area, and 
therefore delay, than increasing the number of 
registers.   

Because large multi-ported register files 
have long wires but little fan out, wire delay 
dominates over propagation delay.  This delay is 
on the order of pR1/2, showing more directly the 
negative timing impact of adding more registers 
and ports to the register file.   
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Figure 2. Schematic and layout of a register 
cell 

 
For example, according to the model in 

[1], increasing the number of ports in a 64-entry 
register file from ten to thirty-two for a 35nm 
technology increases the access time from 172ps 
to 274ps (from 2.3 to 3.7 clock cycles at the SIA 
projected clock speed for that process). 
 
 
1.4 Hypothesis 
 

The number of ports and registers in a 
monolithic register file can be increased only so 
far with increasingly smaller processes until it is 
no longer possible to access all available 
registers in a single cycle. This increased access 
latency is what our modification is trying to 
combat.  We feel that by breaking up the register 
file into two levels (a smaller higher level to 
interface with arithmetic units and a larger lower 
level which interfaces with the higher level and 
memory) we can either decrease the size (and 
therefore latency) of the register file or fit more 
registers into the same amount of space without 
introducing new instructions or slowing down 
the execution pipeline.  We wanted to see at 
what point the area and delay improvement of 
the two-level structure makes it preferable to the 

single level structure, taking into account the 
additional overhead of register transfer and 
coherency between levels.  

The next section of this paper examines 
the two-level register file structure in depth and 
models idealized gains over the single level 
structure.  Section three looks at the 
experimental parameters and test setup for RSIM 
and section four covers the results of these 
simulations.  Section five contains our 
conclusions and explores other techniques for 
reducing register file latency. 

 
 

2. Two-Level Register File 
 
Our experimental two-level register file uses the 
lower level registers as a cache that has the 
ability to prefetch values from memory and hold 
register values not immediately in use.  It 
accomplishes this by either taking less space for 
the same number of registers or placing more 
registers in the same amount of area occupied by 
the central register.  Figure 3 shows the 
conceptual layout of our register file structure.   

The main challenge of this register file 
structure was trying to create an effective, fast 
process for switching register values quickly and 
transparently between register levels.  To be 
transparent, the move needed to take place 
between the time the instruction is decoded (i.e. 
the operands and type of instruction are known) 
and the time the instruction executes.  
Unfortunately, the implementation varies 
depending on the machine’s pipeline.  We 
tailored our algorithm for the RSIM pipeline, 
which has six stages: fetch, decode, issue, 
execute, complete, and graduate.  This leaves 
one stage, the instruction issue stage, between 
decode and execution in which to position the 
registers.   

To reduce the number of times we had 
to write values from the first level into the 
second level on a switch, we decided to make the 
first level registers a subset of the second level 
registers.  That way, if the register value has not 
been modified in the first level, we can simply 
overwrite it on a register switch and avoid 
writing to the second level.  More detail on this 
is given later. 

For the area and delay comparisons, we 
chose to make the number of ports required for 
the interconnect (I) equal to half of the number 
of registers in the top level, with a read port to 
write port ratio of 3:1.   
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Figure 3. Two-level Register File  

 
This means it can take up to three cycles to swap 
out every value in the first level register file, 
which will happen on a context switch, but we 
assume that in general, new register values will 
be not be needed for all upper level registers 
every cycle. 

To determine the required number of 
ports in each level of our two-level register file, 
we took the estimation for number of ports in a 
central register file organization [4]: (M+3)N 
where M is the number of ports to memory, and 
N the number or arithmetic functional units.  
Then we and modified the equation to suit our 
two-level architecture.  While the central register 
file requires enough ports in each register to 
supply all the arithmetic functional units and 
cover memory access latency, in the two-level 
register file, only the second level requires ports 
to access memory and only the smaller first level 
requires ports to access other functional units.   
Both levels require ports to interface between the 
two levels.  Combining these factors, we decided 
that the first level requires (3N + I) ports per 
register, where I is the number of ports required 
to interface between the two levels.  The second 
level requires only I + M ports per register. 

In the two-level structure, we assume 
that the first level has 32 registers for up to 10 
arithmetic functional units and 64 registers for 
10-20 arithmetic units.  There are two 
approaches to deciding on the number of second 
level registers.  One approach is to use the same 
number of registers as our base case, 128, and 
see how that affects area and delay.  The other is 
to use the same amount of area and see how that 
affects number of registers and delay. 
 
 
2.1 Area and Delay Approach 
 
Because we are not actually building this 
structure, we will model the decrease in and 
increase in area using the estimations from [4], 

where area is approximated by Rp2.  Assuming 
M=4, I=16 for 32 first level registers and I=32 
for 64 first level registers, we get the graph 
below for area vs. number of arithmetic units 

 

Figure 4. Area Comparison of Register File 
Organizations 

 
The reduction in area becomes more pronounced 
as the number or functional units increases.  
Because area is directly related to power, by 
decreasing the area of the register file the power 
required by the register file is decreased.  This 
graph makes it easy to see how much better the 
two-level structure scales with increasing 
numbers of functional units.  Changing the 
parameter M while keeping the number of 
functional units constant has a similar but 
slightly less dramatic difference.  

In translating register file area to delay, 
delay from the upper level (or single level) 
register file to the functional units is proportional 
to the number of registers R in the single register 
file for N < 10 and proportional to pR1/2 for N > 
10.  Delay for memory operations is ignored 
because it is assumed to be much less than the 
latency of memory accesses.  In the two-level 
register file, delay is proportional to R for N < 18 
(because N =18 has same area as p = 10 in single 
level structure) and pR1/2 for N > 18.  These 
results are modeled in figure 4. 

For N < 10 the two-level register file 
has a slight advantage because it has fewer 
registers in the structure that interfaces with the 
arithmetic units.  There is a significant difference 
in delay for N > 10, and overall the delay of the 
two-level structure increases much more slowly 
than the delay of the single-level register file. 

Unfortunately, this result is overly 
optimistic because it completely ignores 
increased latency from register file management 
overhead.  It remains to be demonstrated that this 
difference in delay is greater than the increase in 
overhead for a two-level structure. 
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Figure 5. Delay Comparison of Register File 
Structures 

 
 
2.3 Delay and Number of Registers 
Approach 
 
In this approach we use the area estimations 
from before, but this time we try to see how 
many registers we can fit into the same amount 
of area.  The size of the first level does not 
change, so we still have the same delay benefits 
for functional units accessing the first level.  
Now the limiting factor for delay is how much of 
the second level is accessible from the first level 
in a single cycle, but this scales much better than 
the monolithic register file.  This is because the 
number of ports (and therefore area) in the 
second level increases more slowly in the two-
level structure than in the monolithic structure.  
Table 1 describes the increase in number of 
registers in the second level as the number of 
functional units increase (again M = 4 and I = 
half the number of first level registers).   
 

Table 1. Number of Registers for given area 

N First Level Second Level 
4 32 128 

5, 6 32 256 
7, 8  32 512 
9, 10 32 1024 
11,12 64 256 

13 - 16 64 512 
17 - 21 64 1024 

 
 
We chose the nearest power of two that took up 
less space than the monolithic register file to 
allow room for the increased logic needed to 

manage the two-level structure.   Despite this, 
there is a significant increase in the number of 
available second level registers.  As wire latency 
has not quite reached the point of multi-cycle 
register file access, this result shows that there is 
still some benefit to this modification even if by 
taking the same amount of area it does not 
decrease delay, because of the increase in 
register availability. 
 
 
2.4 Register File Management 
 
The register swapping logic is simple enough 
that is should be able to execute alongside the 
pipeline, moving the operand to the appropriate 
level before the instruction reaches the execute 
stage. The logic required to oversee the 
administration is added to the register rename 
logic already present in most ILP extracting 
architectures (except Itanium, in which case it 
would be added to the register remapping logic). 
The first-level registers are a subset of lower 
level registers to simplify register coherency.  A 
few extra bits need to be added to the register 
rename logic: a first level and second level dirty 
bit, the location of the register in the first level, 
the location of the operand in the second level, 
and a simple LRU counter for each first level 
register for the replacement scheme.   

After the decode stage, if the instruction 
is a memory store operation, it will check to 
make sure that there is not a modified (dirty) 
value of the operand in the first level.  If there is, 
it will update the second level with this value.  If 
the instruction is a load, no such check is 
necessary.  Next any first level entry will be 
removed by modifying the rename logic to 
indicate that the operand is not present in the first 
level and changing the LRU value to indicate 
that the first level register is empty.  This should 
be done before the execution stage, at which time 
the instruction will proceed normal using the 
second level register.  If the instruction changes 
the operand value, the second level dirty bit must 
be changed to reflect this. 

For an arithmetic operation, if every 
operand is not present in the first level, they must 
be placed in empty or least recently used first 
level registers.  In the later case, if the previous 
operand was dirty, it must be written back to the 
second level).  The rename logic must be 
modified to indicate the register’s new position, 
and the LRU counter must be changed to 
indicate that the register was very recently used.  
If one of the operands is modified by the 
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arithmetic operation, this must be indicated by 
changing the first level dirty bit. 

A possible optimization of this 
algorithm is to modify the LRU replacement 
technique to evict older unmodified values 
before modified values to reduce the number of 
writes back to the second level.  More 
simulations would need to be run to see if how 
this would affect switching time between 
different levels of the hierarchy.   
  
 
3. Experimental Set-up 
 
Our original plan of testing the modified register 
file structure on Simplerscalar using Spec2000 
benchmarks had to be modified when it was 
discovered that Simplescalar had a hard-coded 
register file and no register renaming.   Instead 
the modification was tested by running 
Mediabench on RSIM, a simulator by Vijay Pai 
at Rice University.   
RSIM is execution driven models current ILP 
processors, featuring out-of-order scheduling, 
static and dynamic branch prediction, and 
multiple instruction issue per cycle. It follows 
the architecture of the MIPS R10000 processor. 
It supports register renaming and has a 
configurable number of registers via multiple 
register windows (16 registers/window).  
The most difficult part of altering the simulator 
to implement the 2-level register file was 
slowing down the instructions at the execution 
stage according to the increased access latencies 
of the associated registers. RSIM does not have 
configurable register file access latencies, so we 
would have had to keep track of all the 
instructions and slow them down. To help 
simulate a 2-cycle monolithic register file we 
would have added an extra latency cycle in all 
instructions in the execution stage. 
 The implementation of the 2-level register 
hierarchy involved the following steps: 

- Keep track of all instructions coming 
from the instruction issue stage. These 
instructions have their dependencies 
solved and are ready to execute. 

-  For each of these instructions, we find 
its operands.  These refer to physical 
registers since the register renaming 
happened in the instruction decode 
stage. 

- For each of the above registers, we 
check where in the 2-level register 
structure they are found. If we have 
everything we need in the upper level, 

then there is a single cycle access 
penalty. If we have to move data 
between the two levels there is a 2-cycle 
penalty. We also update the mapping 
between the 2 levels and the dirty bits 
used for coherency.  

- We update everything again, when the 
output of the ALUs is ready.  

It is noted that there is no extra penalty when the 
interface between the 2 register levels is 
congested. This was due to implementation 
difficulties and would have been omitted. We 
believe that this should not be important since 
we already assumed that I (number of intrer-level 
ports) is equal to R1/2 (number of level 1 
registers) which presumably provides enough 
bandwidth. 
It is noted that this implementation is ‘crude’ but  
we believe that this configuration can give 
valuable evidence about the applicability of the 
register hierarchy idea. 
  
 
3.1 RSIM parameters 
 

The RSIM parameters we would have 
used for the simulation were chosen to model a 
processor with multiple functional units, many 
registers and high clock speed. This is reflected 
by the L1, L2 and memory latencies that are 
estimates based primarily on [1].   

 

Table 2. RSIM Parameters 

 Parameter Single-level Two-level 
ALUs 8 
FPUs 2 

Registers 128 32, 128 
L1 cache 16K    1-way 
L2 cache 64K    4-way 

L1 access latency 3 cycles 
L2 access latency 8 cycles 
Instruction window 64 
Branch prediction  2-bit history predictors 

Memory Latency 36 cycles 
 
 
In RSIM, we were going to run Mediabench 
using the parameters in Table 2.  We compared a 
modified register file with 32 first level and 128 
second level registers to a 128-entry single level 
register file with either one or two cycle access 
latency.  The bandwidth between the two levels 
of the register file (I) was assumed to be infinite.  
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This means, as explained earlier, that it takes one 
cycle for the functional units to access first level 
registers and two cycles to access second level 
registers.  This experimental setup follows the 
approach ‘keep the number of registers the same, 
but reduce latency and area’ as described in 
section 2.3. 
 
 
4. Simulation Results  
 
We would have used several benchmarks from 
Mediabench to test our approach. The key 
feature of these programs is the intense use of 
integer operations.  A thorough analysis of their 
behavior can be found in [6].  The following 
graph is made up based on what we think should 
have happened.  It is based on [2] and does not 
have any real simulation data to support it.  But 
we expect out register file structure to 
outperform a single monolithic file of 2-cycle 
access latency and perform worse than a single 
cycle latency register file.. 
 

Mediabench results
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5. Conclusions 
 
Our modeling results give evidence that our 
hypothesis is correct, but we have no real 
simulation data.  We conclude that this is a good 
idea to test, but that most microprocessor 
simulators are not built in such a way that allows 
easy modification and testing of different register 
file implementations.  This is understandable 
since up till now it has not been a limiting factor 
to performance, but we feel that it may become 
so in the future. Realizing any gain from our 
modification depends mostly on the ability to fit 
the necessary logic into the pipeline without 

slowing it down, but with the simplified register-
switching algorithm this will hopefully not be 
too difficult.   
 Further research into this might first test 
our configuration and expand it further to 
compare the two-level register hierarchy to a 
pipelined register file or one of the other 
implementations discussed in the following 
sections. 

The final section, 5.6, looks at a real-
world register file and compares it to our model.  
The following discussion shows that our model 
may be a little harsh.  There are many other 
improvements currently being used that seem to 
be effective at reducing the size of the register 
file without changing the basic single-level 
structure. 
 
 
5.1. Similar Work 
 
There have been many innovative ideas for 
creating a more efficient register file, and most 
modern microprocessors use their own 
optimizations to reduce the number of ports 
required.  In order to be effective through 
multiple generations, the solution must be 
scalable.  All of the ideas presented in this 
section involve providing less than a full 
crossbar between all register and all arithmetic 
functional units, but the choice of partitioning 
scheme and method of implementation vary 
dramatically.   

Rixner suggested several partitioning 
methods in [4], including a distributed register 
file organized around SIMD clusters and a 
hierarchical register file separating memory 
registers and arithmetic registers.  Our approach 
is a closest to the hierarchical organization, but 
meant more for general-purpose microprocessors 
than media processors.  Zalamea suggested a 
two-level hierarchical register file for VLIW 
processors, but transfers between levels were 
handled by explicit instructions instead of 
implicitly by hardware.  Cruz proposes a 
multiple-banked register file that is similar to but 
different from our two-level approach.  
 
 
5.2 Distributed Register File 

 
The distributed register file involved clustering 
registers around each arithmetic functional unit 
to allow fast accesses to registers local to a 
particular functional unit, but slower accesses to 
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registers elsewhere through a fast switched 
interconnect. This requires only two ports for the 
local arithmetic functional unit, but because the 
size of the full crossbar interconnect between all 
N arithmetic functional units grows as N2, this is 
most beneficial for when interconnection is 
required only within smaller data independent 
SIMD clusters.  This approach is more scalable 
than a single central register file and works very 
well for media processing, but is less effective 
for general-purpose processors because of 
increased dependence between instructions and 
the size and latency overhead of the switched 
interconnects. 
 
 
5.3 Hierarchical Register File 
 
This hierarchical register organization, like the 
one we are proposing, has a smaller first level 
with ports that communicate with the arithmetic 
functional units and a larger second level with 
ports only to the first level and memory.  The 
implementation was not discussed in great detail, 
but the motivation was.  Rixner proposes 
replacing the data cache in media processors 
with the memory-interfacing second level of the 
register file because data in media applications 
displays little locality, making data caches less 
efficient.  Although it is true that this 
organization is particularly useful for media 
processors because of the large number of 
parallel functional units they possess, we feel 
that this organization will also work well with 
(rather than in place of) the caches in general-
purpose processors, especially as latency to the 
first level cache increases (another side effect of 
increasing wire delay) and number of functional 
units increase. 
 
 
5.4 Compiler Controlled Register File 
 
Zalamea [7] simulated a compiler controlled 
two-level register hierarchy.  This makes the 
hardware implementation simpler (we are still 
not sure whether even the simple amount of logic 
introduced for the two-level hierarchy 
management in section 2.4 will fit in a highly 
optimized pipeline), but it introduces additional 
instruction overhead to perform transfers 
between register levels and cannot hide register 
switching as we hope to.   Their results were not 
as promising as the ones we measured.  
 

 
5.5 Multiple-Banked Register File 
 
Cruz suggested dividing the register file into 
several banks of varying number of registers and 
ports.  Two examples of this organization are 
given in Figure 6 from [2].  Cruz noticed that 
while a large number of registers are needed to 
hold all of the operand values, only a few of 
those values are actually needed at a given time.  
Because of the similarity of this approach to 
memory hierarchy, he called his structure a 
register file cache.   

 

Figure 6. Multiple-Banked Register File 

 
The main difference between this approach and 
the one we implemented is that in the register file 
cache, both memory and arithmetic functional 
units access the highest level and values are 
always written to the lowest level to maintain 
register coherency.  This paper also focuses 
attention on different levels of register bypassing 
and prefetching schemes for the register cache. 
 
 
5.6 Itanium Example 

 
The problem of register file latency has already 
begun to affect current microprocessors.  Intel’s 
Itanium microprocessor has two large 128-entry 
register files, but they use methods other than 
multi-level register files to reduce the number of 
ports.  Our model assumed that there would be 
MN ports devoted to memory accesses, but in 
reality there are many less than that.  For 
example, by the model the Itanium would require 
40 read and write ports, but in reality it gets by 
with only 14.  For one thing, the Itanium uses 
multiple memory banks to allow the same write 
port to do twice the work and modify two 
memory locations, one in each memory bank.   

Instructions templates give the Itanium 
another advantage.  By assigning particular 
instructions to certain locations within the 
template, they can restrict the interconnections in 
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a way that allows operands to reach the 
destinations they need while at the same time 
reducing the routing complexity.  The main 
lesson to learn from this is that designers 
sometimes find it more comfortable to stretch 
existing structures to the limit rather than trying 
something new and different. 
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