

 - 1 -

Register Hierarchy

Roshan Gummattira Spyros Tsavachidis Teresa Watkins

Department of Computer Science and Electrical Engineering
George R. Brown School of Engineering, Rice University

{roshankg, spy, watkinst}@rice.edu

Abstract

Attempts to exploit instruction level parallelism
(ILP) by executing more instructions per cycle
using parallel functional units increases the
pressure on the register file and necessitates
increasing the register file size, both through
number of ports and number of registers. The
size of conventional register files grow linearly
with respect to the number of registers and
proportionally to the square of the number of
ports, which is costly in terms of size and
latency. We believe a two-level, hierarchical
register file structure implemented entirely in
hardware can either increase the number of
available registers for the same amount of space
or decrease the size required for the same
number of registers by splitting up register
functionality into arithmetic and memory access
sections, thereby decreasing the overall number
of ports and therefore area and delay.
Experiments were going to be run on
Mediabench in RSIM to see if this could be
implemented without introducing too much
register overhead latency, but getting the
simulator to work proved to be more challenging
than expected and we ran out of time. Despite
this, we feel that this technique is a scalable way
to combat the negative effects of register
pressure and increasing access latency.

1. Motivation and Hypothesis

In the competitive general-purpose
microprocessor market, CPUs with higher clock
speed and better performance have an advantage
over their competitors. To increase speed and
transistor density, developers using a smaller
manufacturing process to scale down the feature
size of the chips. The smaller the gate length of
the transistor, the less time it takes for electrons
to complete the connection between the collector

and emitter, and the faster the signal can
propagate through the connection.

To achieve better performance,
microprocessor developers have steadily
increased the issue width, or number of
instructions executed each cycle, of their
microprocessors. Current general-purpose
microprocessors issue up to six instructions a
cycle. Unfortunately, increasing speed and
increasing issue width have negative side effects
that combine to increase the latency of the
register file. If these trends continue, the
traditional monolithic register file will need to be
remodeled to avoid becoming a bottleneck.

1.1 Clock Scaling vs Wire Delay

The problem with smaller feature size is that
signals must traverse metal wires as well as
transistors. The signal propagation time along a
wire increases relative to the speed of switching
logic as feature size decreases. Signal
propagation time is based on the RC time
constant of switching the wire between high and
low voltages. As feature size decreases, the
cross-sectional area of wire traces also decreases,
which by the equation R= �/ (W x H) (where is
the resistivity of the conductive material, W is
wire width, and H is wire height), means a
higher resistance per unit length of wire.

The capacitance of the wire depends on
the layout of the circuit, making it more difficult
to derive a general estimate, but [1] gives some
optimistic values that nevertheless increase with
each decrement in feature size. This increase in
the RC time constant means that less and less of
the chip’s area can be accessed in one cycle, as
seen in Figure 1 from [1].

In Figure 1, f8 and f16 represent eight
and sixteen fanout-of-four delays. FO4 is a
commonly used delay metric that allows
comparisons between different processes
because it scales with the technology.

 - 2 -

Figure 1. Fraction of total chip area reachable
in one cycle

One FO4 is the time for an inverter to drive a
capacitive load four times larger than its input
capacitance. It takes at least 5.5 FO4s to
compute the result of a highly optimized 64-bit
adder [3], so 8 FO4s is the lower bound for the
clock speed of a highly pipelined microprocessor
and 16 FO4s estimates the clock speed of a
microprocessor with a shorter pipeline. fSIA is the
clock speed projected by SIA roadmap. This
graph illustrates that with smaller processes, wire
latency becomes increasingly significant and
grows to be more of a factor than signal
propagation through logic.

In summary, with decreasing wire size
and increasing clock speed, less area can be
accessed in a single clock cycle, limiting the size
of a single cycle accessible register file.

1.2 ILP vs. Register File Size

A second major approach to increasing
microprocessor computational power, extracting
and exploiting increasing amounts of ILP, also
has a side effects that inadvertently increases the
latency of a register file access. Almost all mass
produced modern processors try to take
advantage of ILP by executing many instructions
simultaneously on parallel functional units. But
to make full use of these functional units, the
register file must have enough read and write
ports to supply the maximum possible number of
operands required in a single cycle. Otherwise a
functional unit will have to stall and wait for its
operand value, and the register file will become a
bottleneck. More functional units requires more
read and write ports in the register file for a full
crossbar. As we will explore in more detail in
the next section, increasing the number of ports

in each register of a register file greatly increases
the size of the register file.

Besides more ports being required to
communicate with the increasing number of
functional units, more registers are required to
provide space for the increasing number of
operands needed to supply in-flight instructions.
While most microprocessors spill and fill
registers to memory at every context switch, the
Itanium [4] tries to reduce the frequency of this
occurrence by using register stacking. Register
stacking allocates different sets of registers to
different functions and only spills and to
memory if it does not have a sufficient number
of free registers to allocate to a function. To be
effective this requires more than the minimum
number of registers.

1.3 Register File Size Estimation

For our estimation of register file size, we
borrow the model described by Rixner in [4]. In
his model, the area of a register file is the
product of the number of registers, the number of
bits per register, and the size of a single-bit
register cell. As seen in Figure 2 from [4], the
size of each register cell is a function of the
width of the register cell without ports (w), the
height of the register cell without ports (h), and
the number of ports (p) squared.

The area (w x h) includes the storage
space, power, and ground lines. Each read and
write port requires at least one metal trace in
each dimensions: one for the bit line to access
the data and the other for word line to address it.
This estimation for register cell size yields the
quadratic: p2 + (w + h) x p + w x h, which for
large values of p is about p2. This is a safe
assumption for our purposes because we are
basing our model on the need for a large multi-
ported register file. Combining both parts of the
register file size estimation yields a total area of
Rp2, where R is number of registers times
number of bits per register. This means
increasing the number of ports into a register file
gives a much greater increase in area, and
therefore delay, than increasing the number of
registers.

Because large multi-ported register files
have long wires but little fan out, wire delay
dominates over propagation delay. This delay is
on the order of pR1/2, showing more directly the
negative timing impact of adding more registers
and ports to the register file.

 - 3 -

Figure 2. Schematic and layout of a register
cell

For example, according to the model in

[1], increasing the number of ports in a 64-entry
register file from ten to thirty-two for a 35nm
technology increases the access time from 172ps
to 274ps (from 2.3 to 3.7 clock cycles at the SIA
projected clock speed for that process).

1.4 Hypothesis

The number of ports and registers in a
monolithic register file can be increased only so
far with increasingly smaller processes until it is
no longer possible to access all available
registers in a single cycle. This increased access
latency is what our modification is trying to
combat. We feel that by breaking up the register
file into two levels (a smaller higher level to
interface with arithmetic units and a larger lower
level which interfaces with the higher level and
memory) we can either decrease the size (and
therefore latency) of the register file or fit more
registers into the same amount of space without
introducing new instructions or slowing down
the execution pipeline. We wanted to see at
what point the area and delay improvement of
the two-level structure makes it preferable to the

single level structure, taking into account the
additional overhead of register transfer and
coherency between levels.

The next section of this paper examines
the two-level register file structure in depth and
models idealized gains over the single level
structure. Section three looks at the
experimental parameters and test setup for RSIM
and section four covers the results of these
simulations. Section five contains our
conclusions and explores other techniques for
reducing register file latency.

2. Two-Level Register File

Our experimental two-level register file uses the
lower level registers as a cache that has the
ability to prefetch values from memory and hold
register values not immediately in use. It
accomplishes this by either taking less space for
the same number of registers or placing more
registers in the same amount of area occupied by
the central register. Figure 3 shows the
conceptual layout of our register file structure.

The main challenge of this register file
structure was trying to create an effective, fast
process for switching register values quickly and
transparently between register levels. To be
transparent, the move needed to take place
between the time the instruction is decoded (i.e.
the operands and type of instruction are known)
and the time the instruction executes.
Unfortunately, the implementation varies
depending on the machine’s pipeline. We
tailored our algorithm for the RSIM pipeline,
which has six stages: fetch, decode, issue,
execute, complete, and graduate. This leaves
one stage, the instruction issue stage, between
decode and execution in which to position the
registers.

To reduce the number of times we had
to write values from the first level into the
second level on a switch, we decided to make the
first level registers a subset of the second level
registers. That way, if the register value has not
been modified in the first level, we can simply
overwrite it on a register switch and avoid
writing to the second level. More detail on this
is given later.

For the area and delay comparisons, we
chose to make the number of ports required for
the interconnect (I) equal to half of the number
of registers in the top level, with a read port to
write port ratio of 3:1.

 - 4 -

Figure 3. Two-level Register File

This means it can take up to three cycles to swap
out every value in the first level register file,
which will happen on a context switch, but we
assume that in general, new register values will
be not be needed for all upper level registers
every cycle.

To determine the required number of
ports in each level of our two-level register file,
we took the estimation for number of ports in a
central register file organization [4]: (M+3)N
where M is the number of ports to memory, and
N the number or arithmetic functional units.
Then we and modified the equation to suit our
two-level architecture. While the central register
file requires enough ports in each register to
supply all the arithmetic functional units and
cover memory access latency, in the two-level
register file, only the second level requires ports
to access memory and only the smaller first level
requires ports to access other functional units.
Both levels require ports to interface between the
two levels. Combining these factors, we decided
that the first level requires (3N + I) ports per
register, where I is the number of ports required
to interface between the two levels. The second
level requires only I + M ports per register.

In the two-level structure, we assume
that the first level has 32 registers for up to 10
arithmetic functional units and 64 registers for
10-20 arithmetic units. There are two
approaches to deciding on the number of second
level registers. One approach is to use the same
number of registers as our base case, 128, and
see how that affects area and delay. The other is
to use the same amount of area and see how that
affects number of registers and delay.

2.1 Area and Delay Approach

Because we are not actually building this
structure, we will model the decrease in and
increase in area using the estimations from [4],

where area is approximated by Rp2. Assuming
M=4, I=16 for 32 first level registers and I=32
for 64 first level registers, we get the graph
below for area vs. number of arithmetic units

Figure 4. Area Comparison of Register File
Organizations

The reduction in area becomes more pronounced
as the number or functional units increases.
Because area is directly related to power, by
decreasing the area of the register file the power
required by the register file is decreased. This
graph makes it easy to see how much better the
two-level structure scales with increasing
numbers of functional units. Changing the
parameter M while keeping the number of
functional units constant has a similar but
slightly less dramatic difference.

In translating register file area to delay,
delay from the upper level (or single level)
register file to the functional units is proportional
to the number of registers R in the single register
file for N < 10 and proportional to pR1/2 for N >
10. Delay for memory operations is ignored
because it is assumed to be much less than the
latency of memory accesses. In the two-level
register file, delay is proportional to R for N < 18
(because N =18 has same area as p = 10 in single
level structure) and pR1/2 for N > 18. These
results are modeled in figure 4.

For N < 10 the two-level register file
has a slight advantage because it has fewer
registers in the structure that interfaces with the
arithmetic units. There is a significant difference
in delay for N > 10, and overall the delay of the
two-level structure increases much more slowly
than the delay of the single-level register file.

Unfortunately, this result is overly
optimistic because it completely ignores
increased latency from register file management
overhead. It remains to be demonstrated that this
difference in delay is greater than the increase in
overhead for a two-level structure.

 - 5 -

Figure 5. Delay Comparison of Register File
Structures

2.3 Delay and Number of Registers
Approach

In this approach we use the area estimations
from before, but this time we try to see how
many registers we can fit into the same amount
of area. The size of the first level does not
change, so we still have the same delay benefits
for functional units accessing the first level.
Now the limiting factor for delay is how much of
the second level is accessible from the first level
in a single cycle, but this scales much better than
the monolithic register file. This is because the
number of ports (and therefore area) in the
second level increases more slowly in the two-
level structure than in the monolithic structure.
Table 1 describes the increase in number of
registers in the second level as the number of
functional units increase (again M = 4 and I =
half the number of first level registers).

Table 1. Number of Registers for given area

N First Level Second Level
4 32 128

5, 6 32 256
7, 8 32 512
9, 10 32 1024
11,12 64 256

13 - 16 64 512
17 - 21 64 1024

We chose the nearest power of two that took up
less space than the monolithic register file to
allow room for the increased logic needed to

manage the two-level structure. Despite this,
there is a significant increase in the number of
available second level registers. As wire latency
has not quite reached the point of multi-cycle
register file access, this result shows that there is
still some benefit to this modification even if by
taking the same amount of area it does not
decrease delay, because of the increase in
register availability.

2.4 Register File Management

The register swapping logic is simple enough
that is should be able to execute alongside the
pipeline, moving the operand to the appropriate
level before the instruction reaches the execute
stage. The logic required to oversee the
administration is added to the register rename
logic already present in most ILP extracting
architectures (except Itanium, in which case it
would be added to the register remapping logic).
The first-level registers are a subset of lower
level registers to simplify register coherency. A
few extra bits need to be added to the register
rename logic: a first level and second level dirty
bit, the location of the register in the first level,
the location of the operand in the second level,
and a simple LRU counter for each first level
register for the replacement scheme.

After the decode stage, if the instruction
is a memory store operation, it will check to
make sure that there is not a modified (dirty)
value of the operand in the first level. If there is,
it will update the second level with this value. If
the instruction is a load, no such check is
necessary. Next any first level entry will be
removed by modifying the rename logic to
indicate that the operand is not present in the first
level and changing the LRU value to indicate
that the first level register is empty. This should
be done before the execution stage, at which time
the instruction will proceed normal using the
second level register. If the instruction changes
the operand value, the second level dirty bit must
be changed to reflect this.

For an arithmetic operation, if every
operand is not present in the first level, they must
be placed in empty or least recently used first
level registers. In the later case, if the previous
operand was dirty, it must be written back to the
second level). The rename logic must be
modified to indicate the register’s new position,
and the LRU counter must be changed to
indicate that the register was very recently used.
If one of the operands is modified by the

 - 6 -

arithmetic operation, this must be indicated by
changing the first level dirty bit.

A possible optimization of this
algorithm is to modify the LRU replacement
technique to evict older unmodified values
before modified values to reduce the number of
writes back to the second level. More
simulations would need to be run to see if how
this would affect switching time between
different levels of the hierarchy.

3. Experimental Set-up

Our original plan of testing the modified register
file structure on Simplerscalar using Spec2000
benchmarks had to be modified when it was
discovered that Simplescalar had a hard-coded
register file and no register renaming. Instead
the modification was tested by running
Mediabench on RSIM, a simulator by Vijay Pai
at Rice University.
RSIM is execution driven models current ILP
processors, featuring out-of-order scheduling,
static and dynamic branch prediction, and
multiple instruction issue per cycle. It follows
the architecture of the MIPS R10000 processor.
It supports register renaming and has a
configurable number of registers via multiple
register windows (16 registers/window).
The most difficult part of altering the simulator
to implement the 2-level register file was
slowing down the instructions at the execution
stage according to the increased access latencies
of the associated registers. RSIM does not have
configurable register file access latencies, so we
would have had to keep track of all the
instructions and slow them down. To help
simulate a 2-cycle monolithic register file we
would have added an extra latency cycle in all
instructions in the execution stage.
 The implementation of the 2-level register
hierarchy involved the following steps:

- Keep track of all instructions coming
from the instruction issue stage. These
instructions have their dependencies
solved and are ready to execute.

- For each of these instructions, we find
its operands. These refer to physical
registers since the register renaming
happened in the instruction decode
stage.

- For each of the above registers, we
check where in the 2-level register
structure they are found. If we have
everything we need in the upper level,

then there is a single cycle access
penalty. If we have to move data
between the two levels there is a 2-cycle
penalty. We also update the mapping
between the 2 levels and the dirty bits
used for coherency.

- We update everything again, when the
output of the ALUs is ready.

It is noted that there is no extra penalty when the
interface between the 2 register levels is
congested. This was due to implementation
difficulties and would have been omitted. We
believe that this should not be important since
we already assumed that I (number of intrer-level
ports) is equal to R1/2 (number of level 1
registers) which presumably provides enough
bandwidth.
It is noted that this implementation is ‘crude’ but
we believe that this configuration can give
valuable evidence about the applicability of the
register hierarchy idea.

3.1 RSIM parameters

The RSIM parameters we would have
used for the simulation were chosen to model a
processor with multiple functional units, many
registers and high clock speed. This is reflected
by the L1, L2 and memory latencies that are
estimates based primarily on [1].

Table 2. RSIM Parameters

 Parameter Single-level Two-level
ALUs 8
FPUs 2

Registers 128 32, 128
L1 cache 16K 1-way
L2 cache 64K 4-way

L1 access latency 3 cycles
L2 access latency 8 cycles
Instruction window 64
Branch prediction 2-bit history predictors

Memory Latency 36 cycles

In RSIM, we were going to run Mediabench
using the parameters in Table 2. We compared a
modified register file with 32 first level and 128
second level registers to a 128-entry single level
register file with either one or two cycle access
latency. The bandwidth between the two levels
of the register file (I) was assumed to be infinite.

 - 7 -

This means, as explained earlier, that it takes one
cycle for the functional units to access first level
registers and two cycles to access second level
registers. This experimental setup follows the
approach ‘keep the number of registers the same,
but reduce latency and area’ as described in
section 2.3.

4. Simulation Results

We would have used several benchmarks from
Mediabench to test our approach. The key
feature of these programs is the intense use of
integer operations. A thorough analysis of their
behavior can be found in [6]. The following
graph is made up based on what we think should
have happened. It is based on [2] and does not
have any real simulation data to support it. But
we expect out register file structure to
outperform a single monolithic file of 2-cycle
access latency and perform worse than a single
cycle latency register file..

Mediabench results

0

0.2

0.4

0.6

0.8

1

1.2

1-cycle, 1 level 2-cycle, 1 level 1-1 cycle, 2 level

5. Conclusions

Our modeling results give evidence that our
hypothesis is correct, but we have no real
simulation data. We conclude that this is a good
idea to test, but that most microprocessor
simulators are not built in such a way that allows
easy modification and testing of different register
file implementations. This is understandable
since up till now it has not been a limiting factor
to performance, but we feel that it may become
so in the future. Realizing any gain from our
modification depends mostly on the ability to fit
the necessary logic into the pipeline without

slowing it down, but with the simplified register-
switching algorithm this will hopefully not be
too difficult.
 Further research into this might first test
our configuration and expand it further to
compare the two-level register hierarchy to a
pipelined register file or one of the other
implementations discussed in the following
sections.

The final section, 5.6, looks at a real-
world register file and compares it to our model.
The following discussion shows that our model
may be a little harsh. There are many other
improvements currently being used that seem to
be effective at reducing the size of the register
file without changing the basic single-level
structure.

5.1. Similar Work

There have been many innovative ideas for
creating a more efficient register file, and most
modern microprocessors use their own
optimizations to reduce the number of ports
required. In order to be effective through
multiple generations, the solution must be
scalable. All of the ideas presented in this
section involve providing less than a full
crossbar between all register and all arithmetic
functional units, but the choice of partitioning
scheme and method of implementation vary
dramatically.

Rixner suggested several partitioning
methods in [4], including a distributed register
file organized around SIMD clusters and a
hierarchical register file separating memory
registers and arithmetic registers. Our approach
is a closest to the hierarchical organization, but
meant more for general-purpose microprocessors
than media processors. Zalamea suggested a
two-level hierarchical register file for VLIW
processors, but transfers between levels were
handled by explicit instructions instead of
implicitly by hardware. Cruz proposes a
multiple-banked register file that is similar to but
different from our two-level approach.

5.2 Distributed Register File

The distributed register file involved clustering
registers around each arithmetic functional unit
to allow fast accesses to registers local to a
particular functional unit, but slower accesses to

 - 8 -

registers elsewhere through a fast switched
interconnect. This requires only two ports for the
local arithmetic functional unit, but because the
size of the full crossbar interconnect between all
N arithmetic functional units grows as N2, this is
most beneficial for when interconnection is
required only within smaller data independent
SIMD clusters. This approach is more scalable
than a single central register file and works very
well for media processing, but is less effective
for general-purpose processors because of
increased dependence between instructions and
the size and latency overhead of the switched
interconnects.

5.3 Hierarchical Register File

This hierarchical register organization, like the
one we are proposing, has a smaller first level
with ports that communicate with the arithmetic
functional units and a larger second level with
ports only to the first level and memory. The
implementation was not discussed in great detail,
but the motivation was. Rixner proposes
replacing the data cache in media processors
with the memory-interfacing second level of the
register file because data in media applications
displays little locality, making data caches less
efficient. Although it is true that this
organization is particularly useful for media
processors because of the large number of
parallel functional units they possess, we feel
that this organization will also work well with
(rather than in place of) the caches in general-
purpose processors, especially as latency to the
first level cache increases (another side effect of
increasing wire delay) and number of functional
units increase.

5.4 Compiler Controlled Register File

Zalamea [7] simulated a compiler controlled
two-level register hierarchy. This makes the
hardware implementation simpler (we are still
not sure whether even the simple amount of logic
introduced for the two-level hierarchy
management in section 2.4 will fit in a highly
optimized pipeline), but it introduces additional
instruction overhead to perform transfers
between register levels and cannot hide register
switching as we hope to. Their results were not
as promising as the ones we measured.

5.5 Multiple-Banked Register File

Cruz suggested dividing the register file into
several banks of varying number of registers and
ports. Two examples of this organization are
given in Figure 6 from [2]. Cruz noticed that
while a large number of registers are needed to
hold all of the operand values, only a few of
those values are actually needed at a given time.
Because of the similarity of this approach to
memory hierarchy, he called his structure a
register file cache.

Figure 6. Multiple-Banked Register File

The main difference between this approach and
the one we implemented is that in the register file
cache, both memory and arithmetic functional
units access the highest level and values are
always written to the lowest level to maintain
register coherency. This paper also focuses
attention on different levels of register bypassing
and prefetching schemes for the register cache.

5.6 Itanium Example

The problem of register file latency has already
begun to affect current microprocessors. Intel’s
Itanium microprocessor has two large 128-entry
register files, but they use methods other than
multi-level register files to reduce the number of
ports. Our model assumed that there would be
MN ports devoted to memory accesses, but in
reality there are many less than that. For
example, by the model the Itanium would require
40 read and write ports, but in reality it gets by
with only 14. For one thing, the Itanium uses
multiple memory banks to allow the same write
port to do twice the work and modify two
memory locations, one in each memory bank.

Instructions templates give the Itanium
another advantage. By assigning particular
instructions to certain locations within the
template, they can restrict the interconnections in

 - 9 -

a way that allows operands to reach the
destinations they need while at the same time
reducing the routing complexity. The main
lesson to learn from this is that designers
sometimes find it more comfortable to stretch
existing structures to the limit rather than trying
something new and different.

6. References

[1] V. Agarwal, M. Hrishikesh, S. W. Keckler,
and D. Burger. Clock Rate versus IPC: The End
of the Road for Conventional
Microarchitectures. In Proceedings of the 27th
International Symposium on Computer
Architecture, pages 248-259, June 2000

[2] J.L. Cruz, A. Gonzalez, M. Valero, and N.
Topham, “Multiple-Banked Register File
Architectures”.

[3] S. Naffziger. A subnanosecond 0.5 m 64b
adder design. In Digest of Technical Papers,
International Solid-State Circuits Conference,
pages 362-363, February 1996.

[4] S. Rixner, W. Dally, B. Khailany, P. Mattson,
U. Kapasi, and J.Owens, "Register organization
for media processing", in proceedings of the 26th
International Symposium on High Performance
Computer Architecture.

[5] H. Sharangpani and K. Arora, Intel Itanium
Processor Microarchitecture overview.
Technical report, Intel Corporation, Santa Clara,
CA, USA, 2000.

[6] Smith William, Chunho Lee, MediaBench: A
Tool for Evaluating and Synthesizing
Multimedia and Communications Systems.

[7] J. Zalamea, J. Llosa, E. Ayguade, and M.
Valero, “Two-Level Hierarchical Register File
Organization for VLIW Processors”.

