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A Simulation:  Improving Throughput and Reducing PCI Bus Traffic by 

Caching Server Requests using a Network Processor with Memory 

 

1 Motivation and Concept 

 The goal of this project was to show how using a network processor 

with external memory for caching server requests could potentially 

provide a significant increase in server throughput and PCI bus 

bandwidth.  Server applications are becoming more important as the 

internet continues to expand.  We expect that the future will continue 

to bring more web users each year.  These users will likely turn to the 

internet for the latest news updates, for online shopping, for research, 

and countless other areas of interest.  As the number of users a web 

server must handle increases, server throughput will become increasingly 

important, especially for servers handling a large number of clients.  

Therefore, we believe that by replacing the standard NIC with a network 

processor connected to an external memory used for caching server 

requests, we can significantly increase the throughput while also 

benefitting PCI bus bandwidth. 

  While this idea would benefit a large number of servers, there 

are some that might not reap benefits as great.  Servers that primarily 

handle streaming media requests or dynamic web pages are not likely to 

see the maximum benefit our expected results show.  We believe that 

servers dealing with static web pages are those that can expect to see 

the most improvement in throughput.  However, the idea may still be 

applicable to non-static request handling servers with some 

modifications.  Our simulator model, however, is based on a static 
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request handling server.  Also of note, from a single user or client 

perspective, there may not be any discernible improvement in server 

performance.  The primary benefit comes from being able to handle more 

requests in a shorter amount of time, thus allowing the server to 

increase its overall performance.  So while a particular user may not be 

excited about the concept, websites that consistently see periods of 

high traffic on any given day would likely be interested in the results 

presented here. 

 The idea is to use a network processor connected to a DRAM for 

caching frequently requested data packets coming from a server.  As a 

request is made, the host machine will seek the requested data from its 

memory and send the data out to the network processor.  The host will 

also signal the network processor to cache the data in its own memory.  

The next time a request is made for the same data, the host CPU will not 

need to send out the data again.  Rather, it will simply send out header 

information for the packet and information detailing the location of the 

data in the network processor memory as well as the length of the data.  

The network processor will then concatenate the header with the 

requested packet data and complete the response by sending it out to the 

Ethernet.  First, this allows the CPU to handle the next request sooner 

rather than having to prepare the packet again for transmission.  Also, 

since the entire packet is not required to be sent to the network 

processor again, the traffic over the PCI bus is reduced by the size of 

the requested packet that could potentially be considerable over enough 

requests.  Thus, we also improve the bandwidth over the PCI bus. 

 

2 Simulator Architecture 

 In order to test this idea, we have created a simulator for this 

system using C++.  We have modeled the host CPU, host main memory 

(DRAM), host disk, network processor, network processor external memory 

(DRAM), PCI bus, packets, and Ethernet.  We are particularly interested 

in measuring the average response time for a request for the system and 
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the total amount of traffic over the PCI bus.  This will give us the 

percentage improvement of our network processor based simulations over 

our baseline simulation lacking a network processor.  The CPU and NP are 

not modeled in detail.  Rather, we have modeled a processing time for 

each component which is essentially a constant amount of time added to 

each request/response pair, and the clock times of each component.  The 

processing time is the amount of expected overhead time to handle the 

request.  The processing times and clock speeds can be changed in the 

configuration file (see attached sheet listing all parameters, note that 

listed parameters are default baseline parameters). 

 The Ethernet is modeled in terms of a request frequency and number 

of requests.  Both are parameters that may be varied.  The number of 

requests is simply the total number of requests that will be sent 

through the system.  The request frequency is the rate at which requests 

are made on the system in terms of requests per second.  The throughput 

is measured as the amount of time it takes from the initiation of a 

request until a response for the request is completed.  Each request is 

given a unique identification number in sequential order so that the 

total number of requests can be monitored.  The requests are also given 

a second ID number that is not unique.  If this number is the same as 

that on another request, it means the requests are for the same data.  

This is how we determine if the network processor memory contains the 

request or not. 

 The PCI bus between the network processor and the host computer is 

modeled as a 64-bit bus.  It is set up as a parameter, but is held as 

having an 8-byte transfer rate per cycle for our simulations.  We 

monitor the total amount of data (number of bytes) that is transferred 

over the PCI bus in either direction.  Also, we have not modeled any 

contention for the bus.  Data can be traveling in both directions at the 

same time in our simulator.  We would look to modeling the bus more 

accurately in the future. 
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 Packets are modeled for requests and responses.  Request packets 

are modeled as having a default request size of 1024 bytes.  This means 

all requests require that 1024 bytes be transferred over the PCI bus 

from the network processor to the host machine.  The other major 

parameter for request packets is the number of different requests.  This 

controls the number of different IDs that are available to requests.  

These IDs are attached to requests at random.  As an example, if the 

number of different requests is set to 1, the request will always be 

processed from the network processor’s memory after the initial miss in 

its memory.  The response packets on the other hand are modeled with a 

minimum and maximum size.  The defaults for the sizes are set to 1KB and 

20KB respectively.  The sizes are also randomly generated for packets.  

We arrived at these values by visiting several popular websites and 

looking at the sizes of all objects that loaded from the page.  We 

noticed that most objects were of a smaller size with a median of around 

10KB.  We believe the websites represent a good sample of where many 

users and clients would connect.  Finally, we have modeled an “In NP 

memory response size” which is set as default to 1024 bytes.  This 

number is to account for the header information that would be 

transferred from the host CPU to the network processor if the requested 

data is found in the NP’s memory.  This means that while the final 

response will indeed consist of the total size of the header and data 

held in the NP memory, only 1024 bytes will be noted as having passed 

over the PCI bus for the particular response. 

 The final main components of our simulator are the different 

memory units.  All memory (disk, main CPU DRAM, external NP DRAM) is 

modeled the same way.  The parameters for the memory units include a 

total size, a line size, and a latency.  The hard disk parameter is set 

to indicate an infinite size.  This means all requests, if not 

elsewhere, must be present on the hard disk.  We have chosen to model 

our memory replacement as using a least recently used policy.  The 

memory model is essentially a list of request IDs that are held in the 
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memory.  These lists are searched by the system to identify whether a 

request can be handled from a particular memory unit or not, starting 

with the NP memory, then the host main memory, and finally the disk.  

When data is moved to a different memory unit, the available size is 

checked.  If space for the transfer is lacking, the LRU piece of data is 

removed from the list and the new item is inserted (assuming the item is 

small enough to fit in the memory unit).  The latency is the number of 

cycles (either CPU or NP) required to access the memory while the line 

size is the amount of data that is read from the memory “per latency.” 

 The simulator itself controls the “ticking” of the CPU and NP.  It 

is used to keep track of when the NP should “tick” (execute a cycle or 

work) relative to when the CPU “ticks.”  The final parameters allowed 

are primarily for debugging purposes.  These can be set to allow certain 

information to be dumped from the simulator or can be cleared to turn 

off debug information.  If debug information is turned on for a 

particular simulator component, the simulator will dump the state of the 

specified unit at the requested simulator “tick” frequency. 

 

3 Experimental Methodology 

 We ran 26 different configuration files on our simulator that we 

felt gave a realistic idea of what types of system configurations were 

possible.  Unfortunately, we did not include our disk memory model in 

any of the simulations mainly due to time constraints in running our 

simulations with the disk.  In order to run all configuration files we 

wanted to would have required a significant amount of time.  In the 

future we would plan to run the files with the disk included.  The lack 

of disk means that we have forced all requests to exist in the host’s 

main memory.  Although we feel that this does not give a completely 

accurate idea of our system’s behavior, it should actually lower our 

expected improvement since the host never references disk.  Therefore we 

believe our results will be conservatively skewed.  We also scaled our 

parameters by a common factor in order to speed up our simulation time 
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further.  The memory line size and transfer rate across the PCI bus were 

scaled up.  This allowed us to complete our simulations in a reasonable 

amount of time. 

  The configuration file attached shows all parameters as well 

as the default values we chose for our short simulations.  Short 

simulations were run with 50,000 total requests while the four long 

simulations were run using 250,000 total requests.  For the long 

simulations we varied only the memory size of the DRAM connected to the 

NP.  We expect that adding more memory should always increase throughput 

since more requested data may be cached and handled by the NP.  

Similarly, we expect to see a reduction in PCI bus traffic as more 

memory is added.  The baseline system used an NP memory size of 0, while 

the other long simulations used 1MB, 8MB, and 32MB of memory.  It is of 

note that we do not model any space the network processor requires for 

firmware, temporary storage, or transmit and receive buffers as 

described in “Increasing Web Server Throughput with Network Interface 

Data Caching” (Rixner et al). 

The short simulations were used to vary more parameters than 

simply memory size.  Here we also varied clock speed of both the CPU and 

NP, memory latency, memory line size, memory size, number of different 

requests, total number of requests, request frequency, processing time, 

and response time.  We chose to vary each parameter one at a time to try 

and isolate which parameter had the greatest effect on performance.  We 

also ran a few configurations in which several parameters were varied in 

hopes of creating a best case system configuration. 

 

4 Analysis 

 Looking at the results for the long simulations, it becomes quite 

apparent that connecting a larger memory to the NP results in better 

performance gain.  The throughput for the 1MB NP memory case shows a 

mere 0.18% improvement over the throughput of the baseline system 

(throughput measured in simulator ticks, 1 simulator tick = 1 CPU tick).  
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Increasing the NP memory to 8MB gives a 2.71% improvement in throughput 

while adding a 32MB memory results in a desirable 10.89% improvement 

(see Fig. 1).  The decrease in PCI bus traffic is more substantial in 

each case.  Adding 1MB of NP memory reduces the PCI bus traffic slightly 

by 1.18% while the 32MB case shows a reduction of almost half, 45.93% 

(see Fig. 2).  The mean request size in the long simulations was 10KB, 

the total number of different requests was 5000, and the number of total 

requests sent was 250,000.  Our results indicate for the 1MB and 8MB NP 

memory cases, requested data was likely evicted from the cache before it 

was requested again.  Since the 32MB case is able to hold more requests 

at once, it is likely that future requests will hit in the cache.  Even 

though the 8MB case did not demonstrate significant improvement over the 

baseline case in our simulation, 8MB may still provide considerable 

gains for servers expecting many requests for the same information or 

for servers that deal in smaller request sizes.  Lastly, the 45.93% 

reduction in PCI bus traffic in the 32MB case is quite encouraging since 

this means the host CPU would have more bandwidth to communicate with 

any peripherals attached via the PCI bus as necessary. 

Long Simulation Throughput Results
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FIG. 1 

Long Simulation PCI Traffic Reduction Results
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Fig. 2 

 The short simulations give some interesting results as well.  For 

these simulations, the number of different requests was reduced from 

5000 to 1000, so we expect to see an overall improvement in results 

compared to the long simulations.  The 512KB, 1MB, 8MB, 16MB, and 32MB 

trials yielded throughput improvements of 1.41%, 1.73%, 14.12%, 18.26%, 

and 18.19% respectively (see Fig. 3).  The traffic improvements for the 

five cases were 4.67%, 9.10%, 55.99%, 72.97%, and 72.97% respectively 

(see Fig. 4).  The zero increase in performance from the 16MB case to 

the 32MB case is expected.  Since the simulations we ran contained 1000 

different requests with an average size of 10KB, all the requests should 

have fit into the 16MB cache.  This means increasing to 32MB should not 

have made any improvement, which our results verified. 
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Short Simulation Throughput Results
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Fig. 3 

Short Simulation PCI Traffic Reduction Results
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Fig. 4 
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 We ran a group of simulations in which we varied the PCI bus 

speed.  By doubling the transfer rate with no NP memory, we saw a 

performance increase of 11.08%.   Similarly, by halving the transfer 

rate with no NP memory, we saw a performance loss of 21.87%.  This 

demonstrates the vital importance of bus bandwidth.  The addition of an 

8MB NP memory in these cases result in 16.72 and 5.77 performance 

increases respectively for the fast and slow cases.   These measurements 

are relative to the no NP memory, normal bus speed baseline.   Notice 

that the addition of the 8MB NP memory more than makes up for the 

reduced bus transfer rate.  

 Simulations in which we varied the number of different requests on 

the 8MB NP memory machine showed how large an effect on performance this 

factor may have.  Increasing from 1000 different requests to 5000 

lowered the throughput improvement from 14.12% to 3.06%.  Further 

increasing the unique requests to 10000 lowered the improvement over 

5000 from 3.06% to 1.99%. 

 As far as NP processor speed, increasing the clock speed from 

200MHz (baseline case, value taken from Vitesse IQ2000 NP) to 500MHz 

showed little throughput improvement, only 0.5.   Of final note, 

lowering the average response size of the 8MB case benefited traffic 

reduction much more than overall throughput (see Table 1 showing each 

simulation run, what parameter was varied for the given simulation, the 

throughput improvement, and traffic reduction). 



 11

 

Table 1 

Simulation Name Parameter Varied From Baseline % Throughput 
Improvement 

% PCI Traffic 
Reduction 

LongBaseline Default Basline Settings Used, no NP mem N/A N/A 
Long1MB NP memory size set to 1MB 0.18 1.18 
Long8MB NP memory size set to 8MB 2.71 10.45 
Long32MB NP memory size set to 32MB 10.89 45.93 

ShortBaseline Default Basline Settings Used, no NP mem N/A N/A 
Short512KB NP memory size set to 512MB 1.41 4.67 
Short1MB NP memory size set to 1MB 1.73 9.10 
Short8MB NP memory size set to 8MB 14.12 55.99 
Short16MB NP memory size set to 16MB 18.26 72.97 
Short32MB NP memory size set to 32MB 18.19 72.97 

ShortLowLatBase Baseline with lower main memory latency 2.31 0.981 
Short500MHzNP 8MB NP memory,  NP speed = 500MHz 14.6 54.97 

Short5000DiffReqs 8MB NP memory, 5000 diff. Request IDs 3.06 12.68 
Short10000DiffReqs 8MB NP memory, 10000 diff. Request IDs 1.99 5.91 

ShortLongNPLat 8MB NP memory, NP mem. lat. increase -3.09 55.90 
ShortSmallResp 8MB NP memory, Response size shorter 19.67 73.79 
ShortBigResp 8MB NP memory, Response size longer -17.46 -62.12 

ShortBigLineSize Baseline with increased line size for mem. 2.82 2.07 
ShortBest 32MB NP memory, line size bigger NP mem 19.45 72.97 

ShortFastBus Baseline with fast bus (2x) 11.08 N/A 
ShortSlowBus Baseline with slow bus (2x) -21.87 N/A 

Short8MBFastBus 8MB NP memory, fast bus (2x) 16.72 55.99 
Short8MBSlowBus 8MB NP memory, slow bus (2x) 5.77 55.99 
 

 

5 Conclusion 

 We believe that our results show how data caching on a network 

interface can prove valuable for many web servers.  For long simulations 

we demonstrated throughput improvement of up to 10.89% and for small 

simulations, an increase in throughput of up to 19.45%.  Our hypothesis 

of adding more memory to achieve even greater gains was supported by our 

results.  As long as the memory is large enough to hold a considerable 

amount of the request data, server performance will benefit.  The large 

decreases in PCI bus traffic also bolster the argument for implementing 

this system.  However, we do believe our simulation’s accuracy may need 

to be refined based on the CPU and NP processing times.  With accurate 
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parameters, we believe our simulator represents a fair model of the 

overall system.  Given more time, we would refine our model to include 

more details of bus contention, processing time, cache replacement 

policy, and disk interactions.  Furthermore, we believe our simulations 

would only benefit by adding disk interactions to our system.  This 

concept could prove to be a fast, low cost implementation for improving 

server performance in the near future. 


