Shawn Koch
Mar k Doughty
ELEC 525

4/ 23/ 02

A Simulation: Improving Throughput and Reducing PCI Bus Traffic by

Caching Server Requests using a Network Processor with Memory

1 Motivation and Concept

The goal of this project was to show how using a network processor
with external nmenory for caching server requests could potentially
provide a significant increase in server throughput and PCl bus
bandwi dth. Server applications are beconing nore inportant as the
internet continues to expand. W expect that the future will continue
to bring nore web users each year. These users will likely turn to the
internet for the | atest news updates, for online shopping, for research
and countl ess other areas of interest. As the nunber of users a web
server nust handl e increases, server throughput will becone increasingly
i mportant, especially for servers handling a | arge nunber of clients.
Therefore, we believe that by replacing the standard NIC with a network
processor connected to an external nenory used for caching server
requests, we can significantly increase the throughput while al so
benefitting PCl bus bandw dth.

While this idea would benefit a | arge nunber of servers, there
are sone that mght not reap benefits as great. Servers that primarily
handl e stream ng nedi a requests or dynanic web pages are not likely to
see the maxi num benefit our expected results show. W believe that
servers dealing with static web pages are those that can expect to see
the nost inprovenent in throughput. However, the idea may still be
applicable to non-static request handling servers with sone

nodi fications. Qur sinulator nodel, however, is based on a static

request handling server. Also of note, froma single user or client
perspective, there nmay not be any discernible inprovenent in server
performance. The primary benefit cones frombeing able to handle nore
requests in a shorter anount of time, thus allowing the server to
increase its overall performance. So while a particular user may not be
excited about the concept, websites that consistently see periods of
high traffic on any given day would likely be interested in the results
presented here.

The idea is to use a network processor connected to a DRAM for
caching frequently requested data packets comng froma server. As a
request is nade, the host machine will seek the requested data fromits
menory and send the data out to the network processor. The host will
al so signal the network processor to cache the data in its own nmenory.
The next tine a request is nade for the sane data, the host CPU will not
need to send out the data again. Rather, it will sinply send out header
information for the packet and information detailing the |location of the
data in the network processor nenory as well as the length of the data.
The network processor will then concatenate the header with the
requested packet data and conplete the response by sending it out to the
Et hernet. First, this allows the CPU to handl e the next request sooner
rather than having to prepare the packet again for transm ssion. Al so,
since the entire packet is not required to be sent to the network
processor again, the traffic over the PCl bus is reduced by the size of
the requested packet that could potentially be considerable over enough

requests. Thus, we also inprove the bandw dth over the PCl bus.

2 Simulator Architecture

In order to test this idea, we have created a sinulator for this
system using C++. W have nodel ed the host CPU, host nain nenory
(DRAM), host disk, network processor, network processor external nenory
(DRAM), PCI bus, packets, and Ethernet. W are particularly interested

in neasuring the average response tine for a request for the system and

the total amount of traffic over the PCl bus. This will give us the
percentage i nprovenent of our network processor based sinmulations over
our baseline sinulation |acking a network processor. The CPU and NP are
not nodeled in detail. Rather, we have nodel ed a processing tine for
each conponent which is essentially a constant anpbunt of tine added to
each request/response pair, and the clock tinmes of each conponent. The
processing tinme is the anmount of expected overhead tinme to handle the
request. The processing tinmes and clock speeds can be changed in the
configuration file (see attached sheet listing all paraneters, note that
listed paraneters are default baseline paraneters).

The Ethernet is nodeled in terns of a request frequency and nunber
of requests. Both are paraneters that nmay be varied. The nunber of
requests is sinply the total nunber of requests that will be sent
through the system The request frequency is the rate at which requests
are nade on the systemin terns of requests per second. The throughput
is measured as the anpbunt of tine it takes fromthe initiation of a
request until a response for the request is conpleted. Each request is
given a unique identification nunmber in sequential order so that the
total nunber of requests can be nonitored. The requests are also given
a second I D nunber that is not unique. |If this nunber is the sane as
that on another request, it neans the requests are for the sane data.
This is how we deternmine if the network processor nenory contains the
request or not.

The PCI bus between the network processor and the host conputer is
nodel ed as a 64-bit bus. It is set up as a paraneter, but is held as
havi ng an 8-byte transfer rate per cycle for our sinmulations. W
nmoni tor the total anount of data (nunber of bytes) that is transferred
over the PCl bus in either direction. Al so, we have not nodel ed any
contention for the bus. Data can be traveling in both directions at the
same tinme in our sinmulator. W would | ook to nbdeling the bus nore

accurately in the future.

Packets are nodel ed for requests and responses. Request packets
are nodel ed as having a default request size of 1024 bytes. This neans
all requests require that 1024 bytes be transferred over the PCl bus
fromthe network processor to the host machine. The other mgjor
paraneter for request packets is the nunber of different requests. This
controls the nunber of different IDs that are available to requests.
These I Ds are attached to requests at random As an exanple, if the
nunber of different requests is set to 1, the request will always be
processed fromthe network processor’s nenory after the initial mss in
its menmory. The response packets on the other hand are nodeled with a
m ni mrum and maxi num si ze. The defaults for the sizes are set to 1KB and
20KB respectively. The sizes are also randonly generated for packets.
We arrived at these values by visiting several popular websites and
| ooking at the sizes of all objects that |oaded fromthe page. W
noti ced that nost objects were of a smaller size with a nedian of around
10KB. W believe the websites represent a good sanple of where many
users and clients would connect. Finally, we have nodeled an “In NP
menory response size” which is set as default to 1024 bytes. This
nunmber is to account for the header information that would be
transferred fromthe host CPU to the network processor if the requested
data is found in the NPs nenory. This neans that while the fina
response will indeed consist of the total size of the header and data
held in the NP nenory, only 1024 bytes will be noted as havi ng passed
over the PCl bus for the particul ar response.

The final main conponents of our sinulator are the different
menory units. Al nenory (disk, main CPU DRAM external NP DRAM is
nodel ed the sane way. The paraneters for the nmenory units include a
total size, aline size, and a latency. The hard disk parameter is set
toindicate an infinite size. This neans all requests, if not
el sewhere, nmust be present on the hard disk. W have chosen to node
our menory replacenent as using a |east recently used policy. The

menory nodel is essentially a list of request IDs that are held in the

menory. These lists are searched by the systemto identify whether a
request can be handled froma particular nenory unit or not, starting
with the NP nenory, then the host nmain nenory, and finally the disk
Wien data is noved to a different menory unit, the available size is
checked. If space for the transfer is |lacking, the LRU piece of data is
renoved fromthe list and the newitemis inserted (assuming the itemis
smal | enough to fit in the nenory unit). The latency is the nunber of
cycles (either CPU or NP) required to access the nmenory while the line
size is the anount of data that is read fromthe nmenory “per |atency.”
The sinmulator itself controls the “ticking” of the CPU and NP. It
is used to keep track of when the NP should “tick” (execute a cycle or
work) relative to when the CPU “ticks.” The final paraneters allowed
are primarily for debuggi ng purposes. These can be set to allow certain
information to be dunped fromthe sinulator or can be cleared to turn
of f debug information. |f debug information is turned on for a
particul ar sinulator conponent, the simulator will dunp the state of the

specified unit at the requested sinulator “tick” frequency.

3 Experimental Methodology

W ran 26 different configuration files on our sinulator that we
felt gave a realistic idea of what types of system configurations were
possi ble. Unfortunately, we did not include our disk nenory nodel in
any of the simulations mainly due to time constraints in running our
simulations with the disk. 1In order to run all configuration files we
wanted to would have required a significant anmount of tinme. |In the
future we would plan to run the files with the disk included. The |ack
of disk neans that we have forced all requests to exist in the host’'s
mai n nenory. Although we feel that this does not give a conpletely
accurate idea of our systenis behavior, it should actually |ower our
expected i nprovenent since the host never references disk. Therefore we
believe our results will be conservatively skewed. W also scal ed our

paraneters by a comon factor in order to speed up our sinulation tine

further. The nmenory line size and transfer rate across the PCl bus were
scaled up. This allowed us to conplete our sinulations in a reasonable
amount of tinme.

The configuration file attached shows all paranmeters as well
as the default values we chose for our short sinulations. Short
simulations were run with 50,000 total requests while the four |ong
sinul ati ons were run using 250,000 total requests. For the |ong
sinmulations we varied only the nenory size of the DRAM connected to the
NP. W expect that adding nore nmenory should al ways increase throughput
since nore requested data nmay be cached and handl ed by the NP.

Simlarly, we expect to see a reduction in PCl bus traffic as nore
menory i s added. The baseline systemused an NP nenory size of 0, while
the other long sinulations used 1MB, 8MB, and 32MB of nenory. It is of
note that we do not nodel any space the network processor requires for
firmvare, tenporary storage, or transmt and receive buffers as
described in “Increasing Wb Server Throughput with Network Interface
Data Cachi ng” (Ri xner et al).

The short sinulations were used to vary nore paraneters than
sinmply nmenory size. Here we also varied clock speed of both the CPU and
NP, nenory |atency, nmenory line size, nmenory size, nunber of different
requests, total nunber of requests, request frequency, processing tine,
and response tinme. W chose to vary each paraneter one at a time to try
and isol ate which paraneter had the greatest effect on performance. W
al so ran a few configurations in which several paraneters were varied in

hopes of creating a best case system configuration

4 Anal ysis

Looking at the results for the long sinulations, it beconmes quite
apparent that connecting a larger nmenory to the NP results in better
performance gain. The throughput for the 1MB NP nenory case shows a
mere 0.18% i nprovenent over the throughput of the baseline system

(throughput neasured in simulator ticks, 1 simulator tick = 1 CPU tick).

Increasing the NP nmenory to 8MB gives a 2. 71% i nprovenent in throughput
while adding a 32MB nenory results in a desirable 10.89% i nprovenent
(see Fig. 1). The decrease in PCl bus traffic is nore substantial in
each case. Adding 1MB of NP menory reduces the PCl bus traffic slightly
by 1.18% while the 32MB case shows a reduction of alnost half, 45.93%
(see Fig. 2). The nean request size in the long sinulations was 10KB
the total number of different requests was 5000, and the nunber of total
requests sent was 250,000. Qur results indicate for the 1MB and 8MB NP
menory cases, requested data was likely evicted fromthe cache before it
was requested again. Since the 32MB case is able to hold nore requests
at once, it is likely that future requests will hit in the cache. Even
t hough the 8MB case did not denonstrate significant inprovenent over the
basel ine case in our sinulation, 8MB may still provide considerable
gai ns for servers expecting many requests for the sane infornmation or
for servers that deal in smaller request sizes. Lastly, the 45.93%
reduction in PCl bus traffic in the 32MB case is quite encouragi ng since
this means the host CPU woul d have nore bandwi dth to conmunicate with

any peripherals attached via the PCl bus as necessary.

Long Simulation Throughput Results

12 4

10

4 /
2 //

1MB 8MB 32MB
NP Memory Size

% Improvement over Baseline
(«2)

FIG. 1
Long Simulation PCI Traffic Reduction Results
50 -
45 »
o 40 -
£
o 35 4
o
e 30
o
= 25 -
c
o
5 20 -
=
5 v
S 10
5 |
0
1MB 8MB 32MB
NP Memory Size
Fig. 2
The short sinulations give sone interesting results as well. For

these sinulations, the nunber of different requests was reduced from
5000 to 1000, so we expect to see an overall inprovenent in results
conpared to the long sinulations. The 512KB, 1MB, 8MB, 16MB, and 32MB
trials yielded throughput inprovenents of 1.41% 1.73% 14.12% 18.26%
and 18.19% respectively (see Fig. 3). The traffic inprovenents for the
five cases were 4.67% 9.10% 55.99% 72.97% and 72.97% respectively
(see Fig. 4). The zero increase in performance fromthe 16MB case to
the 32MB case is expected. Since the sinulations we ran contai ned 1000
different requests with an average size of 10KB, all the requests should
have fit into the 16MB cache. This neans increasing to 32MB shoul d not

have nade any inprovenent, which our results verified

20

Short Simulation Throughput Results

18

16

14

12

10 A

% Improvement over Baseline

512KB

1MB 8MB 16MB
NP Memory Size

32MB

Fig. 3

% Reduction from Baseline

80

70

60 -

50

Short Simulation PCI Traffic Reduction Results

®

40 -

30

20

10 +

512KB

1MB 8MB 16MB
NP Memory Size

32MB

Fig. 4

10

We ran a group of simulations in which we varied the PCl bus
speed. By doubling the transfer rate with no NP nmenory, we saw a
perfornmance i ncrease of 11.08% Simlarly, by halving the transfer
rate with no NP nenory, we saw a perfornmance |loss of 21.87% This
denonstrates the vital inportance of bus bandwi dth. The addition of an
8MB NP nenory in these cases result in 16.72 and 5. 77 perfornmance
i ncreases respectively for the fast and sl ow cases. These neasurenents
are relative to the no NP nenory, normal bus speed baseline. Not i ce
that the addition of the 8vMB NP nenory nore than nakes up for the
reduced bus transfer rate.

Simul ations in which we varied the nunber of different requests on
the 8MB NP nenory machi ne showed how | arge an effect on performance this
factor may have. Increasing from 1000 different requests to 5000
| owered the throughput inprovenment from14.12%to 3.06% Further
i ncreasing the uni que requests to 10000 | owered the inprovenent over
5000 from 3.06%to 1.99%

As far as NP processor speed, increasing the clock speed from
200MHz (baseline case, value taken fromVitesse | Q000 NP) to 500MHz
showed little throughput inprovenment, only 0.5. O final note,
| owering the average response size of the 8MB case benefited traffic
reduction nuch nore than overall throughput (see Table 1 show ng each
sinul ati on run, what paranmeter was varied for the given sinulation, the

t hr oughput inprovenent, and traffic reduction).

11

Table1
Simulation Name Parameter Varied From Baseline % Throughput | % PCI Traffic
Improvement Reduction
LongBaseline Default Basline Settings Used, no NP mem N/A N/A
LonglMB NP memory size set to 1MB 0.18 1.18
Long8MB NP memory size set to 8MB 2.71 10.45
Long32MB NP memory size set to 32MB 10.89 45.93
ShortBaseline Default Basline Settings Used, no NP mem N/A N/A
Short512KB NP memory size set to 512MB 1.41 4.67
ShortlMB NP memory size set to 1MB 1.73 9.10
Short8MB NP memory size set to 8MB 14.12 55.99
Short16MB NP memory size set to 16MB 18.26 72.97
Short32MB NP memory size set to 32MB 18.19 72.97
ShortLowLatBase | Baseline with lower main memory latency 2.31 0.981
Short500MHzNP 8MB NP memory, NP speed = 500MHz 14.6 54.97
Short5000DiffRegs | 8MB NP memory, 5000 diff. Request IDs 3.06 12.68
Short10000DiffReqgs | 8MB NP memory, 10000 diff. Request IDs 1.99 5.91
ShortLongNPLat 8MB NP memory, NP mem. lat. increase -3.09 55.90
ShortSmallResp 8MB NP memory, Response size shorter 19.67 73.79
ShortBigResp 8MB NP memory, Response size longer -17.46 -62.12
ShortBigLineSize | Baseline with increased line size for mem. 2.82 2.07
ShortBest 32MB NP memory, line size bigger NP mem 19.45 72.97
ShortFastBus Baseline with fast bus (2x) 11.08 N/A
ShortSlowBus Baseline with slow bus (2x) -21.87 N/A
Short8MBFastBus 8MB NP memory, fast bus (2x) 16.72 55.99
Short8MBSlowBus 8MB NP memory, slow bus (2x) 5.77 55.99

5 Conclusion

We believe that our results show how data caching on a network

interface can prove val uable for nmany web servers.

we denonstrated throughput

si mul ati ons,

an increase in throughput of up to 19.45%

For

Qur

| ong sinulations
i mprovenent of up to 10.89% and for snmall

hypot hesi s

of adding nore nenory to achi eve even greater gains was supported by our

results.

amount of the request data,

decreases in PCl

this system

to be refined based on the CPU and NP processing tines.

However ,

server

performance will

bus traffic also bolster the argunent for

benefit.

As long as the nenory is |arge enough to hold a considerable
The | arge
i mpl enenti ng
we do believe our simulation’s accuracy may need

Wth accurate

12

paraneters, we believe our sinmulator represents a fair nodel of the
overall system Gven nore tine, we would refine our nodel to include
nore details of bus contention, processing tine, cache replacenent
policy, and disk interactions. Furthernore, we believe our sinulations
woul d only benefit by adding disk interactions to our system This
concept could prove to be a fast, |ow cost inplenentation for inproving

server performance in the near future.

