Designing Finite State Machines with PEG

Gordon Hamach:

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

PEG is a finite state machine compiler. It translates high level
language descriptions of finite state machines into the logic equations
needed to implement state machine designs. Since the output format
is compatible with egntott, PEG may be used as a front end for
Berkeley PLA tools.

1. Introduction

PEG (PLA Equation Generator) is a design tool for finite state machines. It
compiles high level language descriptions of finite state machines into the logic
equations needed to implement a design.

PEG programs are isomorphic to Moore machine state diagrams. There is a
one-to-one correspondence between states in a state diagram and state definitions
in the corresponding PEG program. The translation from state diagrams to PEG
programs is simple and straightforward.

Designing with PEG provides a number of advantages over the traditional
pencil-and-paper approach method of FSM design. PEG's high level language
enables designs and design changes to quickly be implemented. PEG programs
provide easy-to-understand documentation with clear control flow. PEG does the
tedious and error-prone bookkeeping task of generating output and nezt state bits
as a function of current state bits. It checks for design errors and eliminates
redundant terms in logic equations.

As output PEG generates logic equations in the egn format accepted by
eqntott [Cmelik], another Berkeley design tool. By piping the output of PEG

-1-

341

Designing Finite State Machines with PEG November 17, 1985

through egntott, PEG may be used as a front end for Berkeley PLA tools such as
mpla [Mayo], and espresso [Rudell]. As an option, PEG will also print the
unminimized truth table from which the logic equations are derrived.

2. A Simp'le Example

Figure 1 shows the state diagram for a four-state finite state machine
implementing a 2-bit binary counter. The PEG description of this design appears
in Figure 2. The program has no inputs besides an implicit clock. The outputs of
the state machine are its nezt state bits, which are automatically generated by
PEG.

Start

Figure 1: State Diagram for Example 1

In its most simple form, a PEG program consists of a list of state
descriptions. The sample program has four states. Each state has four parts: an
optional label, a colon, an optional signal assertion part, and and optional control
part.

-Simple PEG program for 2-bit counter
—State transition on every clock
--No reset =>> starts in a random state

Start : -This is state 0
: -~This is state 1

~This is staie 2

-~This is state 3

GOTO Start;

Figure 2: PEG Program for Example 1

The first state in the example is labeled with the identifier Start. The label is
necessary only because of the GOTO from state 3 back to state 0.

States 1 aud 2 are examples of the minimal state description. These states
are completely defined by a colon, which acts as a place holder for the state.
Empty states, in which no branching or signal assertions occur, are sometimes
used to introduce necessary delays in FSMs.

¢ 342

Designing Finite State Machines with PEG November 17, 1985

Flow of control in PEG programs is sequential unless otherwise specified.
Since no control information is present for states 0, 1, and 2, the program steps
sequentially through the states 0, 1, 2, and 3. State 3 has control information
specifying a jump back to the state labeled Start.

Since it has no sequential nezt state, control must always be defined for the
last state in the program. PEG generates an error message and quits if control is
not defined for the last state.

Although state transitions are performed on clock ticks, no clock is
mentioned in the program. It is the user's responsibility to implement the state
machine with synchronous logic to latch input and output signals.

Comments begin with a double dash ”~" and terminate at the end of the line
on which they appear. The first three lines of the program are comments.
Comments also appear on lines 5 through 8.

Input is free-format. White space may appear anywhere in a program to
enhance readability.

3. Interpreting the Output

Assuming that the PEG program for example 1 is in a file called counter, the
following Unix command line may be used to invoke PEG:

peg counler

The resulting output is shown in figure 3. Generating a PLA from the same input
file is accomplished with the command line:

peg counter | egntott | mpla ~I -O

Mpla will not automatically connect nezt-state outputs to current-state inputs.
After generating the PLA the state outputs must be manually wired to the state
inputs.

INORDER = InSt0* InSt1*;

OUTORDER - OutSt1* OutSt0*;

OutSt1* = ('InSt1*);

OutSt0* = (InSt0*&!InSt1*)| (!InSt0*& InSt1*);

Figure 3: PLA Equations for Example 1.

3.1. Equations

PEG generates the two input variables /nSt0* and InSt1* which are the
state inputs for the finite state machine. It also generates two output variables
OutSt0* and OutSt1*, the next-state outputs. Any signal name ending with an

343

Designing Finite State Machines with PEG November 17, 1985

asterisk was generated by PEG.

The INORDER and OUTORDER statements specify that the resulting PLA
inputs and outputs, from left to right, are InSt0*, InSt1*, OutSt1*, and OutSt0*.

Following the OUTORDER statement are the logic equations for the two
output variables, OutStl* and OutSt0*. The exclaimation mark "!” indicates
logical negation. The ampersand "&” signifies the logical AND, while the vertical
bar ” | ” signifies a logical OR.

3.2. Truth Table

The -t option generates a truth table for the finite state machine. This truth
table is written to the file peg.summary. The truth table for example 1 is shown
in figure 4.

INPUTS: s00: InSt0* (msb)
sOl: InSt1* (Isb)
OUTPUTS: n0l: OutSt1* (Isb)
L n00: OutSt0* (msb)
State Table s s n n
0 1 1 0
0 0 1 0
0 1 0 1
1 0 1 1
1 1 0 0

Figure 4: Truth Table for Example 1.

Labels across the top of the truth table identify its columns. The mapping
from column labels to actual signal names is given in the lists of input and output
signals which preceed the truth table. To the right of the truth table are the
names of the states described by the rows of the table.

4. Another Example

The second and more complex example shows the state diagram and
corresponding PEG program for a FSM which recognizes the regular expression
(110)*100. The state diagram for this FSM is shown in figure 5.

The PEG program which implements this design is given in figure 6. Figure
8 describes a state machine with four states. The state machine has two inputs,
RESET and in, and one output, accept.

Assume the text of figure 2 is in a file called prog. Logic equations for the
state machine are generated by running the command

-4-

344

Designing Finite State Machines with PEG November 17, 1885

Figure 5: State Diagram Recognizing (1 10)*100

peg prog

Since this program has two inputs, they are declared in the INPUTS
statement. If a PEG program has any inputs they must be declared in an
INPUTS statement which must be the first statement in the program. The input
RESET is a special keyword input. The other program input, InStream, is used
to generate the nezt state for the FSM.

RESET indicates that when the RESET signal is asserted the state machine
jumps to the top of the program, which in this case is named Top. When this
keyword is present, conditional branches to the first state are automatically added

to the nez! state expressions for each state. If RESET is not listed as an input,
the program initializes in a random state.

IF the FSM designer does not want to pay the penalty of a larger and slower
finite state machine, RESET may be omitted as it was in example 1. In this case

-5-

349

Designing Finite State Machines with PEG November 17, 1985

~Simple FSM example: Accepts the regular expression (110)*100

INPUTS : RESET InStream;

OUTPUTS : accept;

Top : IF NOT InStream THEN LOOP; -0*

Sawl : IF InStream THEN LOOP; -1
IF InStream THEN Sawl; -10
ASSERT accept;
IF InStream THEN Sawl ELSE Top; -100

Figure 6: PEG Program Recognizing (1/0)*100

INORDER = RESET InStream InSt0* InSt1*;

OUTORDER = OutSt1* OutSt0* Accept;

OutSt1* = ('RESET& InStream) |
('RESET&!'InStream& InSt0*&!'InSt1*);

OutSt0* = ('RESET&!InStream& InSt0*&!InSt1%) |
InStream&!InSt0*& InSt1*);

Accept = (InSt0*& InSt1*);

Figure 7. Equations for Example 2.

the reset function may be external to the PEG program by implementing the
FSM in such a manner that the nezt state feedback lines are pulled low when the
RESET signal is asserted. This method will work because the top state in a PEG
program is always assigned to state zero.

The OUTPUTS statement declares that this program has a single output
called accept. The FSM asserts this signal high if a string in the given grammar is
recognized. If any outputs are generated by a PEG program, they must be
declared in an OUTPUTS statemen’. which immediately follows the LVPUTS
statement. If no INPUTS statement is present, then the OUTPUTS statement is
the first program statement.

¢ 346

Designing Finite State Machines with PEG November 17, 1985

INPUTS: i00: RESET
i0l: InStream
s00: InSt0* (msb)
s01: InSt1* (lsb)

OUTPUTS: n01: OutSt1* (Isb)
n00: OutSt0* (msb)
000: Accept
State Table i i s s n n o
0 1 0 1 1 0 0
1 - 0 0 0 0 - Top
0 0 0 0 0 0 - Top
0 1 0 0 1 0 - Top
1 . 0o 1 0o o . Sawl
0 0 0 1 0 1 - Sawl
0 1 0 1 1 0 - Sawl
1 - 1 0 0 0 - Sawl+1
0 0 1 0 1 1 - Sawl+1
0 1 1 0 1 0 - Sawl+1
1 - 1 1 0 0 1 Sawl+2
0 0 1 1 0 0 1 Sawl+2
0 1 1 1 1 0 1 Sawl+2

Figure 8: Truth table for Example 2.

Example 2 introduces the IF-THEN-ELSE control construct. This construct
is used to provide two-way branches based only on a single input signal.
Branches based on more than one input signal are handled by the CASE
statement which has not yet been presented. IF statements do not nest:
Statements of the form IF-THEN-ELSE-IF are not allowed. The syntax of the
IF is:

IF [NOT] <signal> THEN <state name> [ELSE <state name> /s

The ELSE clause is optional: If it is omitted, the ELSE defaults to the next
sequential state in the program. Thus, in state Top, il InStream is high, then the
condition in the IF is false and the program takes the default branch to state
Sawl.

347

Designing Finite State Machines with PEG Novemoer 17, 1985

The alert reader will have noticed that the state name LOOP is used but not
defined. This is intentional. LOOP is a keyword which means to stay in the
current state. It is an error to define a state with the label LOOP.

The final state in example 2 shows the first use of the ASSERT statement.
The accept signal is asserted only in the accepting state of the FSM. If an
ASSERT statement is present in the definition of a state, it must preceed the
state's control statement.

Start

[Select]

default

Dummy

Found3

FoundOther

Zero

Found0

Figure 9: State Diagram for Example 3

Figure 11 shows an ambiguous case specifier. It is ambiguous because more
than one case selector applies to the input (0 1 0). In such cases PEG processes

348

-8-

Designing Finite State Machines with PEG

November 17, 1985

-0, 1, 2, 3, or "other”.

INPUTS
OUTPUTS

Start

Dummy
Zero
One
Two

Three

Other

—Decode inputs a, b, and ¢ into

RESET Select a b ¢;
FoundO Foundl Found2 Found3 FoundOther;

-This is the reset state
IF NOT Select THEN LOOP;

CASE (a b ¢) —~Second state
0 0 ? => Dummy; —A don't-care
010 => Two;
011 => Three;
ENDCASE=> Other,
IF ¢ THEN One;
ASSERT Found0; GOTO Start;
ASSERT Foundl; GOTO Start;
ASSERT Found2; GOTO Start;
ASSERT Found3; GOTO Start;

ASSERT FoundOther; GOTO Start;

Figure 10: PEG Program for Example 3

the list of case selectors from top to bottom, using the first one that applies to the
inputs. Since the case specifier for State2 comes first, it defines the next state for
inputs (0 1 0) and (0 1 1). The case specifier for State3 defines the next-state only

for the case (1.1 0).

Statel

CASE (a b ¢)
01 ?=> State2;
710 => State3;
ENDCASE==>>Stated4,

Figure 11: Ambiguity Resolution in Don’t-Cares

“m

349

Designing Finite State Machines with PEG November 17, 1985

5. Final Example

Figures 9 and 10 show the state diagram and PEG program for a state
machine which decodes 3 bits into 0, 1, 2, 3, and "other”. Example 3 shows the
use of multiple inputs, multiple outputs, and multi-way branches.

Multi-way branches and branches based on two or more inputs are handled
by the CASE statement. The CASE statement consists of the keyword CASE
followed by an input signal list, a list of case selectors, and an ENDCASE.

A case selector specifies two things: a bit pattern corresponding to the input
signals, and a nezt-state for that combination of inputs. Bit patterns are strings
composed of the characters '0’, '1’, and signals in the input signal list. Don’t-cares
are specified with 7.

The ENDCASE statement optionally specifies the default next-state if none
of the other case selectors applies to the input. In keeping with the model of
sequential execution, if the ENDCASE does not specify a next-state, the next-
state defaults to the state following the one in which the CASE statement
appears.

6. References

[CADMan]
CAD Manual, Online Unix documentation.

[Danford]
Peggy Danford, Private communication with author, June 1982.
[Unix|
Uniz Programmer’s Manual, 4.2 Berkeley Software Distribution, Virtual

VAX-11 Version, Computer Science Division, University of California at
Berkeley, November 1980.

-10-

330

Designing Finite State Machines with PEG

7. Peg Syntax

< program>

<InputList>

< OutputList>

<& StateList>

<ldentList>

<State>

< Signals>

< Control>

<L Cases>

& CaseStmt>

<Bit>

<BitList>

&DefaultCase>

<NOT>

<Comment>

<Identifier>

: <lnputList> <OutputList> < StateList>

: INPUTS : <IdentList> ; | /*NULL*/

. OUTPUTS : <IdentList> ; | /*NULL*/

: <State> | <StateList> <State>

. <ldentifier> | <ldentList> <Identifier>

. <Identifier> : <Signals> <Control> | : <Signals> <Control>
: [*oull*/ | <ASSERT> <IdentList> ;

: CASE { <IdentList>) <Cases> <DefaultCase>

| IF <ldentifier> THEN <Identifier> ;

| IF <ldentifier> THEN <Identifier> ELSE <ldentifier> ;

| IF <NOT> <Identifier> THEN <Identifier> ;

| IF <NOT> <ldentifier> THEN <Identifier> ELSE <Identifier> ;
| GOTO <Ildentifier>

| [*NULL®/

. &Cases> <CaseStmt> | <CaseStmt>

: <BitList> => <ldentifier> ;

01112

: <BitList> <Bit> | <Bit>

. ENDCASE => <Identifier> ; | ENDCASE ;
:™” | "NOT" | ~-7

:"="08

: |[A-Za-2]|A-Z2-20-9._|*

351

-11-

Ncvember 17, 1985

