

VLIW Digital Signal Processor

Michael Chang . Alison Chen . Candace Hobson . Bill Hodges

Introduction

- Functionality
 - ISA
- Implementation
 - Functional blocks
 - Circuit analysis
- Testing
- Off Chip Memory
- **Status**

Things to look for

- Design Tradeoffs
 - Register file size
 - Multiple word sizes
 - Instruction set and implementation
- Data forwarding
- Software-controlled on chip cache
- Shared Address/Data bus for off-chip data memory

Instruction Set Architecture

24-bit instruction words pack 3 sub-instructions: ■ Ex: SUB R5 R3, LDM R3 R6, BNEZ R1 Register file - 8 registers ■ 3 bit encoding * 5 Reg. IDs = 15 bits per IW Simple but useful Instruction Set Multiply, Add/Subtract, Branch, Jump, Load Memory, Load intermediate, Load CCM 2 Branch delay slots

Microarchitecture

- In order, 4 stage pipeline
 - IF, ID, EX, WB
 - 3 cycle pipeline stage
- Data forwarding
 - Eliminate RAW hazards (ELEC 320, 425)
 - 5 forwarding paths
 - Control Logic
- PLA controls pipeline
 - Initialize pipeline, reset Program Counter
 - Cycle through three cycles of pipeline stage

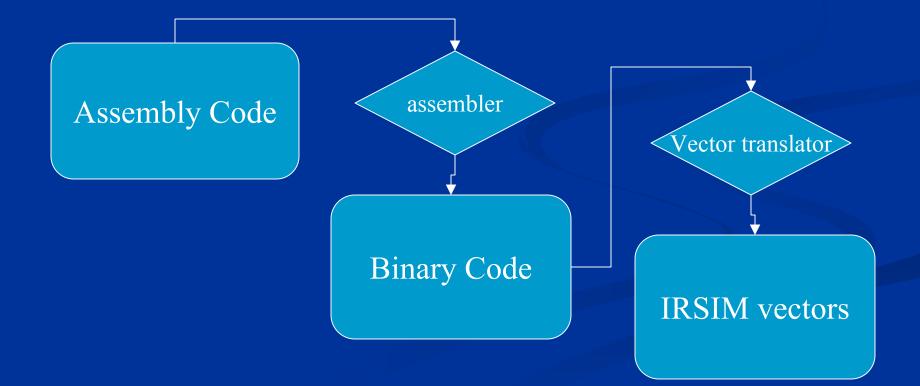
Implementation

Double Wide Silicon Floorplan

ALU Design

- Array Multiplier
- Ripple-Carry Adder
- Longest Paths:
 - Add/Subtract:
 10.74 ns through
 MSB
 - Multiply: 15.87 ns through 10th product term

Compiler Controlled Memory (CCM)


Small on chip software controlled cache Similar to Commercial DSPs Predictable access time in real time Benefits over off chip memory: Double bandwidth Software configurability Reduced register "spill" / "fill" pressure Easily extendable

Implementation of CCM

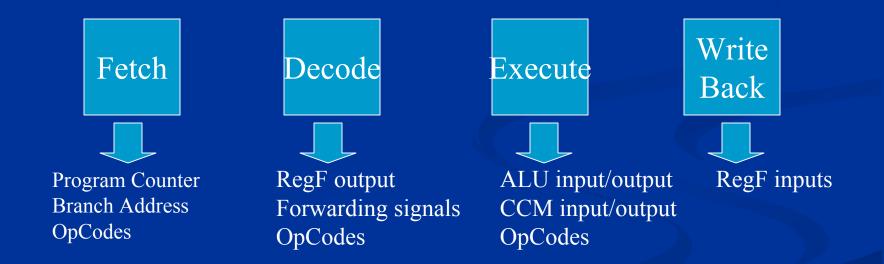
- 4 12-bit lines of memory on chip (8 words)
- Two registers, R6 and R7, for loading and storing
- Two instructions, LDC and STC
- 9-bit instruction
 - Three bit opcode
 - Five bit word line
 - Single bit determines single/double access
- Example instruction: LDC 1 00001
 - (Reads CCM Line 1 into R6 and R7)

ORCA Test Vector Generation Process

 Goal: Greater accuracy and shorter time to verify chip functionality

ORCA Vector Suite

<u>Goal: Create functional vectors to isolate specific chip</u> cells to aid in post-silicon debug. Register File Compiler Controlled Memory ■ ALU ■ Branch Data Forwarding ■ Pipeline


ORCA Obsbus State Machine

- Goal: Increase internal test signals to the IO's by implementing a MUX. The MUX is controlled by output signals generated from a state machine.
 - 16:1 MUX, 6 output observability pins, 1 input observability pin
 - Allows observation of up to 96 internal signals using 7 pins.
 - The state machine changes state on each toggle of the input pin.

🗙 analyzer 🗖 🗆 🗙
🔳 obsbus zoom base window print 🗊
obsbus zoom base window print [] 4.09 - clka - clkb - clkb - obs1 - obs2 - obs3 - obs4 - obs4 - obs6 -
obs9 ******

Obsbus Signals

■ Goal: Track an instruction execution through each of the pipeline stages.

Off Chip Memory

- Instruction memory
 - Regular static RAM (used previously in 422)
 - 8 bit addressing, 8 bit data reads
 - $2^8 = 256$ words possible = 85 VLIW instructions
 - 70 ns read time
 - One read every cycle
 - Output address on clock A, latch data on clock B
 - One read/cycle * 8bits * 3 cycles/pipeline state = 24 bit VLIW

Off Chip Memory, continued

Data memory (DS1609) Shared Address/Data bus PLA carefully designed to control memory Uses worst case propagation delays Timed signals using two out of phase clocks Default PLA output latching on clock B External latching on clock A to properly time signals ■ 50 ns read time

Current Status

- Functionality of major blocks tested
 <u>Instruction Fetch in final stages</u>
- ALU instructions implemented and working, including data forwarding
- Memory instructions just need to be routed
- Crystal and HSPICE analysis fifty percent complete
- Global power, clock, and pin routing allocated in floorplan

Conclusion

- Solid fundamental ISA gives a nice "baby DSP"
- Modular implementation of fundamental blocks
- Design Decisions are well justified
 - Register file size
 - Instruction word length
 - Implementation balances timing and space
 - Access to off chip memory

