象形遇

shortesit path chaluation Denice

Shortest Path Problem

- Given a network of nodes, find the shortest distance from A to all other nodes

Dijkstra's Algorithm

$\mathrm{T}=\{\mathrm{A}\}$
for all vertices
if v is adjacent to A

$$
\mathrm{D}(\mathrm{v})=\mathrm{w}(\mathrm{~A}, \mathrm{v})
$$

else $\quad D(v)=\infty$
$\mathrm{T}=$ termination set
$\mathrm{D}(\mathrm{v})=$ current shortest distance to v
$\mathrm{w}(\mathrm{i}, \mathrm{j})=$ weight of edge connecting i and j

Find u not in T such that $D(u)$ is a minimum Add u to T
for v not in T and v adjacent to u

$$
\mathrm{D}(\mathrm{v})=\min [\mathrm{D}(\mathrm{v}), \mathrm{D}(\mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})]
$$

* update $\mathrm{D}(\mathrm{v})$ if the path to v via u is shorter than the previous shortest path.

High Level Block Diagram

Simplified Data Flow

Network Memory

- 8 rows each consisting of 19 bits of storage
- Each row containing all information for one vertex
- First 7 bits storing connections
- Last 12 bits storing weights

Network Memory - Buffer/Latch

Total Weight Memory

Function : Stores the current shortest distance $\mathrm{D}(\mathrm{v})$ for each vertex.

Problem : Cell takes in four 6-bit buses simultaneously and must be able to read and store to any combination of the seven columns.

Solution:

- Array of T-gates
- Four 3 to 8 decoders
- Translation PLA

Total Weight Memory

3-to-8 Decoders

Add/Compare

- Chip's main logic unit
- Under General PLA's control

Determining Next Vertex

- 2 to 6-way comparison
- Takes advantage of rarity of having many active nodes
- Run by Go PLA

Two Phase Timing

General PLA

- Compares weights of newly discovered paths to current path
- Updates with new path if shorter

GO PLA

- Finds the next current vertex.
- Performs up to a 6 way comparison using the four 6 -bit adders.

Critical Path

- 6 bit ripple carry adder in add compare unit
- Longest delay ~ 8.4 ns
- Estimated clock frequency ~ 30 MHz

Chip Layout

Conclusion

- Design Challenges

Parallel operation -need to read out and operate on 4 sets of values

- Applicability

Computer Network - shortest path in which to transfer data

- Scalable

Easily handles increase in problem complexity

