Mnemosyne: Neural Network for Pattern Recognition

Group B Matt Walker, Joe Montgomery, Luke Hoban, CJ Ganier

What is a Neural Network?

- Model for biological learning
- Learns by example
- Excels at pattern recognition

General Learning Algorithm

- First train, then test the network
- Train:
 - Give examples of "good" and "bad" patterns
 - Network learns by changing weights
 - Uses positive and negative reinforcement
- Test:
 - Release net into real world; let it make decisions

Network Structure

• Neuron:

- Decision making node
- State is either on or off
- Axon:
 - Connects nodes
 - Has a weight, or importance

General Algorithm

Our Implementation

- 17 one bit inputs per neuron
- Four input neurons
- One output neuron
- Four bit weights
- Step activation function

Our Algorithm

- Assign random weights to each axon
- For each case:
 - Feed in inputs
 - Propagate firing values forward
 - Update weights if training

Control Flow

Timing Diagram

Control Timing is either VBSA or QA

Block Diagram

Subcells

- Five neurons
 - 17 4bit weights
 - 17bit input arrays
 - Miscellaneous registers
- Requires over 800 latches
 - Original latches 100x40 lambda
 - Occupied 80% of chip in 1.5*u*m process
 - Discrete transistors inefficient

The Latch

- New latch is half as large
 - 800 occupy only 20% of chip in 0.5*u*m process
 - Eliminates discrete transistors
- Graph theory
 - Simple combinational method in Weste
 - Generalized to sequential logic

Graph Theory

Weight Matrix

• Shifting memory

- Takes advantage of serial access in accumulatorstyle process
- Latch overlaps significantly for tiling savings
- Dense
- No use of metal 3

Neuron

- Input stage
 - Input array
 - Weight matrix
- Accumulating adder
- Data path structures
 - Muxes
 - Write register
- Routing
 - Subcells done without m3
 - m3 to the boundaries

System Timing

- Longest path 20ns
- Estimated frequency 50MHz
- 108 cycles per training
- 460,000 trainings per second

11:56:29 CST, 12/06/2001

Floorplan

Status - DONE

Algorithm Design

- Standard neural network algorithm
 - Weights are real numbers (continuous valued)
 - Activation function is complex non-linear function
 - Multiplication required
- We designed a stripped down but effective algorithm
- Required extensive verification and modification

Simulation

- Developed a complete simulation of the algorithm
- Parameterized over all of the design decisions
- Automatically generates IRSIM test vectors for simulated runs
- Used to verify that we can train neural net to correctly recognize patterns 98% of the time

Uses

- Reading ZIP codes
- Pattern recognition on 64 bit inputs
- Limitations
 - Only 1 output bit (Yes/No)
 - Single bit inputs (Black/White Image)
 - Only 64 bit input (8x8 Image)
 - 4 bit weights (limited precision learning)

Conclusion

Neuron 1 Input: 0010 0010 0010 0000 1

Neuron 2 Input: 0100 0100 0100 0000 1

Neuron 3 Input: 1000 0100 0011 0000 1

Neuron 4 Input: 0001 0010 1100 0000 1