ECON501 Advanced Microeconomic Theory 1 Fall Semester 2007 Problem Set 5

The due date for this problem set is MONDAY Nov 12

 (Polak) The following utility function (sometimes called Dixit-Stiglitz preferences) is often used in international trade applications:

$$u(x_0, x_1, \dots, x_L) = x_0^{1-\alpha} \left(\sum_{\ell=1}^L x_\ell^\beta \right)^{\alpha/\ell}$$

where α and β are both in the open interval (0, 1). In the following assume $p \gg 0$ and w > 0. Let $G := \{1, \ldots, L\}$.

- (a) Show that the proportion of wealth spent on x_0 is (1α) .
- (b) Verify that we can express the Marshallian demand for each good ℓ in G as a function just of prices $(p_{\ell})_{\ell \in G}$ and the expenditure on those goods w_G .
- (c) Write down the expenditure function corresponding to an appropriately chosen subutility function for the goods in G.
- (d) Consider breaking the consumer's maximization problem into a two-step budget process, where the first stage is to allocate expenditure between good 0 and the group of goods in G. Show that we can write the first-stage of the consumer's maximization problem as

$$\max_{\langle x_0, X_G \rangle} U(x_0, X_G) \text{ subject to } p_0 x_0 + P_G X_G \le w$$

where $X_G := \left(\sum_{\ell=1}^L x_\ell^\beta\right)^{1/\beta}$ and P_G is a scalar that is a function just of the prices $(p_\ell)_{\ell \in G}$.

2. (Polak) Additive Separability. In class we discussed weak separability. A stronger assumption is additive separability. Preferences are said to be additively separable if they can be represented by an additively separable utility function:

$$u(x_1,\ldots,x_L) = \sum_{\ell=1}^L u_\ell(x_\ell),$$

where each x_{ℓ} here refers to a single good, not a group. Such representations are very tractable, but additive separability is very restrictive. (a) Show that CES preferences are additively separable. Show that Stone-Geary preferences

$$u(x_1, x_2) = (x_1 - c_1)^{\alpha} (x_2 - c_2)^{1-\alpha}$$

are additively separable.

- (b) Suppose there are just two goods and that preferences are additively separable. Suppose that (1, 2) ∼ (2, 1) and that (1,4) ∼ (2,2) ∼ (5,1). Find two other points that are indifferent to each other.
- (c) Return to the *L*-good case. If the sub-utility functions $u_{\ell}(.)$ are increasing and strictly concave for all ℓ , show that the wealth effects $\partial x_{\ell}(p, w) / \partial w > 0$ for all w.
- (d) Argue that, if preferences are additively separable, then they are weakly separable for *any* groupings of the commodities that we might choose.
- (e) Under the same assumptions as part (d), show that every pair of goods are (Hicks) net substitutes. [Hint: use your answers to (c) and (d) and the discussion in class of the implications of weak separability on the substitution effect s_{ij} between two goods in different groups.]
- 3. Consider an economy with two consumers, Abigail and Brian, and two goods, denoted x and y. Abigail's preference relation can be represented by the utility function $u_A(x, y) = x$ while Brian's preference relation can be represented by the utility function $u_B(x, y) = \log(x) + y$.
 - (a) Derive the uncompensated demand functions for both Abigail and Brian and show that their indirect utility functions are

$$v_A(p_x, p_y, w_A) = w_A/p_x$$
, for Abigail

and

$$v_B(p_x, p_y, w_B) = \begin{cases} \log(p_y/p_x) + w_B/p_y - 1 \text{ if } w_B > p_y \\ \log(w_B/p_x) & \text{ if } w_B \le p_y \end{cases}, \text{ for Brian}$$

(b) Given that aggregate wealth in this economy is divided evenly between Abigail and Brian show that the following representative indirect utility function can generate aggregate demand for the case where $w/2 > p_y$.

$$v\left(p_x, p_y, w\right) = \frac{w}{\sqrt{p_x p_y}} + 2\sqrt{\frac{p_y}{p_x}}$$

Recall in lectures that the equivalent variation of a change in prices and income from (p^0, w^0) to (p^1, w^1) is defined as

$$EV = e(p^{0}, v(p^{1}, w^{1})) - e(p^{0}, v(p^{0}, w^{0})).$$

(c) If EV > 0, what does this signify and why?

If $w^0 = w^1$ and the change in prices are caused by the imposition of commodity taxes then the deadweight loss (DWL) or excess burden of the taxes is given by

DWL =
$$-EV - \sum_{l=1}^{L} t_l x_l (p^1, w^0)$$
,

where $t_l = p_l^1 - p_l^0$.

- (d) Briefly explain why this measure may be viewed as a deadweight loss to (social) economic efficiency.
- (e) Suppose that the initial aggregate budget constraint has $p^0 = (1,1)$ and $w^0 = 40$. Using the representative indirect utility function calculate the DWL of the imposition of a specific tax of 3 on good y, that leads to the price of good y rising to 4 (with the price of good x remaining unchanged).
- (f) Using the individuals' indirect utility functions derived in 3a) calculate the two individual dead weight losses, DWL_A and DWL_B . Explain why $DWL_A + DWL_B$ does or does not equal DWL.