2.3 Money Outcomes and Risk Aversion Ref: MWG 6.C

If individual is a subjective expected utility maximizer, then \succeq over acts can be characterized by π , prob. measure on S representing beliefs and preference scaling utility function $u: X \to \mathbb{R}$.

So can identify act $a = [\delta_{x_1}, E_1; \ldots; \delta_{x_n}, E_n]$ with lottery $L = [x_1, p_1; \ldots; x_n, p_n]$ where $p_i = \pi(E_i)$.

Focus on situation where outcomes are amounts of wealth.

An act is now a random variable $\tilde{x}: S \to X$.

Identify act with its *cumulative distribution function (CDF)*

 $F_{\tilde{x}}(x) = \pi (s \in S : \tilde{x}(s) \le x)$

prob. realized outcome no greater than x.

S.Grant

ECON501

1

Axioms place no restrictions on preference scaling utility function for wealth, but economics does.

- 1. u is increasing (or u'(x) > 0).
- 2. u is concave (or $u''(x) \leq 0$)
- 3. u'''(x) > 0 (or u'(.) is convex)
- 1. "more is better" local non-satiation
- 2. Risk aversion
- 3. Decreasing absolute risk aversion.

S.Grant

Definition 2.3.1: An individual is (weakly) risk averse if for any act \tilde{x} , the act that yields

$$\mathbb{E}\left[\tilde{x}\right] = \int x dF_{\tilde{x}}\left(x\right) \left(=\sum_{x \in X} x\pi\left(s \in S : \tilde{x}\left(s\right) = x\right)\right)$$

with certainty is weakly preferred to \tilde{x} .

Proposition 2.3.1: If

$$U(\tilde{x}) = \int u(x) dF_{\tilde{x}}(x) \left(= \sum_{x \in X} u(x) \pi (s \in S : \tilde{x}(s) = x) \right)$$

represents \succsim , then \succeq exhibits (weak) risk aversion if and only if the preference-scaling utility function u is concave.

Proof.

I. concave $u \Rightarrow$ risk aversion: By Jensen's inequality, if u(.) is concave then

$$\int u(x) dF(x) \le u\left(\int x dF(x)\right), \text{ for all } F(.)$$

S.Grant

ECON501

3

II. risk aversion $\Rightarrow u$ is concave.

(We will show u not concave $\Rightarrow \succsim$ does not exhibit risk aversion.)

Suppose u is not concave. That is, there exists $y, z \in \mathbb{R}_+$ and $\alpha \in (0, 1)$ satisfying u

$$u(\alpha y + (1 - \alpha)z) < \alpha u(y) + (1 - \alpha)u(z)$$

But it then follows for the event E with $\pi\left(E\right) =\alpha$ and the act $\tilde{x},$ where

$$\tilde{x}\left(s\right) = \left\{ \begin{array}{ll} y & \text{if } s \in E \\ z & \text{if } s \notin E \end{array} \right. \text{, \& so } F_{\tilde{x}}\left(x\right) = \left\{ \begin{array}{ll} 0 & \text{if } x < y \\ \alpha & \text{if } x \in [y, z) \\ 1 & \text{if } x \ge z \end{array} \right. \text{,}$$

we have

$$\int u(x) dF_{\tilde{x}}(x) = \alpha u(y) + (1 - \alpha) u(z) > u(\alpha y + (1 - \alpha) z)$$
$$= u\left(\int x dF_{\tilde{x}}(x)\right)$$

S.Grant

2.4 Measures of Risk Aversion

Certainty Equivalent defined as

$$c(\tilde{x}, u) = u^{-1} \left(\int u(x) \, dF_{\tilde{x}}(x) \right)$$

Obs: If risk averse, then risk premium given by

$$\int x dF_{\tilde{x}}\left(x\right) - c\left(\tilde{x}, u\right)$$

is non-negative.

S.Grant

Probability Risk Premium Consider gamble $\pm \varepsilon$ at base wealth x. *Probability risk premium* implicitly defined by

$$\left(\frac{1}{2} + \pi(x,\varepsilon,u)\right)u(x+\varepsilon) + \left(\frac{1}{2} - \pi(x,\varepsilon,u)\right)u(x-\varepsilon) = u(x)$$

Obs: If risk averse, then $\frac{1}{2} > \pi(x, \varepsilon, u) \ge 0$.

ECON501

5

Portfolio Problem: w – initial wealth; \tilde{x} – random return on risky asset with CDF $F_{\tilde{x}}(.)$ and r – riskless return on safe asset.

$$\max_{\substack{\alpha \in [0,1]}} \int u \left(\alpha w z + (1-\alpha) w r \right) dF_{\tilde{x}} \left(z \right)$$

Solution $\alpha \left(\tilde{x}, r, w, u \right)$.

Proposition 2.4.1 Three measures are equivalent in the sense that for two preference-scaling utility functions v(.) and u(.), the following are equivalent.

1. $c(\tilde{x}, v) \leq c(\tilde{x}, u)$ for all \tilde{x}

- 2. $\pi(x,\varepsilon,v) \ge \pi(x,\varepsilon,u)$ for all x,ε
- 3. $\alpha(\tilde{x}, r, w, v) \leq \alpha(\tilde{x}, r, w, u)$ for all \tilde{x}, r, w
- 4. v is an *increasing* and *concave* transformation of u, that is, for some concave function ϕ ,

$$v\left(x\right) = \phi\left(u\left(x\right)\right)$$

Proof of $(4) \Rightarrow (3)$.

Set $\alpha^* := \alpha (\tilde{x}, r, w, u)$ and set $x^* (z) := \alpha^* w z + (1 - \alpha^*) w r$. α^* satisfies the FONC of portfolio problem for u. That is,

$$\int u'\left(x^*\left(z\right)\right)w\left(z-r\right)dF_{\tilde{x}}\left(z\right)=0$$

That is,

$$-\int_{z < r} u'(x^*(z)) w(r-z) dF_{\tilde{x}}(z) + \int_{z > y} u'(x^*(z)) w(z-r) dF_{\tilde{x}}(z) = 0$$

Take the derivative of

$$\int v \left(w \left(\alpha w z + (1 - \alpha) w r \right) \right) dF \left(z \right) \equiv \int \phi \left(u \left(w \left(\alpha w z + (1 - \alpha) w r \right) \right) \right) dF \left(z \right)$$

wrt α and evaluate it at α^* .

ECON501

S.Grant

$$\begin{array}{ll} \text{This yields} & \int \phi' \left(u \left(x^{*} \left(z \right) \right) u' \left(x^{*} \left(z \right) \right) w \left(z - r \right) dF_{\tilde{x}} \left(z \right) \\ & = & - \int_{z < r} \phi' \left(u \left(x^{*} \left(z \right) \right) \right) u' \left(x^{*} \left(z \right) \right) w \left(r - z \right) dF_{\tilde{x}} \left(z \right) \\ & + \int_{z > r} \phi' \left(u \left(x^{*} \left(z \right) \right) \right) u' \left(x^{*} \left(z \right) \right) w \left(z - r \right) dF_{\tilde{x}} \left(z \right) \\ \text{As } \phi'' \leq 0, & \phi' \left(u \left(x^{*} \left(z \right) \right) \right) \geq & \phi' \left(u \left(wr \right) \right) \text{ for } z < r \\ & \phi' \left(u \left(x^{*} \left(z \right) \right) \right) \leq & \phi' \left(u \left(wr \right) \right) \text{ for } z > r \\ \text{Hence} & \int \phi' \left(u \left(x^{*} \left(z \right) \right) u' \left(x^{*} \left(z \right) \right) w \left(z - r \right) dF_{\tilde{x}} \left(z \right) \\ & \leq & \int \phi' \left(u \left(wr \right) \right) u' \left(x^{*} \left(z \right) \right) w \left(z - r \right) dF_{\tilde{x}} \left(z \right) = 0 \\ \text{So} & \alpha \left(\tilde{x}, r, w, v \right) \leq \alpha^{*} = \alpha \left(\tilde{x}, r, w, u \right) \end{array}$$

8

2.4.1 Coefficient of Absolute Risk Aversion

$$r_{A}\left(x,u\right)\equiv-\frac{u^{\prime\prime}\left(x\right)}{u^{\prime}\left(x\right)}\geq0\text{ if }u\text{ concave }$$

Proposition 2.4.2

$$v\left(x
ight) = \phi\left(u\left(x
ight)
ight)$$
, $\phi' > 0$, $\phi'' \le 0 \Leftrightarrow -\frac{v''\left(x
ight)}{v'\left(x
ight)} \ge -\frac{u''\left(x
ight)}{u'\left(x
ight)}$ for all x .

9

ECON501

S.Grant

Interpretation. a) -u''(x) is proportional to second-order loss arising from a small fair gamble.

$$\frac{1}{2}u(x+\varepsilon) + \frac{1}{2}u(x-\varepsilon)$$

$$\approx \frac{1}{2}u(x) + \frac{1}{2}u'(x)\varepsilon + \frac{1}{4}u''(x)\varepsilon^2 + \frac{1}{2}u(x) - \frac{1}{2}u'(x)\varepsilon + \frac{1}{4}u''(x)\varepsilon^2$$

Hence

$$u(x) - \frac{1}{2}u(x+\varepsilon) + \frac{1}{2}u(x-\varepsilon) \approx -u''(x)\frac{1}{2}\varepsilon^2$$

b) u'(x) is proportional to first-order loss arising from paying a 'premium' d

$$u(x-d) \approx u(x) - u'(x) d$$

I.e.

$$u(x) - u(x - d) \approx u'(x) d$$

So -u''(x)/u'(x) is proportional to the marginal rate of substitution between accepting a small gamble and paying a small premium.

2.4.2 Hypothesis of Decreasing Absolute Risk Aversion

DARA: $r_A(x, u)$ is a decreasing function of x.

Proposition 2.4.3 The following properties are equivalent:

- 1. The Bernoulli utility index exhibits DARA.
- 2. Whenever y < z, the function $u_y(x) \equiv u(y+x)$ is a *concave* transformation of the function $u_z(x) \equiv u(z+x)$.
- 3. For any distribution F

$$\int (y+x) dF(x) - u^{-1} \left(\int (y+x) dF(x) \right)$$

is decreasing in y. That is, the higher is y, the less willing is the individual in paying a premium to get rid of the risk.

11

ECON501

S.Grant

- 4. The probability premium $\pi(x, \varepsilon, u)$ is decreasing in x.
- 5. For any F, if

$$\int u\left(x+\varepsilon\right)dF\left(\varepsilon\right) \ge u\left(x\right)$$

and x < y, then

$$\int u\left(y+\varepsilon\right)dF\left(\varepsilon\right)\geq u\left(y\right).$$

That is, the set of acceptable risks is *increasing* in x.

Obs.
$$\frac{d}{dx}(r_A(x,u)) = \frac{d}{dx}\left(-\frac{u''(x)}{u'(x)}\right) = \frac{-u'''(x)u'(x) + (u''(x))^2}{(u'(x))^2}$$

So *necessary* condition for DARA is u'''(x) > 0.

Constant absolute risk aversion $u(x) = -\exp(-\alpha x)$.

2.4.3 Hypothesis of Increasing Relative Risk Aversion

Recall portfolio problem and solution $\alpha(F, r, w, u)$.

IRRA says $\alpha(F, r, w, u)$ is *decreasing* in w.

$$r_{R}\left(x,u
ight)=-rac{u^{\prime\prime}\left(x
ight)x}{u^{\prime}\left(x
ight)}$$
 is increasing in x

Constant Relative Risk Aversion:

$$u(x) = \ln x \rightarrow r_R(x, u) = 1$$
$$u(x) = \frac{1}{1 - \alpha} x^{1 - \alpha}, \ \alpha \neq 1$$

13

ECON501

S.Grant

2.5 Mean-Variance Analysis

Justified in EU Theory if either:

1. Utility function is quadratic

$$u\left(x\right) = \begin{cases} x - bx^2/2 & \text{if } x \in [0, 1/b) \\ 1/(2b) & \text{if } x \ge 1/b \end{cases}$$

or;

- 2. distributions completely characterized by mean and variance.
 - e.g. class of distributions are all *normally* distributed.

Problems

S.Grant

- 1. DARA not satisfied.
- 2. Not all distributions normal, nor characterized just by first two moments.

Consider

$$\tilde{x} = \begin{cases} 100 & \text{if } s \in A \\ 1 & \text{if } s \notin A \end{cases} \text{ with } \pi(A) = 0.2$$

$$\tilde{y} = \begin{cases} 1090 & \text{if } s \in B \\ 10 & \text{if } s \notin B \end{cases} \text{ with } \pi(B) = 0.01$$

$$E[\tilde{x}] = 0.2 \times 100 + 0.8 \times 1 = 20.8 E[\tilde{y}] = 0.01 \times 1090 + 0.99 \times 10 = 20.8$$

1	5
1	Э

S.Grant ECON501

$$Var(\tilde{x}) = (20.8 - 1)^2 \times 0.8 + (100 - 20.8)^2 \times 0.2 = 1,568.16$$

$$Var(\tilde{y}) = (20.8 - 10)^2 \times 0.99 + (1090 - 20.8)^2 \times 0.01 = 11,547.36$$

Say $u(x) = \ln x$

$$U(\tilde{x}) = 0.8 \ln 1 + 0.2 \ln 100 = 0.92$$
$$U(\tilde{y}) = 0.99 \ln 10 + 0.2 \ln 1090 = 2.35$$

2.6 Stochastic Dominance Relations.

DEFN: The distribution F(.) first-order stochastically dominates G(.) if $F(x) \leq G(x)$ for every x.

PROPOSITION: If F(.) second-order stochastically dominates G(.) then

$$\int_{\cdot} u(x) dF(x) \ge \int u(x) dF(x)$$

for every non-decreasing u.

DEFN: The simple distribution F(.) constitutes an elementary first-order improvement in risk over the simple distribution G(.) if for some simple distribution H(.), some $\alpha \in [0, 1]$, and pair of outcomes $x \ge y$:

$$F(.) = (1 - \alpha) H(.) + \alpha \delta_x(.)$$

$$G(.) = (1 - \alpha) H(.) + \alpha \delta_y(.)$$

17

S.Grant

ECON501

FACT: If F(.) first-order stochastically dominates G(.) then there exists two sequences of simple distributions, $\langle F_n(.) \rangle$ and $\langle G_n(.) \rangle$ such that

$$F_n \to F, G_n \to G$$

and for each n, there F_n can be obtained from G_n by a finite sequence of elementary first-order improvements in risk.

DEFN: The distribution F(.) second-order stochastically dominates G(.) if $\int_{0}^{x} F(t) dt \leq \int_{0}^{x} G(t) dt$.

DEFN: The simple distribution F(.) constitutes an elementary second-order improvement in risk over the simple distribution G(.) if for some distribution H(.), some $\alpha, \beta \in [0, 1]$, and for some three outcomes $x \ge \beta y + (1 - \beta) z$:

$$F(.) = (1 - \alpha) H(.) + \alpha \delta_x(.)$$

$$G(.) = (1 - \alpha) H(.) + \alpha [\beta \delta_y(.) + (1 - \beta) \delta_z(.)]$$

S.Grant

ECON501

19

FACT: If F(.) second-order stochastically dominates G(.) then there exists two sequences of simple distributions, $\langle F_n(.) \rangle$ and $\langle G_n(.) \rangle$ such that

$$F_n \to F, \ G_n \to G$$

and for each n, there F_n can be obtained from G_n by a finite sequence of elementary second-order improvements in risk.

PROPOSITION: If F(.) second-order stochastically dominates G(.) then

$$\int u(x) dF(x) \ge \int u(x) dF(x)$$

for every non-decreasing and $concave \ u$.