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2.3 Money Outcomes and Risk Aversion
Ref: MWG 6.C

If individual is a subjective expected utility maximizer, then 7~ over acts
can be characterized by 7, prob. measure on S representing beliefs and
preference scaling utility function u : X — R.

So can identify act a = [04y,FE1;...;04,,En] with lottery L =
[x1,p15 ... Tpn, Pn] Where p; = 7 (E;).

Focus on situation where outcomes are amounts of wealth.
An act is now a random variable z: S — X.
|dentify act with its cumulative distribution function (CDF)

Fi(z) = w(seS:2(s)<x)

prob. realized outcome no greater than .
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Axioms place no restrictions on preference scaling utility function for wealth,
but economics does.

1. w is increasing (or v’ (z) > 0).
2. u is concave (or u” () < 0)

3. u”" () >0 (or v (.) is convex)

1. “more is better” — local non-satiation
2. Risk aversion

3. Decreasing absolute risk aversion.
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Definition 2.3.1: An individual is (weakly) risk averse if for any act Z, the

act that yields
E [i] :/xdFi(a:) <_ d am(seS:z(s) _:c)>

with certainty is weakly preferred to .

Proposition 2.3.1: If
U(a?):/u(a:)ng:(a:) <_ Zu(x)w(séS:ﬁ:(s)-az))
zeX
represents =, then >~ exhibits (weak) risk aversion if and only if the

~J! ~

preference-scaling utility function u is concave.

Proof.
I. concave u = risk aversion: By Jensen's inequality, if u (.) is concave then

/u(az) dF () < u (/ dF (x)) forall F())
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Il. risk aversion = u is concave.
(We will show u not concave = 7 does not exhibit risk aversion.)

Suppose u is not concave. That is, there exists y,z € R, and a € (0,1)

satisfying ulay+ (1—a)z) < au(y)+ (1—a)u(z).

But it then follows for the event E with 7 (F) = « and the act &, where

: 0 if x<y
;E(S):{g ';ié% L& soFp(x)=¢ a if z€ly,z) ,
1 if >z
we have

/u(:z;)ngg(a:) = au(y)+(1—-—a)u(z) >u(ay+ (1 —a)=z)

- ( / dFs (m)>
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2.4 Measures of Risk Aversion

Certainty Equivalent defined as

¢ (@ u) = u~! </u(w) dF @))

Obs: If risk averse, then risk premium given by
/xng;n () —c(Z,u)
IS non-negative.

Probability Risk Premium Consider gamble +¢ at base wealth z.
Probability risk premium implicitly defined by

(%—i—w(m,s,u))u(w—l—d-l- G—w(w,s,u))u(w—d = u(z)

Obs: If risk averse, then 1 > 7 (z,£,u) > 0
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Portfolio Problem: w — initial wealth; £ — random return on risky asset
with CDF Fj (.) and 7 — riskless return on safe asset.

m%ﬁ] /u (cwz + (1 — @) wr) dF; (2)
ac|0,
Solution « (:fc,r,w,us

Proposition 2.4.1 Three measures are equivalent in the sense that for
two preference-scaling utility functions v (.) and w(.), the following are
equivalent.
1. ¢(Z,v) <c(Z,u) for all Z
2. w(x,e,v) > 7 (x,e,u) for all z,e
3. a(z,r,w,v) < a(Z,r,w,u) forall T,r,w
4. v is an increasing and concave transformation of u,
that is, for some concave function ¢,
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Proof of (4) = (3).

Set a* := a (Z,r,w,u) and set z* (2) := a*wz + (1 — &) wr. a* satisfies
the FONC of portfolio problem for u. That is,

/u' (* (2))w(z—71)dFz(2) =0
That is,

_/< o (2 (z))w(r—z)dFj(z)+/> o (2 (2))w (2 — ) dF5 (2) = 0
Take the derivative of
/U(w(awz—i—(l—a wr) /(b w(awz + (1 — a)wr))) dF (z)

wrt o and evaluate it at a*.
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This yields / ¢ (u(z* (2)))u (2% (2)) w (2 — ) dF; (2)

= [ Y @) @ (@)wr - 2)dF;(:)

z<r

+ [ ¢ (uam () (27 (2) w(z —r)dF; (2)

As ¢" <0, ¢ (u(x*(2)) > ¢ (u(wr)) forz<r
¢ (u(xz*(2)) < ¢ (u(wr)) forz>r

Hence [ ¢ @ @) a @)l d )
< [ ¢ )@ @) wlz-r)dF ) =0

So a(z,r,w,v) <o =a(Z,rwu)
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2.4.1 Coefficient of Absolute Risk Aversion

> 0 if © concave

Proposition 2.4.2

v(z)=¢(u(r)), ¢ >0, ¢ <0 — for all .
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Interpretation. a) —u” () is proportional to second-order loss arising from
a small fair gamble.

1 1

§u(:1:—|—5)+§u(x—s)

1 1 1 1 1 1

N QU (x) + §u’ (x)e + Zu” (z)e® + U (x) — §u' (x)e+ Zu” (z)?

Hence 1 1 1,
u(x) —§u(x—|—5) —I—Eu(x—s) A —u"(x)§5

b) w’ (x) is proportional to first-order loss arising from paying a ‘premium’ d

u(x —d)~u(x)—u (z)d
l.e.

u(z)—u(r—d) ~u(x)d
So —u" (z) /u' (z) is proportional to the marginal rate of substitution
between accepting a small gamble and paying a small premium.

10
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2.4.2 Hypothesis of Decreasing Absolute Risk Aversion

DARA: 4 (z,u) is a decreasing function of x.

Proposition 2.4.3 The following properties are equivalent:

1. The Bernoulli utility index exhibits DARA.

2. Whenever y < z, the function u, (z) = u(y + ) is a
concave transformation of the function u, (z) = u (z + x).

3. For any distribution F

/(y+a:)dF(a:)—u_1 (/(y—kx)dF(q:))

is decreasing in y. That is, the higher is y, the less willing is the individual
in paying a premium to get rid of the risk.

11
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4. The probability premium 7 (z,¢,u) is decreasing in x.

5. For any F, if
/u(a:+s)dF(s) > u(x)
and x < y, then
[utwrodrE = ut).
That is, the set of acceptable risks is increasing in x.
Obs. 4 d (' (@)) _ —u" (@) (z) + (" (2))*
= (ra(z,u)) = Iz (_ " (:r)) = o (@)

So necessary condition for DARA is v/’ (x) > 0.

Constant absolute risk aversion u (x) = — exp (—aux).

12
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2.4.3 Hypothesis of Increasing Relative Risk Aversion

Recall portfolio problem and solution « (F, 7, w,u).

IRRA says « (F,r,w,u) is decreasing in w.

IS increasing in x

Constant Relative Risk Aversion:

u(z) =Inz —rr(z,u) =1

13
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2.5 Mean-Variance Analysis

Justified in EU Theory if either:

1. Utility function is quadratic

[z —bx?/2 if 2€]0,1/b)
“U—{ 1(20) i w>1/b

or;

2. distributions completely characterized by mean and variance.

e e.g. class of distributions are all normally distributed.

14
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Problems

1. DARA not satisfied.

2. Not all distributions normal, nor characterized just by first two moments.

Consider
- 100 ifse A :
T = { 1 ifs¢ A with 7 (A) = 0.2
- 1090 ifse B .
0 { 10 ifs¢B with 7 (B) = 0.01
E[#] = 0.2x100+0.8x1=20.8
E[j] = 0.01 x 1090 +0.99 x 10 = 20.8
15
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Var () = (20.8 —1)% x 0.8+ (100 — 20.8)” x 0.2 = 1,568.16
Var(j) = (20.8—10)% x 0.99 + (1090 — 20.8)% x 0.01 = 11,547.36

Say u(x) =Ilnzx

U
U

= 0.8In1+0.2In100 = 0.92
0.99In10 4+ 0.21n 1090 = 2.35

—_

< &

N— N—
Il

16
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2.6 Stochastic Dominance Relations.

DEFN: The distribution F'(.) first-order stochastically dominates G (.) if
F (z) < G(x) for every x.

PROPOSITION: If F'(.) second-order stochastically dominates G (.) then
/u (x) dF (z) > /u () dF (z)
for every non-decreasing .

DEFN: The simple distribution F'(.) constitutes an elementary first-order
improvement in risk over the simple distribution G (.) if for some simple
distribution H (.), some « € [0, 1], and pair of outcomes = > y :

F() = (1—a)H()+ad, ()
G() = (1-a)H()+ad,()

17
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FACT: If F'(.) first-order stochastically dominates G (.) then there exists
two sequences of simple distributions, (F), (.)) and (G, (.)) such that

F,—F, G, — G

and for each n, there F), can be obtained from G,, by a finite sequence of
elementary first-order improvements in risk.

18
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DEFN The dlstrlbutlon F' (.) second-order stochastically dominates G (.)
/ t)dt < /G

DEFN: The simple distribution F' (.) constitutes an elementary second-order
improvement in risk over the simple distribution G (.) if for some distribution
H (.), some a, B € [0, 1], and for some three outcomes z > By + (1 — ) z :

F() = (1—a)H()+ad,(.)
G() = I-a)H()+a[fd,()+1—-75)d.()]

19
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FACT: If F'(.) second-order stochastically dominates G (.) then there exists
two sequences of simple distributions, (F), (.)) and (G, (.)) such that

F,—F, G, — G

and for each n, there F), can be obtained from G,, by a finite sequence of
elementary second-order improvements in risk.
PROPOSITION: If F'(.) second-order stochastically dominates G (.) then

/u(:v)dF(:c) > /u(x)dF(:c)

for every non-decreasing and concave u.
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