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1.8 Aggregation
1.8.1 Aggregation Across Goods

Ref: DM Chapter 5

Motivation:

1. data at group level: food, housing entertainment

e.g. household surveys

Q. Can we model this as an ordinary consumer problem over composite

commodity groups?

i.e. max U defined on composite commodities s.t. budget constraint

2. data on one industry only e.g. I.O. car industry

• want D among cars to depend on price of food via income effect, but
NOT to depend on relative prices among different cheeses!
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20. Extreme example of 2. LABOR SUPPLY

• typically want labor supply to depend on the real wage so that it takes
account of prices of “all other goods” (one composite good).

• typically want to ignore relative prices of other goods.

N.B. problem 1. 6= 2.
• our concern here is intuition about problems, not theorems about
when no problems.

Do 20. then 2. then 1.
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Approach 1: Restrict Price Movements

Hicks Composite Commodity Theorem

Suppose prices within the group move proportionately

e.g. 3 goods, group commodities 2 & 3.

— like to treat this as if there were 2 goods x1 & X.

• since prices move proportionately, write

p2 = qp02 & p3 = qp03 (i.e. p
0
2, p

0
3 ‘base’ prices)

For any (x2, x3) let

X := p02x2 + p03x3 (i.e. qty index using p
0 wgts)
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Let q be composite price.

Original pblm:-

maxu (x1, x2, x3) s.t. p1x1 + p2x2 + p3x3| {z }
qX

≤ w (1)

under our assumptions becomes:

max ũ (x1,X) s.t. p1x1 + qX ≤ w (2)

Need to check we get same demands. To show this let

V
¡
p1, qp

0
2, qp

0
3, w

¢
be indirect utility fn of (1)

Ṽ (p1, q, w) be indirect utility fn of (2)
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Notice

Ṽ (p1, q, w) ≡ V
¡
p1, qp

0
2, qp

0
3, w

¢
Need to show

∂Ṽ

∂q
= −λX

Check

∂Ṽ

∂q
=

∂V

∂p2
× ∂p2

∂q
+

∂V

∂p3
× ∂p3

∂q

= −λx2 × p02 − λx3 × p03 = −λX X

But needed to assume prices within the group moved together.

I.e. ∆p ∝ p.

c.f. when price index works well as approx to “true” index —

“few within group substitutions”.
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Now consider demand for good 1

x1 = x1 (p1, q, w)

since demand is homogeneous of degree 0 :

x1 = x̂1

µ
p1

q
,
w

q

¶
e.g. x1 is leisure, p1 is nominal wage W , q is price index P (say CPI)

p1

q
=

W

P
is real wage

Q. When will pblms arise with this?

A. When relative prices move and big substitution effects

e.g. communitng cost ↑ and vacation cost ↓.
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Approach 2: Restrict Preferences
Q. When is D within group of goods independent of prices outside the

group (except for possibly income effects) [The I.O. Q]

For group g : for each i ∈ g, we have xi = xi (p,w) but what we want is

xi = xi (pg, wg) (∗)

Intuitively — want a two-step budgeting procedure, where in the first stage

we allocate groups’ expenditures

¡
wg1, . . . , wgN

¢
s.t.

NX
a=1

wga = w

Necessary & sufficient condition for (∗) to hold is for % to admit a weakly
separable representation.
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Definition 1. u is weakly separable, if it can be written as:

u (x) = U
¡
u1 (xg1) , . . . , uN

¡
xgN

¢¢
, where

∂U

∂ug
> 0, for all g

Example:

u (x1, x2, x3) = lnx1 + ln
³
x
1/2
2 + x3

´
Proof of Sufficiency (for 2 groups g and h)

Consider overall maximization problem

max
hx∈Xi

u (x) s.t. p.x ≤ w
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Let x∗ be a solution to this problem, that is,

V (p,w) = u (x∗) = U
¡
ug
¡
x∗g
¢
, uh (x

∗
h)
¢

Let

w∗g =
X
i∈g

pixi — expenditure on commodities in group g

We want x∗g to solve 2
nd— stage pblm

max
xg

ug (xg) s.t.
X
i∈g

pixi ≤ w∗g

I.e. we want sub-pblm to yield same condition.

So suppose it does not, that is, ∃x̂g s.t. ug (x̂g) > ug
¡
x∗g
¢

and
P

i∈g pix̂i ≤ w∗g
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But then replace g− component of x∗ by x̂g → (x̂g, x
∗
h)

(This is affordable at (p,w))

This yields

U (ug (x̂g) , uh (x
∗
h)) > U

¡
ug
¡
x∗g
¢
, uh (x

∗
h)
¢

= u (x∗) = V (p,w) a contradiction!

Conclude weak separability is enough for IO problem

• focus on within group allocation

• prices outside the group only affect wg

(expenditure on commodities within group).
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N.B. Did not assume anything about shape of within group preference ug
nor anything about shape of U .

To fix ideas think of following:

Structural example: consumption technology

Think of xi as ‘input’ into consumption ‘outputs’ from which consumer

derives final utility.

Say g is ‘transport’: inputs include car, bike, running shoes

Say h is ‘food’: inputs include caviar, peanut butter, cabbage, et cetera.

ug (.) is ‘prodn fn’ from inputs in to transport utility

• does not depend on caviar or peanut butter consumption.
11
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uh (.) is ‘prodn fn’ from inputs to food utility

• does not depend on forms of transport.

U (., .) represents preferences over ‘transport utility’ and ‘food utility’

What is good about this structural model?

• new goods included without changing ‘fundamental’ preference model

U (., .)

• inputs could household labor

Failures of separability?
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Suppose we have weak separability (and we have (ug)
N

g=1
fns)

Let’s use each sub-utility uga as a composite commodity: i.e. set Xg := ug.

First-stage of two-stage budgeting problem becomes:

maxU (X1, . . . ,XN) s.t.

NX
g=1

eg (pg,Xg) ≤ w

where recall eg (pg, Xg) is 2
nd stage expenditure at prices pg to achieve

utility level Xg

ALAS, this is not a standard linear budget constraint,

so cannot apply standard theory.

Why? Because
PN

a=1 eg (pg, Xg) is not linear in Xg.
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But if subutility fn ug is homogeneous then

eg (pg,Xg) = Xgbg (pg)

and constraint becomes

NX
g=1

bg (pg)Xg ≤ w

BUT RESTRICTIVE.

Can we do better?

Instead of using Xg = ug use a money-metric representation of ug.

Set

Xg := eg
¡
p0g, ug

¢
I.e., expenditure on group g to achieve ‘sub-utility’ ug at base prices p

0
g.
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Now,

U (. . . , ug, . . .)→ U(. . . , Vg(pg, eg
¡
p0g, ug

¢| {z })
Xg

, . . .)

with budget constraint

NX
g=1

eg (pg, ug) ≤ w

⇔
NX
g=1

eg
¡
p0g, ug

¢× eg (pg, ug)

eg
¡
p0g, ug

¢ ≤ w

⇔
NX
g=1

Xg × Pg ≤ w

where Pg is ‘true’ price index within g using base utility ug.
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Note:

1. If ug (.) homothetic then Pg independent of ug base.

2. Can approximate Pg using Paasche or Lasperyes price indices, provided

substitution effects within groups are small. e.g. group prices move

together.
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1.8.2 Aggregation Across Individuals

Refs: MWG Chapter 4, Varian pp152-154 (Gorman example),

Kreps pp62-63 - (example of agg. D that fails to satisfy WARP)

Address 3 questions about aggregate demand

1. When can aggregate demand be expressed as a function of prices

and aggregate wealth?

2. When does aggregate demand satisfy

• WARP (i.e. substitution matrix for aggregate demand is NSD)?
• SARP (i.e. substitution matrix for aggregate demand is NSD
and symmetric)?

3. When does aggregate demand have welfare significance?
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1.8.2.1 Agg Demand and Agg Wealth

Aggregate D x
¡
p,w1, . . . , wI

¢
=
X

i
xi
¡
p,wi

¢
Q. When can the following hold?X

i
wi =

X
i
bwi⇒

X
i
xi
¡
p,wi

¢
=
X

i
xi
¡
p, bwi

¢
Require: X

i

∂

∂wi
xic
¡
p,wi

¢
dwi = 0 for every c

and every
¡
dw1, . . . , dwI

¢
satisfying

X
i
dwi = 0

I.e., require

∂

∂wi
xic
¡
p,wi

¢
=

∂

∂wj
x
j
c

¡
p, wj

¢
for all i, all j and all

¡
w1, . . . , wI

¢
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Geometrically: require all wealth expansion paths of all consumers to be

linear and parallel.

Examples:

1. all consumers have identical homothetic preferences

2. all consumers have preferences that are quasi-linear

with respect to the same good.

Gorman Form.

A necessary and sufficient condition for a set of consumers to exhibit linear

and parallel wealth expansion paths is that the indirect utility functions of

the consumers take the following form:

vi
¡
p,wi

¢
= ai (p) + b (p)wi
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1.8.2.2 WARP and SARP
Notice aggregate demand

x
¡
p,w1, . . . , wI

¢
=

IX
i=1

xi
¡
p,wi

¢
satisfies:

1. continuity

2. homogeneity of degree 0 in prices and wealth

3. Walras’ Law

p.x
¡
p,w1, . . . , wI

¢
=

IX
i=1

wi

Recall WARP

If p.x (bp, bw) ≤ w then bp.x (p,w) ≥ bw
If p.x (bp, bw) < w then bp.x (p,w) > bw
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Example from Kreps (pp62-3)
At p = (10, 10), w1 = w2 = 1000

x1 = (25, 75) and x2 = (75, 25) , so x = x1 + x2 = (100, 100)

At bp = (15, 5), bw1 = bw2 = 1000bx1 = (40, 80) and bx2 = (64, 8) , so bx = bx1 + bx2 = (104, 88)
Notice bp.x1 = 750 < bw1 and p.bx1 = 1200 > w1,

so WARP holds for 1bp.x2 = 1270 > bw2 and p.bx2 = 720 < w2,

so WARP holds for 2

But bp.x = 2000 = bw1 + bw2 and p.bx = 1920 < w1 + w2,

i.e. WARP fails to hold for aggregate demand.
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Uncompensated Law of Demand (ULD)

(bp− p) .
¡
xi
¡bp,wi

¢− xi
¡
p,wi

¢¢ ≤ 0
Proposition 1.8.2.1 If for every individual i, xi (p,w) satisfies ULD then

so does aggregate demand

x (p, w) =

IX
i=1

xi
¡
p, αiw

¢
where αi is i’s share of aggregate wealth. As a consequence, x (p,w)

satisfies WARP.
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Proof:

(a) x (p,w) satisfies ULD.

To see this, notice that for any two price vectors bp and p
(bp− p) . (x (bp,w)− x (p,w))

= (bp− p) .

Ã
IX
i=1

xi
¡bp, αiw¢− IX

i=1

xi
¡
p, αiw

¢!

=

IX
i=1

(bp− p)
¡
xi
¡bp, αiw¢− xi

¡
p, αiw

¢¢ ≤ 0
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(b) x (p,w) satisfies WARP. To verify WARP, assume there exists a pair of

price vectors bp and p and an aggregate wealth level w, for which
p.x (bp,w) ≤ w and bp.x (p,w) < w,

that is, WARP fails to hold. Since by Walras’ Law w = bp.x (bp,w) =
p.x (p,w), the two inequalities may be reexpressed as

−p. (x (bp, w)− x (p,w)) ≥ 0

and bp. (x (bp, w)− x (p,w)) > 0

Adding these we get

(bp− p) . (x (bp,w)− x (p,w)) > 0

a violation of ULD.
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Proposition 1.8.2.2 If each individual’s preference relation %i

is homothetic, then xi
¡
p,wi

¢
satisfies ULD.

Proof. Recall

Si = Dpx
i
¡
p,wi

¢
+ Dwx

i (p,w) xi
¡
p,wi

¢T
L× L L× L L× 1 1× L

For homothetic preferences, notice

Dwx
i (p,w) =

1

wi
xi
¡
p,wi

¢
Since

∂

∂wi
xic
¡
p,wi

¢× wi

xic (p,w
i)
= 1

So

Dpx
i
¡
p,wi

¢
= Si − 1

wi
xi (p,w)xi (p,w)

T
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Hence for any vector z 6= 0, we have

zTDpx
i
¡
p,wi

¢
z = zTSiz − 1

wi

¡
z.xi

¡
p,wi

¢¢2 ≤ 0
Wealth effects are well-behaved.

More generally, for ULD to hold, substitution effects must be large enough

to overcome possible ‘perversities’ arising from wealth effects.

What about SARP?

Require

S = Dpx (p,w) +Dwx (p,w)x (p,w)
T

to be negative semi-definite and symmetric.

Implies existence of positive representative consumer, %, that generates
aggregate demand function x (p,w).
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1.8.2.3 Aggregate D with Welfare Significance

N.B. Existence of positive representative consumer is necessary but not

sufficient to be able to assign welfare significance to aggregate demand.

Social Welfare: A Bergson-Samuelson social welfare function (SWF) is a

function

W : RI → R

that assigns a social welfare value to each possible vector¡
u1, . . . , uI

¢
of utility levels of the I consumers in the economy.

E.g. W (u1, . . . , uI) =
P

i u
i.

Suppose there is a process, that, for any given price vector p, and aggregate

wealth level w, redistributes wealth in order to maximise social welfare.
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Proposition 1.8.2.3 The value function

v (p,w) = max
hw1,...,wIi

W
¡
v1
¡
p,w1

¢
, . . . , vI

¡
p,wI

¢¢

s.t.

IX
i=1

wi ≤ w

(where vi (p,w) is consumer i’s indirect utility function and assumed

to be concave in wealth) is an indirect utility function of a positive

representative consumer for the aggregate demand function

x (p,w) =

IX
i=1

xi
¡
p,wi (p,w)

¢
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Proof:

(a) v (p,w) is an indirect utility function - (exercise)

(b) x (p,w) is demand associated with v (p,w).

To see this notice from the FONC of the wealth distribution

problem that (assuming an interior solution):

λ =
∂W

∂ui
× ∂vi

∂wi
, for all i = 1, . . . , I (3)

From envelope theorem

∂

∂w
v (p,w) = λ =

∂W

∂ui
× ∂vi

∂wi
, for all i = 1, . . . , I
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For any commodity c:

∂

∂pc
v (p,w) =

IX
i=1

∂W

∂ui
× ∂vi

∂pc
+ λ

IX
i=1

∂wi

∂pc
=

IX
i=1

∂W

∂ui
× ∂vi

∂pc

as

IX
i=1

wi (p,w) = w for all (p,w)

So xRc (p,w) = − ∂

∂pc
v (p,w) /

∂

∂w
v (p,w) = −

IX
i=1

∂W/∂ui × ∂vi/∂pc

∂W/∂ui × ∂vi/∂wi

= −
IX
i=1

∂vi/∂pc

∂vi/∂wi
=

IX
i=1

xic
¡
p, wi (p,w)

¢
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Definition: The positive representative consumer % for aggregate demand

x (p,w) =

IX
i=1

xi
¡
p,wi (p,w)

¢
is a normative representative consumer relative to SWF W

¡
u1, . . . , uI

¢
if

for every (p,w), the distribution
¡
w1 (p,w) , . . . , wI (p,w)

¢
solves

max
hw1,...,wIi

W
¡
v1
¡
p,w1

¢
, . . . , vI

¡
p,wI

¢¢

s.t.

IX
i=1

wi ≤ w

(where vi (p,w) is consumer i’s indirect utility function and assumed to

be concave in wealth). Furthermore, the value function v (p,w) of this

program is an indirect utility function for %.
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Example: Suppose ui (.) are all homogeneous of degree 1, and

W
¡
u1, . . . , uI

¢
=
¡
u1
¢α1 × . . .× ¡uI¢αI , with αi > 0, IX

i=1

αi = 1

Optimal wealth distribution function is price-independent rule

wi (p,w) = αiw

Hence in homothetic case, aggregate demand

x (p,w) =

IX
i=1

xi
¡
p, αiw

¢
may be viewed as originating from the normative representative consumer

generated by above SWF.
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A very special case: Gorman-form indirect utility
Suppose vi

¡
p,wi

¢
= ai (p) + b (p)wi

1. If W
¡
u1, . . . , uI

¢
=
P

i u
i then any wealth distribution rule is a welfare

maximizing rule for the utilitarian SWF. Hence when indirect utility

functions have the Gorman form with common b (p), and SWF is

utilitarian, then aggregate demand can always be viewed as having

been generated by a normative representative consumer.

2. v (p,w) =
P

i a
i (p)+ b (p)w is an admissible indirect utility function for

the normative representative consumer relative to any SWF.

Proof of 2. Enough to show (bp, bw) is socially preferred to (p,w) forPi u
i

if and only if (bp, bw) when compared to (p,w) passes the following potential
compensation test: for any distribution of

¡
w1, . . . , wI

¢
of w,

there is a distribution of
¡ bw1, . . . , bwI

¢
of bw such that

vi
¡bp, bwi

¢
> vi

¡
p,wi

¢
for all i.
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To verify this, supposeX
i

ai (bp) + b (bp) bw −X
i

ai (p)− b (p)w = c > 0

Then bwi that is defined by

ai (bp) + b (bp) bwi = ai (p) + b (p)wi + c/I

i.e. bwi =
ai (p)− ai (bp) + b (p)wi + c/I

b (bp)
does the job, since

vi
¡bp, bwi

¢
= ai (p) + b (p)wi + c/I > vi

¡
p,wi

¢
and

X
i

bwi =
X
i

ai (p)− ai (bp) + b (p)wi + c/I

b (bp)
=

P
i

¡
ai (p)− ai (bp)¢+ b (p)w + c

b (bp) = bw
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