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1.2 Utility Maximization Problem (UMP)

(MWG 2.D, 2.E; Kreps 2.2) max
hx∈Xi

u (x) s.t. p.x ≤ w and x ≥ 0
For a cts preference relation represented by a cts utility fn, u (·):
1. The UMP has at least one solution for all strictly positive prices

and non-negative levels of income.
2. If x is a solution of the UMP for given p and w, then x is also a solution

for (ap, aw) for any positive scalar a.

i.e. x (p,w) ≡ x (ap, aw) [Homogeneity of degree 0 of demand.]
3. If in addition we assume preferences are locally non-satiated

then x being a solution of the UMP implies
P

c pcxc = w.

4. If in addition we assume preferences are convex (i.e. u is quasi-concave)

then the set of solutions x (p,w) to the UMP is a convex set.

5. If preferences are strictly convex then the solution to the UMP is unique

and x (p,w) is a continuous function of p and w.
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1.3 The Indirect Utility Function

Assume that u (·) is a cts fn that represents locally non-satiated preferences.
The indirect utility fn v (p,w) is:-

1. homogeneous of degree zero in p and w

i.e. v (p,w) ≡ v (ap, aw) for all a > 0

2. strictly increasing in w

3. non-increasing in p

4. quasi-convex in p and w, that is

v (αp+ [1− α] p0, αw + [1− α]w0) ≤ max [v (p,w) , v (p0, w0)]
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1.4 The Expenditure Minimization Problem (EMP)

For a cts preference relation represented by a cts utility function, u (·):

1. The EMP has at least one solution for all strictly positive prices &

u ≥ u (0).

2. If x is a solution of the EMP for given p and u,

then x is also a solution for (ap, u) for any positive scalar a.

i.e. h (p, u) ≡ h (ap, u) [Homogeneity of degree 0 in prices.]

3. If in addition we assume preferences are convex (i.e. u is quasi-concave)

then the set of solutions h (p, u) to the EMP is a convex set.

4. If preferences are strictly convex then the solution to the EMP is unique

and h (p, u) is a continuous function of p and u.
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Properties of the Expenditure Function

Assume that u (·) is a cts fn that represents locally non-satiated preferences.
The expenditure function e (p, u) is:-

1. homogeneous of degree one in p

i.e. e (p, u) ≡ ae (p, u) for all a > 0

2. strictly increasing in u

3. non-decreasing in p

4. concave in p, that is

e (αp+ [1− α] p0, u) ≥ αe (p, u) + (1− α) e (p0, u)
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1.5 UMP & EMP with Derivatives

Constrained Optimatization and the Kuhn-Tucker Conditions

(reference: MWG appendix M.K; Kreps Appendix A)

Problem
max
x∈RN

f (x)

s.t. gm (x) = 0, m = 1, . . . ,M

hk (x) ≤ 0, k = 1, . . . ,K

Form the Lagrangian function:-

L (x, μ, λ) = f (x)−
MX
m=1

μmgm (x)−
KX
k=1

λkhk (x)
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THEOREM (Assuming the constraint qualification is satisfied) For

(x∗, μ∗, λ∗) to be a solution to the above constrained optimization
problem, (x∗, μ∗, λ∗) must satisfy

(i) ∂
∂xn
L (x∗, μ∗, λ∗) = 0 for all n = 1, . . . , N

(ii) L (x∗, μ∗, λ∗) = f (x∗) and λ∗k ≥ 0, for all k = 1, . . . ,K
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(i) and (ii) can be re-expressed as the Kuhn-Tucker FONCs for a maximum:

(A)
∂

∂xn
f (x∗) =

MX
m=1

μ∗m
∂

∂xn
gm (x

∗)+
KX
k=1

λ∗k
∂

∂xn
hk (x

∗) , ∀ n = 1, . . . , N

(B) λ∗khk (x
∗) = 0 ∀ k = 1, . . . ,K & gm (x

∗) = 0, ∀ m = 1, . . . ,M .

which implies complementary slackness, i.e.,

λ∗k > 0⇒ hk (x
∗) = 0 and hk (x∗) < 0 ⇒ λ∗k = 0
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For UMP

max
x∈RL

u (x) s.t. − xc ≤ 0, c = 1, . . . , L ; μc

LX
c=1

pcxc − w ≤ 0, k = 1, . . . ,K ; λ

Form the Lagrangian fn:

L (x, μ, λ) = u (x)−
LX
c=1

μc (−xc)− λ

Ã
LX
c=1

pcxc −w

!
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K-T FONC

(A)
∂

∂xc
u (x∗) = −μ∗c + λ∗pc,

(B) μ∗c > 0⇒ x∗c = 0 & x∗c > 0⇒ μ∗c = 0

λ∗ > 0⇒
LX
c=1

pcx
∗
c = w &

LX
c=1

pcx
∗
c < w⇒ λ∗ = 0

v (p,w) = L (x∗, μ∗, λ∗)

= u (x∗) +
LX
c=1

μ∗cx
∗
c − λ∗

Ã
LX
c=1

pcx
∗
c − w

!
= u (x∗)
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For EMP

max
x∈RL

−
LX
c=1

pcxc s.t. − xc ≤ 0, c = 1, . . . , L ; μc

u− u (x) ≤ 0, k = 1, . . . ,K ; γ

Form the Lagrangian fn:

Z (x, μ, γ) = −
LX
c=1

pcxc −
LX
c=1

μc (−xc)− γ (u− u (x))
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K-T FONC

(A) pc = γ∗
∂

∂xc
u (x∗) + μ∗c ,

(B) μ∗c > 0⇒ x∗c = 0 & x∗c > 0⇒ μ∗c = 0

γ∗ > 0⇒ u (x∗) = u & u (x∗) > u⇒ γ∗ = 0

e (p, u) = −Z (x∗, μ∗, γ∗)

=

LX
c=1

pcx
∗
c −

LX
c=1

μ∗cx
∗
c + γ∗ (u− u (x∗)) =

LX
c=1

pcx
∗
c
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The Envelope Theorem

THEOREM For the problem

max
hxi

f (x; q) s.t. gm (x; q) = 0, for m = 1, . . . ,M

hk (x; q) ≤ 0, for k = 1, . . . ,K,
xn ≥ 0, for n = 1, . . . , N

Let

L (x, μ, λ; q) = f (x; q)−
MX
m=1

μmgm (x; q)−
KX
k=1

λkhk (x; q) .

And let (x∗, μ∗, λ∗) be a solution to the K-T FONCs, so that

v (q) = f (x∗, q) .
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The Envelope Theorem

Then

dv (q)

dq
=

∂L (x∗, μ∗, λ∗; q)
∂q

=
∂f (x∗; q)

∂q
−

MX
m=1

μ∗m
∂gm (x

∗; q)
∂q

−
KX
k=1

λ∗k
∂hk (x

∗; q)
∂q

.
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Proof of Envelope Theorem

By direct differentiation:-

dv (q)

dq
=

NX
n=1

∂f (x∗; q)
∂xn

dx∗n
dq

+
∂f (x∗; q)

∂q
But from K-T FONCs (A)

∂f (x∗; q)
∂xn

=

MX
m=1

μ∗m
∂gm (x

∗; q)
∂xn

+

KX
k=1

λ∗k
∂hk (x

∗; q)
∂xn

(1)

unless xn ≥ 0 constraint binds in which case x∗n = 0 & dx∗n/dq = 0.

So multiplying (1) by dx∗n/dq and summing over n leads to:

NX
n=1

∂f (x∗; q)
∂xn

dx∗n
dq

=

NX
n=1

"
MX
m=1

μ∗m
∂gm (x

∗; q)
∂xn

+

KX
k=1

λ∗k
∂hk (x

∗; q)
∂xn

#
dx∗n
dq

(2)
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Now from K-T FONCs (B) we have:

MX
m=1

μ∗mgm (x
∗; q) +

KX
k=1

λ∗khk (x
∗; q) ≡ 0 (3)

Differentiating (3) wrt q:

MX
m=1

∂μ∗m
∂q

gm (x
∗; q) +

MX
m=1

μ∗m
∂gm (x

∗; q)
∂q

+

NX
n=1

MX
m=1

μ∗m
∂gm (x

∗; q)
∂xn

dx∗n
dq

+

KX
k=1

∂λ∗k
∂q

hk (x
∗; q) +

KX
k=1

λ∗k
∂hk (x

∗; q)
∂q

+

NX
n=1

KX
k=1

λ∗k
∂hk (x

∗; q)
∂xn

dx∗n
dq

= 0 (4)
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The first term of the LHS is zero as gm (x
∗; q) = 0, and the fourth term

is also zero as recall by the complementary slackness conditions either hk
binds in which case hk (x

∗; q) = 0, or it is ‘slack’ in which case λ∗k = 0 and
∂λ∗k/∂q = 0.

Hence from (4)

MX
m=1

μ∗m
∂gm (x

∗; q)
∂q

+

KX
k=1

λ∗k
∂hk (x

∗; q)
∂q

= −
NX
n=1

MX
m=1

μ∗m
∂gm (x

∗; q)
∂xn

dx∗n
dq
−

NX
n=1

KX
k=1

λ∗k
∂hk (x

∗; q)
∂xn

dx∗n
dq

(5)
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So combining (2) and (5) we obtain:

NX
n=1

∂f (x∗; q)
∂xn

dx∗n
dq

= −
MX
m=1

μ∗m
∂gm (x

∗; q)
∂q

−
KX
k=1

λ∗k
∂hk (x

∗; q)
∂q

and hence the desired result:

dv (q)

dq
=

∂f (x∗; q)
∂q

−
MX
m=1

μ∗m
∂gm (x

∗; q)
∂q

−
KX
k=1

λ∗k
∂hk (x

∗; q)
∂q

.
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Applications of the Envelope Theorem.
(a) Roy’s Identity :

xc (p,w) = −∂v (p,w) /∂pc
∂v (p,w) /∂w

Proof: By the envelope theorem

∂v (p,w)

∂pc
=

∂

∂pc
L (x∗, μ∗, λ∗; p,w)

=
∂

∂pc

"
u (x∗) +

LX
c=1

μ∗cx
∗
c − λ∗

Ã
LX
c=1

pcx
∗
c − w

!#
= −λ∗x∗c

&
∂v (p,w)

∂w
=

∂

∂w
L (x∗, μ∗, λ∗; p,w)

=
∂

∂w

"
u (x∗) +

LX
c=1

μ∗cx
∗
c − λ∗

Ã
LX
c=1

pcx
∗
c − w

!#
= λ∗
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(b) Shephard’s Lemma

hc (p, u) =
∂e (p, u)

∂pc

Proof: By the envelope theorem

∂e (p, u)

∂pc
= − ∂

∂pc
Z (x∗, μ∗, γ∗; p, u)

=
∂

∂pc

"
LX
c=1

pcx
∗
c −

LX
c=1

μ∗cx
∗
c + γ∗ (u− u (x∗))

#
= x∗c
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(c) Slutsky Equation: Obtained by differentiating w.r.t pk the identity

hc (p, u) ≡ xc (p, e (p, u))

∂hc (p, u)

∂pk
=

∂xc (p,w)

∂pk
+
∂xc (p,w)

∂w
× ∂e (p, u)

∂pk

=
∂xc (p,w)

∂pk
+
∂xc (p,w)

∂w
xk (p,w) , where w = e (p, u) .

Or in Matrix notation

Dph (p, u)| {z }
L×L

= Dpx (p,w)| {z }
L×L

+ [Dwx (p,w)]
T| {z }

L×1
x (p,w)

T| {z }
1×L
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