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1.2 Utility Maximization Problem (UMP)
(MWG 2.D, 2.E; Kreps 2.2) <me§(>u(x) st.pr<wandz >0
=

For a cts preference relation represented by a cts utility fn, u (+):

1. The UMP has at least one solution for all strictly positive prices
and non-negative levels of income.
2. If x is a solution of the UMP for given p and w, then x is also a solution
for (ap, aw) for any positive scalar a.
ie. z(p,w) =z (ap,aw) [Homogeneity of degree 0 of demand.]
3. If in addition we assume preferences are locally non-satiated
then z being a solution of the UMP implies >, pyxs = w.

4. If in addition we assume preferences are convex (i.e. u is quasi-concave)
then the set of solutions x (p, w) to the UMP is a convex set.

5. If preferences are strictly convex then the solution to the UMP is unique
and z (p,w) is a continuous function of p and w.
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1.3 The Indirect Utility Function

Assume that u (+) is a cts fn that represents locally non-satiated preferences.
The indirect utility fn v (p, w) is:-

1. homogeneous of degree zero in p and w
ie. v(p,w)=wv(ap,aw) for all a >0

2. strictly increasing in w
3. non-increasing in p

4. quasi-convex in p and w, that is

v(ap+[1—a]p,aw+[1 —a]w') <max[v(p,w),v(p,w)]
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1.4 The Expenditure Minimization Problem (EMP)

For a cts preference relation represented by a cts utility function, u (+):

1. The EMP has at least one solution for all strictly positive prices &
u > u(0).

2. If z is a solution of the EMP for given p and w,
then z is also a solution for (ap,w) for any positive scalar a.

i.e. h(p,u) = h(ap,u) [Homogeneity of degree 0 in prices.]

3. If in addition we assume preferences are convex (i.e. u is quasi-concave)
then the set of solutions h (p,u) to the EMP is a convex set.

4. |If preferences are strictly convex then the solution to the EMP is unique
and h (p,u) is a continuous function of p and wu.
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Properties of the Expenditure Function

Assume that u (+) is a cts fn that represents locally non-satiated preferences.
The expenditure function e (p, u) is:-

1. homogeneous of degree one in p

ie. e(p,u) =ae(p,u) foralla >0

2. strictly increasing in u
3. non-decreasing in p

4. concave in p, that is

e(ap+[1—alp’u) > ae(pu)+ (1 -a)e(p,u)
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1.5 UMP & EMP with Derivatives

Constrained Optimatization and the Kuhn-Tucker Conditions

(reference: MWG appendix M.K; Kreps Appendix A)

Problem
max f (z)
st. gm(x) = 0,m=1,...,M
he(w) < 0,k=1,... K
Form the Lagrangian function:- M K
LX) =f(2) =D fongm (&) = > ehi (x)
m=1 k=1
5
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THEOREM (Assuming the constraint qualification is satisfied) For
(x*, u*, A*) to be a solution to the above constrained optimization
problem, (z*, u*, \*) must satisfy

(i) %ﬁ(m*,u*,)\*) =0foralln=1,...,N

(i) L(z*, p* s \*)=f(z*)and A\, >0, forallk=1,..., K




S.Grant ECON501

(i) and (ii) can be re-expressed as the Kuhn-Tucker FONCs for a maximum:

) <N S,
(A)é?_:cn (z ):mZ:l/ima—xngm(fU )+;)‘ka_xnhk(x ), Vn=1,...,N
(B) Mihi (z*) = OVEk=1,.... K & g (z*)=0,Ym=1,...,M.

which implies complementary slackness, i.e.,

A > 0= hi(z*)=0and hy(z*) <0 = A, =0
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For UMP

max u (x) st. —x¢<0,0=1,...,L; u,
zeRL

L
Zpgl‘g—’w < 0, k=1,...,K; A
(=1

Form the Lagrangian fn:

L L
Lz, A) =u(m) =Yy (—me) — A (me - UJ>
/=1
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K-T FONC

0 * * *
(A) o (%) = —py + XN'pe,

(B) py >0=>2;, =0& 2, >0=p; =0

L L
)\*>O:>Zpg:c’£:w& Zpgx2<w:>>\*20
=1 £=1

v(p,w) = L(x*p*\)

L L
= wu(z")+ Z,u}f:z:’g — A" (Zpgﬂ:}‘ — w) =u(x")
=1 =1
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For EMP

max — x st. —x,<0,¢=1,...,L;
i Z_:Pee AR 3 My

u—u(x) < 0, k=1,....K;~

Form the Lagrangian fn:

Z (x, 11,7) me ZW —x¢) — 7 (u—u(2))

10
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K-T FONC

*a * *
() pe= (e i
(B) py >0=>2;, =0& 2, >0=p; =0

YV >0=uz")=u&u(z*) >u=~v"=0

6(p7 U) = —Z (I'*,/J/*,’Y*)
L L L
= > pewp =Y i+ (w—u(z) =) pe;
/=1 /=1 /=1
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The Envelope Theorem

THEOREM For the problem

max f (x;q) st. gm(xz;9)=0,form=1,...,M

()
hi(xz;q) <0, fork=1,..., K,
Tp >0, forn=1,...,N
Let

M K
L, 20) = F(@50) = >t (T30) = Y Ahi (w39) -
m=1 k=1

And let (z*, p*, \*) be a solution to the K-T FONCs, so that

v(q) = f(z%q).

12
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The Envelope Theorem
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Proof of Envelope Theorem

By direct differentiation:-
dv (q)

of (z*;q)dzx],

of (z*;9)
or, dq +

dq

dq
But from K-T FONCs (A)

M
8gm
axn Z Hm

unless x,, > 0 constraint blnds in which case x

N
)
n=1

K

*
n

So multiplying (1) by dz} /dq and summing over n leads to:

;q)dx}

(1)

= 0 & dazn/dq = 0.

Of (a7 L Ogm (2% Ohy, (
Zlax 5 szg q Z)\kkn

1 q)
dq

()
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Now from K-T FONCs (B) we have:

M
m=1

Differentiating (3) wrt g¢:

NE
SIS

K K N K
Ny oo O (z%9) Oy (27, g) dar,
—|—Z aqhk(maq)+z>‘k dq +ZZ>\k o0x, dq
_ 0 (4)
15
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The first term of the LHS is zero as g,, (z*;¢q) = 0, and the fourth term
is also zero as recall by the complementary slackness conditions either hy
binds in which case hy (x*;q) =0, or it is ‘slack’ in which case A\;, = 0 and

0Ny, /0q = 0.

Hence from (4)

16
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So combining (2) and (5) we obtain:

i ,qd:c i (9gm x5 q) ZAkahk *1q)

and hence the desired result:

dv(g) _0f(@%a) 5 *agmu*;q)_i NCIRERT)
dq dq ™" q Foag

m=1 k=1
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Applications of the Envelope Theorem.
(a) Roy’s Identity:
v (p7 ’U}) /apE

ze (pyw) = ov (p,w) /Ow

Proof: By the envelope theorem

o (p,w) 0 ;
apg - apeﬁ( 7/”1/ 7>\ 7p7 )
a L L
= 5 |u (™) + Zu}‘xz — A\ (Zpgﬂ?e — w)] = -\
be =1 =1
ov (p,w 0 kK
&% = 8_/;(53,#7)\72771@
a L
/=1

18
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(b) Shephard’s Lemma

Proof: By the envelope theorem

de (p,u) 0
iy o (=™, 1", 7" p, u)
5 [ L
= o | D_pei — Y i+ (u—u(a")
Pe |y =1
= mz
19
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(c) Slutsky Equation: Obtained by differentiating w.r.t py the identity

he (p,u) = x4 (p, e (p,u))

ahﬁ (p7 U) _ ail',‘g (pa w) + (9334 (p7 w) « Oe <p7 ’U,)
Op, Opi, ow Ipi,
Oz (p,w) | Oz (p,w) _
= o, + B Lk (p,w), where w =e(p,u).

Or in Matrix notation

?%h(pful::f%ﬂﬁpawl+iﬂ9w$(PawﬂT§(anOT

>

' '

o TV
LxL LXxL Lx1 1xL
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