

Consumption Set $X \subset \mathbb{R}^L$

3

ECON501

1.1.2 Preferences

(see MWG 3.B-C)

Can derive from \succsim two other relations:

1. STRICT PREFERENCE

 $x \succ y \Leftrightarrow x \succeq y \text{ and } \mathsf{NOT}(y \succeq x)$

2. INDIFFERENCE

 $x \sim y \ \Leftrightarrow \ x \succsim \ y \text{ and } \ y \succsim x$

S.Grant

Rationality Assumptions

(i) completeness: for all $x, y \in X$

```
either x \succeq y or y \succeq x (or both)
```

(*ii*) *transitivity*: for all $x, y, z \in X$

```
\text{if } x \succsim \ y \text{ and } \ y \succsim z \text{ then } x \succsim z \\
```

A preference relation that satisfies completeness and transitivity is often referred to as a *rational* preference relation or a *preference ordering*.

Desirability Assumptions

(*iii*) monotonicity: if $y \gg x$ then $y \succ x$

- implicit assumption of free disposal
- rules out satiation of *all* commodities

(iii') strong monotonicity: if $y \ge x$ and $y \ne x$ then $y \succ x$

(iii'') local non-satiation: for all $x \in X$ and all $\varepsilon > 0$ there exists y such that

$$|y-x| < \varepsilon$$
 and $y \succ x$

• rules out "thick" indifference curves.

EXAMPLE Sumptions **EXAMPLE** EXAMPLE SET THE SET OF THE SET OF

5

- decreasing relative marginal satisfaction for any two commodities
- formal expression of primitive inclination of economic agent's preference for diversification

Exercise: Give an economically interpretable example with two commodities where preferences are *not* convex.

(iv) strict convexity: for all x, y, z in X, with $y \neq z$

if
$$y \succeq x$$
 and $z \succeq x$ then $\alpha y + (1 - \alpha) z \succ x$

for any α in (0,1).

S.Grant

ECON501

7

Representation

A (quasi-concave) function $u : X \to \mathbb{R}$ always generates a (convex) preference ordering.

i.e.
$$u(x) \ge u(y) \Rightarrow x \succeq y$$

 $(u(\alpha x + (1 - \alpha)y) \ge \min\{u(x), u(y)\})$

Obs: Suppose $u(\cdot)$ generates \succeq , then for *any* increasing function $T : \mathbb{R} \to \mathbb{R}, V(x) \equiv T(u(x))$ also generates the *same* preference ordering.

i.e. $u(x) \ge u(y) \Leftrightarrow x \succeq y \Leftrightarrow V(x) \ge V(y)$

• Properties of utility functions which are *invariant* to increasing transformations are called *ordinal*.

- e.g. convexity, monotonicity

9

ECON501

When can preferences be represented by a utility fn?

Obs: Even with every assumption made so far, a preference ordering need not be representable by a utility function.

Example: Lexiographic Ordering.

Take L = 2 and define

$$x \succeq y$$
 if either $x_1 > y_1$
or $x_1 = y_1$ and $x_2 \ge y_2$

Exercise: Verify the lexiographic ordering satisfies strong monotonicity and strict convexity.

S.Grant

Continuity Assumption

(v) Preference relation \succsim is *continuous* if the "at-least-as-good-as" relation \succsim is preserved under limits. That is, for any sequence $(x^n,y^n)_{n=1}^\infty$ for which $x^n \to x$ and $y^n \to y$

if for all n, $x^n \succeq y^n$, then $x \succeq y$.

Obs: Above definition is equivalent to requiring \succeq^x and \preceq^x are both closed and \succ^x and \prec^x are both open for all $x \in X$.

PUNCHLINE

Theorem 1: Following are equivalent for a rational preference relation \succeq .

- $(i) \succeq$ is continuous.
- (*ii*) There exists a *continuous* $u(\cdot)$ that represents \succeq .

Obs: Result is true in considerable generality.

For monotonic preferences there is simple proof.

Theorem 2: Let \succeq be a rational and continuous preference relation represented by $u(\cdot)$. Then:

1. $u\left(\cdot\right)$ is (strictly) increasing $\Leftrightarrow \succeq$ satisfies (strong) monotonicity.

2. $u(\cdot)$ is (strictly) quasiconcave $\Leftrightarrow \succeq$ is (strictly) convex.

Recall:

1. strict quasi-concavity of $u\left(\cdot\right)$ requires

$$u\left(y\right)\geq u\left(x\right)\Rightarrow u\left(\alpha x+\left(1-\alpha\right)y\right)>u\left(x\right) \text{ for any }\alpha\in\left(0,1\right).$$

2. strict convexity of \succsim requires

$$y \succeq x \Rightarrow \alpha x + (1 - \alpha) y \succ x$$
 for any $\alpha \in (0, 1)$.

S.Grant

ECON501

11

1.1.3 Feasible Set - Walrasian (Competitive) Budget Set

$$p = \left(egin{array}{c} p_1 \\ dots \\ p_L \end{array}
ight) \in \mathbb{R}^L$$
 (usually assume $p_\ell > 0$)

• prices quoted publicly

- principle of completeness or universality of markets

• prices beyond influence of any particular economic agent

S.Grant

Consumer faces two types of constraints

- physical or environmental
 - embodied in definition of consumption set \boldsymbol{X}

• economic constraints

- we abstract from all but two
- 1. price vector p, given by market
- 2. agent's wealth w > 0

$$\mathcal{B}_{p,w} = \{ x \in X \mid p.x \equiv p_1 x_1 + \ldots + p_L x_L \le w \}$$

13

ECON501

S.Grant

1.1.4 Behavioral Assumption:- Preference Maximization

$$\mathcal{C}(\mathcal{B}_{p,w}) \equiv x(p,w)$$
$$\equiv \{x \in \mathcal{B}_{p,w} \mid x \succeq y \text{ for all } y \in \mathcal{B}_{p,w}\}$$