3. PRODUCTION THEORY

Ref: MWG Chapter 5

Productive units - "firms"

- corporations, other legally recognized businesses
- productive possibilities of individuals or households
- potential productive units that are never actually organized.

"Black box" – able to transform inputs into outputs.

ECON501

Menu of all possible production vectors constitutes Y, the production set.

a) Transformation frontier $Y = \{y \in \mathbb{R}^L \mid F\left(y\right) \leq 0\}$

F(y) = 0 means y element of boundary of Y.

$$\mathsf{MRT}_{\ell k}\left(\bar{y}\right) = \frac{\partial F\left(\bar{y}\right) / \partial y_{\ell}}{\partial F\left(\bar{y}\right) / \partial y_{k}}$$

Notice

$$\frac{\partial F\left(\bar{y}\right)}{\partial y_{k}}\frac{dy_{k}}{dy_{\ell}}+\frac{\partial F\left(\bar{y}\right)}{\partial y_{\ell}}=0\text{ so, }\frac{dy_{k}}{dy_{\ell}}=-\mathsf{MRT}_{\ell k}\left(\bar{y}\right)$$

b) Production function. q = f(z)

$$Y = \left\{ (-z_1, \dots - z_{L-1}, q) \mid \begin{array}{c} q - f(z_1, \dots, z_{L-1}) \le 0, \\ z_{\ell} \ge 0, \ \ell = 1, \dots L - 1 \end{array} \right\}$$

Holding level of output fixed:

$$\mathsf{MRTS} = \frac{\partial f\left(\bar{z}\right)/\partial z_{\ell}}{\partial f\left(\bar{z}\right)/\partial z_{k}}$$

additional amount of input k that must be used to keep output fixed at $\bar{q} = f(\bar{z})$, when amount of input ℓ decreased marginally.

3.2 Properties of Production Sets (see pp 130-155)

- 1. free disposal
- 2. non-increasing returns to scale
- 3. non-decreasing RTS
- 4. constant RTS

3

S.Grant ECON501

3.3 Profit Maximization

Profit Max. Pblm (PMP) $\max_{y \in Y} \ p.y$ or $\max_{y} \ p.y$ s.t. $F\left(y\right) \leq 0$

Profit function $\pi(p) = \max_{y \in Y} p.y$

Supply correspondence $y\left(p\right)=\left\{ y\in Y\mid p.y=\pi\left(p\right)\right\}$

Ex. 3.1

$$\begin{array}{rcl} Y & = & \left\{ y \in \mathbb{R}^2 \mid y_1 + y_2 \leq 0, \ y_1 \leq 0 \right\} \\ \pi \left(p \right) & = & \left\{ \begin{array}{rcl} 0 & \text{if } p_2 \leq p_1 \\ \infty & \text{if } p_2 > p_1 \end{array} \right. \\ y \left(p \right) & = & \left\{ \begin{array}{rcl} 0 & \text{if } p_2 \leq p_1 \\ \left\{ y \in \mathbb{R}^2 \mid y_2 = - \ y_1 \geq 0 \right\} & \text{if } p_2 = p_1 \\ \text{undefined} & \text{if } p_2 > p_1 \end{array} \right. \end{array}$$

4

First order approach

(i) Transformation frontier

$$\max_{y} \ p.y \text{ s.t. } F\left(y\right) \leq 0 \Rightarrow \mathcal{L} = p.y - \lambda F\left(y\right)$$
 FONC $y_{\ell}: p_{\ell} = \lambda \frac{\partial F\left(y^{*}\right)}{\partial y_{\ell}}$

or in matrix notation

$$p = \lambda \nabla F(y^*)$$

(ii) Production function

$$\max_{z \ge 0} pf(z) - w.z$$

FONC
$$z_{\ell}: p \frac{\partial f(z^*)}{\partial z_{\ell}} \leq w_{\ell} \ (=w_{\ell}, \text{ if } z_{\ell}^* > 0)$$

or in matrix notation

$$p\nabla f\left(z^{*}\right)\leq w \text{ and } \left(p\nabla f\left(z^{*}\right)-w\right).z^{*}=0$$

5

S.Grant ECON501

Properties of the Profit Function

Given Y is closed and satisfies free disposal.

- 1. $\pi\left(p\right)$ is homogeneous of degree one in p, i.e. $\pi\left(\alpha p\right)\equiv\alpha\pi\left(p\right)$ \forall $\alpha>0$
- 2. $\pi(p)$ is convex in p
- 3. y(p) is homogenous of degree zero.
- 4. If Y is convex, then
 - (a) y(p) is a convex set for all p
 - (b) $Y = \{ y \in \mathbb{R}^L : p.y \le \pi(p) \text{ for all } p \gg 0 \}$
- 5. If $Y = \{y \in \mathbb{R}^L : F(y) \leq 0\}$ and F is strictly convex, then y(p) is single-valued for all $p \gg 0$.
- 6. (Hotelling's lemma) If $y\left(p\right)$ is single-valued at $p=\bar{p}$, then $\pi\left(\cdot\right)$ is differentiable at \bar{p} and $\nabla\pi\left(\bar{p}\right)=y\left(\bar{p}\right)$
- 7. If $y\left(\cdot\right)$ is a fn differentiable at \bar{p} , then $D_{p}\,y\left(\bar{p}\right)=\pi_{pp}\left(\bar{p}\right)$ is a symmetric and positive semidefinite matrix with

$$D_p y(\bar{p}) \bar{p} = 0$$

3.4 Cost Minimization

Implication of π -max: no way to produce same amount of outputs at lower total input cost. I.e. cost minimization is necessary condition for π -max.

- 1. Leads to no. of results and construction that are technically useful.
- 2. When firm is *not* a price-taker in output market, no longer use profit fn for analysis. But if price-taker in input markets, results flowing from cost minimization problem (CMP) still valid.

Single output case:- CMP and cost function

$$c\left(w,q\right)=\min_{z>0}\ w.z\ \mathrm{s.t.}\ f\left(z\right)\geq q$$

Solution

 $z\left({w,q} \right)$ — conditional factor demand correspondence

7

S.Grant ECON501

First order approach

$$\max_{z \geq 0} -w.z \text{ s.t. } q - f\left(z\right) \leq 0 \Rightarrow \mathcal{Z} = -w.z - \gamma \left(q - f\left(z\right)\right)$$

$$\text{FONC } z_{\ell} : w_{\ell} \geq \gamma \frac{\partial f\left(z^{*}\right)}{\partial z_{\ell}} \left(= \gamma \frac{\partial f\left(z^{*}\right)}{\partial z_{\ell}} \text{ if } z_{\ell}^{*} > 0 \right)$$

Or in matrix notation

$$w \ge \gamma \nabla f(z^*)$$
 and $(w - \gamma \nabla f(z^*)).z^* = 0$

Notice, from FONC

$$\frac{\partial f\left(z^{*}\right)/\partial z_{\ell}}{\partial f\left(z^{*}\right)/\partial z_{k}} \equiv \mathsf{MRTS}_{\ell k} = \frac{w_{\ell}}{w_{k}}$$

As usual, Lagrange multiplier γ may be interpreted as the marginal value of "tightening" the constraint $f(z^*) \geq q$. Hence

$$\gamma = \frac{\partial}{\partial q} c\left(w, q\right)$$

is the marginal cost of production.

Properties of Cost Function

- 1. c(w,q) is homogeneous of degree one in w and non-decreasing in q.
- 2. c(w,q) is a concave function of w.
- 3. If the sets

$$\{z \ge 0 : f(z) \ge q\}$$

are convex for every $q \geq 0$, then

$$Y = \{(-z, q) : w \cdot z \ge c(w, q) \text{ for all } w \gg 0\}$$

4. If $\{z \ge 0 : f(z) \ge q\}$ is convex (respectively, strictly convex), then z(w,q) is a convex set (respectively, single-valued).

9

S.Grant ECON501

5. (Shephard's lemma) If $z\left(\bar{w},\bar{q}\right)$ is single-valued, then $c\left(\bar{w},\bar{q}\right)$ is differentiable wrt w at $\left(\bar{w},\bar{q}\right)$ and

$$\nabla_w c\left(\bar{w}, \bar{q}\right) = z\left(\bar{w}, \bar{q}\right)$$

6. If $z\left(w,q\right)$ is differentiable wrt w at (\bar{w},\bar{q}) , then

$$D_w z (\bar{w}, \bar{q}) = D_{ww} c (\bar{w}, \bar{q})$$

is a symmetric and negative semi-definite matrix with

$$D_w z(\bar{w}, \bar{q}) \bar{w} = 0$$

- 7. If f(z) is homogeneous of degree 1 (i.e. exhibits CRS) then c(w,q) and z(w,q) are homogeneous of degree 1 in q.
- 8. If f(z) is concave, then c(w,q) is a convex function of q (in particular, marginal cost is non-decreasing in q).

3.5 Geometry of Cost & Supply in Single-Output Case

(MWG pp143-147).

11

S.Grant ECON501

3.6 Aggregation.

J production units Y^1,\ldots,Y^J For each Y^j , let $\pi^j\left(p\right)$ and $y^j\left(p\right)$ be the assoc. profit function and supply correspondence.

Aggregate supply correspondence

$$\begin{array}{lcl} y\left(p\right) & = & \displaystyle\sum_{j=1}^{J} y^{j}\left(p\right) \\ \\ & = & \left\{y \in \mathbb{R}^{L} \mid y = \displaystyle\sum_{j=1}^{J} y^{j} \text{ for some } y^{j} \in y^{j}\left(p\right)\right\} \end{array}$$

If each $y^{j}(.)$ is a differentiable function,

then $D_{p}y^{j}\left(p\right)$ is a symmetric PSD matrix, hence

$$D_{p}y\left(p
ight)=\sum_{j=1}^{J}D_{p}y^{j}\left(p
ight)$$
 is a symmetric PSD matrix.

and we have an aggregate law of supply

$$(p-\widehat{p}) \cdot (y(p)-y(\widehat{p})) \ge 0$$

ECON501 S.Grant

3.6.1 Representative Producer. Given J production units Y^1,\ldots,Y^J , define aggregate production set

$$\begin{array}{lcl} Y & = & Y^1 \; + \; \dots \; + \; Y^J \\ \\ & = & \left\{ y \in \mathbb{R}^L \; | \; y = \sum_{j=1}^J y^j \; \text{for some} \; y^j \in Y^J \right\} \end{array}$$

Let $\pi^{*}\left(p\right)$ and $y^{*}\left(p\right)$ be the profit fn and supply correspondence associated with the aggregate production set.

Proposition 3.6.1 For all $p \gg 0$ we have:

1.
$$\pi^*(p) = \sum_{j=1}^J \pi^j(p)$$

1.
$$\pi^*(p) = \sum_{j=1}^{J} \pi^j(p)$$

2. $y^*(p) = \sum_{j=1}^{J} y^j(p)$.

Decentralization Result: to find solution of aggregate profit max. problem for given prices p, it is enough to add solutions of corresponding individual problems.

Implication in single-output case:

If firms are max profits facing output price p and factor prices w, then their supply behavior maximizes aggregate profits. Hence if

$$q = \sum_{j=1}^{J} q^j$$

is aggregate output produced by firms, then total cost of production equals $c\left(w,q\right)$, the value of the aggregate cost function. Thus, allocation of production of output level q among the firms is cost minimizing.

15

S.Grant ECON501

3.6.2 Efficiency

A netput vector $y \in Y$ is *efficient* if there is no $\widehat{y} \in Y$ s.t. $\widehat{y} \geq y \& \widehat{y} \neq y$.

Proposition (1st Fundamental Welfare Theorem - production side) If $y \in Y$ is profit maximizing for some $p \gg 0$, then y is efficient.

Proof. Suppose the contrary. That is, suppose there is $\widehat{y} \in Y$ s.t. $\widehat{y} \geq y$ and $\widehat{y} \neq y$. Because $p \gg 0$, it follows that $p.\widehat{y} > p.y$, contradicting assumption that y is profit maximizing.

Remark: FFWT is valid even if production set is non-convex.

Proposition (2 nd Fundamental Welfare Theorem - production side) Suppose Y is convex, closed and satisfies free-disposal property. Then every efficient production $y \in Y$ is a profit-maximizing production for some non-zero price vector p > 0.

Proof. Application of separating hyperplane theorem for convex sets.

3.7 Price-taking and Profit Maximizing.

- Assumption of preference maximization is *natural* objective for theory of the consumer.
- Profit maximization not so self-evident.
 - What about sale revenue? market share?
 - size of firm? size of workforce?
- Ideally objective of the firm should emerge from objectives of individuals who control it.
 - firm with single owner has well-defined objective.
 - * only issue: whether this objective coincides with profit max.
 - multiple owners potential for conflicting objectives.

17

S.Grant ECON501

- Q. When is profit-maximization unanimously agreed upon objective?
- A. Suppose firm described by production set Y and owned by consumers. Let θ^i be share of firm owned by consumer i, where $\sum_i \theta^i = 1$. If production decision is $y \in Y$, then i with utility fn u^i achieves utility level

$$\max_{x^i \in X} \ u^i \left(x^i \right) \ \text{s.t.} \ p.x^i \leq w^i + \theta^i p.y^i$$

Follows at any given price vector p, consumer-owners unanimously prefer firm to implement production plan $\widehat{y} \in Y$ instead of $y \in Y$ whenever

$$p.\widehat{y} > p.y$$

Notice we are assuming:

1. prices fixed and do not depend on actions of the firm.

- 2. profits are not uncertain.
- 3. managers can be controlled by owners.

10

S.Grant ECON501

- 1. If prices depend upon production of firm, objective of owners may depend on their tastes as consumers.
 - **e.g.** Firm produces good 2 using good 1 as input according to production function f(.). Normalize $p_1=1$ suppose $p_2=p(q)$. Suppose further that owner's only wealth is from profits of firm.
 - (a) if care only about consumption of good 1

$$\max_{z>0} p(f(z)) f(z) - z$$

(b) if care only about consumption of good 2

$$\max_{z \ge 0} \frac{p(f(z)) f(z) - z}{p(f(z))}$$

 $2\ \mbox{problems}$ in general have different solutions.

2. If output of firms is random, crucial to distinguish between whether output is sold *before* or *after* uncertainty is resolved.

- (a) if after, then π uncertain at time of production decision, so risk preferences relevant.
- (b) if before (e.g. futures market for agricultural products), then risk borne by buyer,

so unanimity of profit maximization goes through.