S.Grant ECON501

COMPETITIVE MARKETS

(Preview for Next Semester)

• Elements:

$$\begin{array}{rcl} I \text{ consumers } i &=& 1, \dots, I \\ \\ J \text{ firms } j &=& 1, \dots, J \\ \\ L \text{ goods } \ell &=& 1, \dots, L \\ \\ u^i : X^i \to \mathbb{R} \text{ where } X^i \subset \mathbb{R}_+^L \end{array}$$

- $u: \mathcal{A} \to \mathbb{R}$ where $\mathcal{A} \subset \mathbb{R}_+$
- $\succsim_{i} \subset X^{i} \times X^{i}$, where $X^{i} \subset \mathbb{R}^{L}$, represented by utility fn $u^{i}\left(\cdot\right)$
- $\omega = (\omega_1, \dots, \omega_L) \ge 0$, economy-wide *endowment*
- $Y^j \subset \mathbb{R}^L$, production set for firm j.

1

S.Grant ECON501

If $(y^1, \ldots, y^J) \in Y^1 \times \ldots \times Y^J$ then total (net) amount of good ℓ available to the economy is $\omega_\ell + \sum_j y_\ell^j$.

DEFN: An economic allocation $(x^1,\ldots,x^I;y^1,\ldots,y^J)$ is a specification of a consumption vector $x^i\in X^i$ for each consumer $i=1,\ldots,I$ and a production vector $y^j\in Y^j$ for each firm $j=1,\ldots,J$. The allocation is feasible if

$$\sum_{i=1}^{I} x_{\ell}^{i} \leq \omega_{\ell} + \sum_{j} y_{\ell}^{j}, \text{ for } \ell = 1, \dots, L.$$

Pareto Optimality A feasible allocation $(x^1,\ldots,x^I;y^1,\ldots,y^J)$ is Pareto optimal (or Pareto efficient) if there is no other feasible allocation $(\hat{x}^1,\ldots,\hat{x}^I;\hat{y}^1,\ldots,\hat{y}^J)$ such that $u^i\,(\hat{x}^i)\geq u^i\,(x^i)$ for all $i=1,\ldots,I$ and $u^i\,(\hat{x}^i)>u^i\,(x^i)$ for some i.

2

S.Grant ECON501

Competitive Equilibria in Private Ownership Economy

To above description of the economy specify:

1. initial allocation of endowments

$$\begin{array}{rcl} \omega^i &=& \left(\omega^i_1,\ldots,\omega^i_L\right) \\ \\ \text{where } \sum_{i=1}^I \omega^i_\ell &=& \omega_\ell \text{ for } \ell=1,\ldots,L. \end{array}$$

2. consumer i's claims to profits of firms:- θ^{ij} is consumer i's share of profits accruing to firm j, where

where
$$\sum_{i=1}^I heta^{ij} = 1$$
 for $j=1,\ldots,J$.

3

S.Grant ECON501

DEFN: The allocation $(x^1, \ldots, x^I; y^1, \ldots, y^J)$ and price vector $p \in \mathbb{R}_{++}^L$ constitutes a *competitive* (or *Walrasian*) equilibrium if the following conditions are satisfied:-

(i) Profit Maximization: For each firm j, y^j solves

$$\max_{\hat{y}^j \in Y^j} p.y^j$$

(ii) Utility Maximization: For each consumer i, x^i solves

$$\max_{\hat{x}^i \in X^i} u^i \left(x^i \right) \text{ s.t. } p.x^i \leq p.\omega^i + \sum_{j=1}^J \theta^{ij} \left(p.y^j \right).$$

(iii) Market Clearing: For each good $\ell=1,\ldots,L$

$$\sum_{i=1}^{I} x_{\ell}^{i} = \omega_{\ell} + \sum_{j} y_{\ell}^{j}.$$

S.Grant ECON501

Walras' Law

If the allocation $(x^1,\ldots,x^I;y^1,\ldots,y^J)$ and price vector $p\gg 0$ satisfy market clearing for all goods $\ell\neq k$ and if every consumer's budget constraint is satisfied with equality, so that $p.x^i\leq p.\omega^i+\sum_{j=1}^J\theta^{ij}\left(p.y^j\right)$ for all i, then the market for good k also clears.

<u>Proof:</u> Adding up the consumer's budget constraints over the I consumers and rearranging terms, yields

$$\sum_{\ell \neq k} p_{\ell} \left(\sum_{i=1}^{I} x_{\ell}^{i} - \omega_{\ell} - \sum_{j} y_{\ell}^{j} \right) = -p_{k} \left(\sum_{i=1}^{I} x_{k}^{i} - \omega_{k} + \sum_{j} y_{k}^{j} \right)$$

By market clearing in all goods $\ell \neq k$, LHS of this equation is equal to zero. Thus RHS must be equal to zero as well. Since $p_k > 0$ we have market clearing in good k, as desired.

ŗ

S.Grant ECON501

First Fundamental Theorem of Welfare Economics

If preferences are locally non-satiated, and if (x, y, p) is a Walrasian equilibrium, then the allocation (x, y) is Pareto optimal.

<u>Proof:</u> Consider another allocation (\hat{x}, \hat{y}) that Pareto dominates (x, y). That is, $u^i(\hat{x}^i) \geq u^i(x^i)$ for all $i = 1, \ldots, I$, with *strict* inequality for at least one individual.

By utility maximization,

$$u^{i}\left(\hat{x}^{i}\right) > u^{i}\left(x^{i}\right) \Rightarrow p.\hat{x}^{i} > p.x^{i} = p.\omega^{i} + \sum_{i=1}^{J} \theta^{ij}\left(p.y^{j}\right)$$

Futhermore, by local non-satiation

$$u^{i}\left(\hat{x}^{i}\right) \ge u^{i}\left(x^{i}\right) \Rightarrow p.\hat{x}^{i} \ge p.x^{i} = p.\omega^{i} + \sum_{j=1}^{J} \theta^{ij}\left(p.y^{j}\right)$$

(To see why, suppose not, that is suppose $p.\hat{x}^i < p.x^i$ for some i, then by ℓ ns, $\exists \ \tilde{x}^i$ s.t. $p.\tilde{x}^i < p.x^i$ and $u^i\left(\tilde{x}^i\right) > u^i\left(\hat{x}^i\right) \geq u^i\left(x^i\right)$, contradicting that x^i was utility maximizing.)

ECON501

Hence we have

$$\sum_{i=1}^{I} p.\hat{x}^{i} > \sum_{i=1}^{I} p.x^{i} = p.\omega + \sum_{i} p.y^{i}.$$

Moreover, because y^j is profit-maximizing for firm j at prices p we have

$$p.\omega + \sum_{j} p.y^{j} \ge p.\omega + \sum_{j} p.\hat{y}^{j}$$

Thus,

$$\sum_{i=1}^{I} p.\hat{x}^i > p.\omega + \sum_{j} p.\hat{y}^j.$$

But then (\hat{x}, \hat{y}) cannot be feasible since

$$\sum_{i=1}^{I} \hat{x}^i = \omega + \sum_{j} \hat{y}^j \Rightarrow \sum_{i=1}^{I} p.\hat{x}^i = p.\omega + \sum_{j} p.\hat{y}^j.$$

ECON501 S.Grant

FFWT Proof (in words) At any feasible allocation (\tilde{x}, \tilde{y}) , total cost of consumption bundles $(\tilde{x}^1,\ldots,\tilde{x}^I)$ evaluated at prices p, must be equal to social wealth evaluated at those prices, namely

 $p.\omega + \sum^{J} p.\tilde{y}^{j}.$

Now, since preferences are ℓns the allocation (\hat{x}, \hat{y}) Pareto dominates (x, y)then total cost of consumption bundles $(\hat{x}^1, \dots, \hat{x}^I)$ must exceed total cost of equilibrium consumption allocation, i.e.,

$$p.\left(\sum_{i=1}^{I}\hat{x}^i\right) > p.\left(\sum_{i=1}^{I}x^i\right) = p.\omega + \sum_{j=1}^{J}p.y^j$$
 Since by market clearing:
$$\sum_{i=1}^{I}x^i = \omega + \sum_{j=1}^{J}y^j$$

But by profit maximization, there are no technically feasible production plans that attain a value of social wealth at prices in excess of $p.\omega + \sum_{i=1}^{J} p.y^{j}$.