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2. CHOICE UNDER UNCERTAINTY
Ref: MWG Chapter 6

Subjective Expected Utility Theory

Elements of decision under uncertainty

Under uncertainty, the DM is forced, in effect, to gamble.

A right decision consists in the choice of the best possible bet,

not simply in whether it is won or lost after the fact.

Two essential characteristics:

1. A choice must be made among various possible courses of actions.

2. This choice or sequence of choices will ultimately lead to some

consequence, but DM cannot be sure in advance what this consequence

will be, because it depends not only on his or her choice or choices but

on an unpredictable event.
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Simple and Compound Lotteries

• X = (finite) set of outcomes (what DM cares about).

• L set of simple lotteries (prob. distributions on X with finite support).

A lottery L in L is a fn L : X → R, that satisfies following 2 properties:

1. L (x) ≥ 0 for every x ∈ X.

2.
P

x∈X L (x) = 1.

Examples: TakeX = {−1000,−900, . . . ,−100, 0, 100, 200, . . . , 900, 1000}

1. A ‘fair’ coin is flipped and the individual wins $100 if heads, wins nothing

if tails

L1 (x) =

½
1/2 if x ∈ {0, 100}
0 if x /∈ {0, 100}
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2. Placing a bet of $100 on black on a (European) roulette wheel

L2 (x) =

⎧⎨⎩ 18/37 if x = 100

19/37 if x = −100
0 if x /∈ {−100, 100}

3. A pack of 52 playing cards is shuffled. Win $200 if the top card is

an Ace, lose $500 if the top card is the Queen of Spades otherwise no

change in wealth.

L3 =

⎧⎪⎪⎨⎪⎪⎩
1/13 if x = 200

47/52 if x = 0

1/52 if x = −500
0 if x /∈ {−500, 0, 200}
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4. A ‘balanced’ die is rolled. Win $100 if number on top is even & win

nothing otherwise.

L4 (x) ≡ L1 (x) =

½
1/2 if x ∈ {0, 100}
0 if x /∈ {0, 100}

A compound lottery is a two-stage lottery in which the outcomes from the

first-stage randomization are themselves lotteries.

Formally, a compound lottery is a fn C : L→ R, that satisfies the following
2 properties:

1. C (L) ≥ 0 for every L ∈ L, with strict inequality for only finitely many
lotteries L.

2.
P

L∈LC (L) = 1.
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Example: A ‘fair’ coin is flipped and the individual then plays out L2 if

heads and L3 if tails.

C1 (L) =

½
1/2 if L ∈ {L2, L3}
0 if L /∈ {L2, L3}

REDUCTION: ‘Multiply through’ 1st-stage prob. to reduce a compound

lottery to a one-stage lottery. I.e., if α1, . . . , αn are the prob. of the possible

2nd-stage lotteries L1, . . . , Ln then the reduction is the lottery

α1L1 + α2L2 + . . .+ αnLn

Example cont.: Reduction of C1 (L) is lottery R1 = (1/2)L2 + (1/2)L3,

i.e., R1 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/26 if x = 200

9/37 if x = 100

47/104 if x = 0

19/74 if x = −100
1/104 if x = −500
0 otherwise

5

S.Grant ECON501

Consequentialism: assume individual indifferent between

any compound lottery and the associated reduced lottery.

We can also see that the set of lotteries is a ‘mixture space’.

If L & L0 are lotteries in L then for any α in [0, 1], αL+ (1− α)L0

is the lottery L00 (x) = αL (x) + (1− α)L0 (x)
To see that L00 is indeed a lottery, notice that:

1. L00 (x) = αL (x) + (1− α)L0 (x) ≥ 0, for every x ∈ X.

2.
P

x∈X L00 (x) =
P

x∈X [αL (x) + (1− α)L0 (x)]

= α
P

x∈X L (x) + (1− α)
P

x∈X L0 (x) = α+ (1− α) = 1.

Further notation: for any x ∈ X,

let δx denote the degenerate lottery (x, 1) ∈ L, i.e.
δx (y) =

½
1 if y = x

0 if y 6= x

Hence for any lottery L in L we have L =Px∈X L (x) δx.

6



S.Grant ECON501

“States-of-nature” model

• X = set of outcomes (what DM cares about)

• L set of simple lotteries
(probability distributions on X with finite support).

• S = set of states

(uncertain factors beyond the control of the DM)

• A = set of acts (what the DM controls or chooses)

• % defined over acts
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Formally, we will take A to be the set of functions

a : S → L

with finite range. That is, any act a may be expressed in a form

[L1, E1; . . . ;Ln, En]

where {E1, . . . , En} forms a finite partition of the state space.
An act that maps each state to a degenerate lottery may be viewed as a

purely subjectively uncertain act.

[δx1, E1; . . . ; δxn, En]
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Set of acts is also a ‘mixture space’.

For any pair of acts a and a0, αa + (1− α) a0 is the act a00 : S → L, for
which

a00 (s) = αa (s) + (1− α) a0 (s)

State: complete specification of the past, present and future configuration

of the world, except for those details that are part of the DM’s actions.

Often can analyze situation in terms of a finite partition of the state space

{E1, . . . , En}

Set of mutually exclusive and exhaustive events.

9

S.Grant ECON501

Example: Jones faces choice between current employment or doing MBA.

• Jones has the choice between two possible ‘acts’: leave and stay.
• Three outcomes
1. x = stay in current employment

2. 0 = incur costs of undertaking MBA, but after graduating only get

job similar to the one he had before.

3. M = incur costs of undertaking MBA and after graduating land

extremely well-paying and exciting job.

• The event E in which Jones obtains the high-paying job if he has chosen

to leave.

leave (s) =

½
δM if s ∈ E

δm if s /∈ E
stay (s) =

½
δx if s ∈ E

δx if s /∈ E
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Whether we have leave % stay or stay % leave would seem to depend on

two separate considerations:

1. How good Jones feels the chances of obtaining the high-paying job would

have to be to make it worth his while to leave his current employment;

2. How good in his opinion the chances of obtaining the high-paying job

actually are.

Jones’s answers to questions of type 1 quantify his personal preference for

x relative to 0 and M .

Jones’s answers to questions of type 2 quantify his personal judgement

concerning the relative strengths of the factors that favor and oppose

certain events.

If he behaves reasonably then he should choose the solution of the problem

which is consistent with his personal preference and his personal judgement.
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1. How might Jones quantify his preference for x relative to 0 and M?
2. How might Jones quantify his judgement for likelihood of event E?

We know δM Â δx Â δm, so set U (δM) := 1 and U (δm) := 0.

Let ux be the unique probability for which

uxδM + (1− ux) δm ∼ δx.

Let πE be the unique probability for which

πEδM + (1− πE) δm ∼
∙
δM on E

δm on S −E

¸
and set

U (stay) : = uxU (δM) + (1− ux)U (δm)

U (leave) : = πEU (δM) + (1− πE)U (δm)

Hence we have

leave % stay ⇔ πE ≥ ux
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Principles of Choice Behavior.
Axioms for %.
For ease of exposition, suppose there exists two outcomes M and m,

such that δM Â δm and for all x ∈ X, δM % δx % δm.

Ordering Axiom % is complete and transitive.

Archimedean Axiom For any three acts, a, a0 and a00, for which a0 Â a

Â a00, there exists numbers α and β, both in (0, 1) such that

αa0 + (1− α) a00 Â a Â βa0 + (1− β) a00.

The Archimedean axiom rules out a lexicographic preference for certainty.

Thus it plays a similar role to that played by the continuity axiom in decision

making under certainty: ruling out discontinuous ‘jumps’ in the preference

relation.
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Example (MWG p171) Suppose

M = ‘beautiful & uneventful trip by car’

x = ‘staying at home’

m = ‘death by car crash’.

Set a0 := δM , a := δx and a
00 := δm. If

a0 Â a Â a00

then there exists sufficiently large α < 1, such that

αa0 + (1− α) a00 Â a

i.e. [M,α;m, 1− α] Â [x, 1]

REMARK From people’s revealed behavior, axiom is quite sound

empirically.
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Independence Axiom: For all a, a0, a00 ∈ A and λ ∈ (0, 1) we have
a % a0⇔ λa+ (1− λ)a00 % λa0 + (1− λ)a00

Embodies a ‘substitution’ principle and a reduction of compound lotteries

principle.

E.g. Akbar has free international round-trip ticket and is planning to use

it for his winter vacation. His preferred destinations, Hawaii and Madrid,

are sold out. So he makes a reservation for Cancun. He can also choose to

be wait-listed for Hawaii or Madrid, but not both. If he decides to get on

the waiting list for Hawaii, then he has a fifty percent chance of ultimately

getting a reservation otherwise he will go to Cancun. If he decides to get on

the waiting list for Madrid, however, the situation is completely different.

First, the probability of getting a reservation for Madrid is only 1/4 rather

than 1/2 and secondly, to get on this waiting list, he has to drop his

reservation for Cancun. If he doesn’t get a reservation for Madrid, there is

a 2/3 chance he can get back his reservation for Cancun, but there is a 1/3

chance he will only be able to get a reservation for Toronto.
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X = {C[ancun], H[awii], M[adrid], T[oronto]}. Suppose for Akbar,
δM Â δH Â δC Â δT

Hence by independence

1

2
δM +

1

2
δC Â 1

2
δH +

1

2
δC

Furthermore preference between

1

2
δH +

1

2
δC and

1

4
δM +

3

4

µ
2

3
δC +

1

3
δT

¶
is determined by preference between

δH and
1

2
δM +

1

2
δT .

Since
1

4
δM +

3

4

µ
2

3
δC +

1

3
δT

¶
=

1

4
δM +

1

4
δT +

1

2
δC

=
1

2

µ
1

2
δM +

1

2
δT

¶
+
1

2
δC
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Further notation: for any act a, any lottery L and any event E, let LEa

denote the act a0 where

a0 (s) =
½

L if s ∈ E

a (s) if s /∈ E

State-Independence Axiom: For any pair of lotteries L and L0, and
any event E, such that (δM)E (δm) Â δm,

L % L0⇔ LEa % L0Ea

The unconditional preference between any pair of lotteries is the same as

the preference between those lotteries conditional on any non-null event

having obtained.
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A function U : L→ R is affine, if for all L,L0 ∈ L and α ∈ [0, 1],

U (αL+ (1− α)L0) = αU (L) + (1− α)U (L0) .

Fact: If U : L→ R is affine, then there exists a function u : X → R such
that for all L = [x1, p1; . . . ;xm, pm], U (L) =

Pm
i=1 piu (xi) .
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The big result:
THEOREM: Suppose there exists two outcomes M and m, such that

δM Â δm and for all x ∈ X, δM % δx % δm. Then the following are

equivalent:

1. The preference relation % satisfies the Ordering, Archimedean,
Independence and State-Independence Axioms.

2. The preference relation % admits a subjective expected utility

representation. That is, there exists a unique probability measure π

and a unique affine function U : L → [0, 1], with U (δm) = 0 and

U (δM) = 1, such that for any pair of acts

a = [L1, E1; . . . ;Ln, En] & a0 = [L01, E
0
1; . . . ;Ln0, En0]

a % a0⇔
nX
i=1

π (Ei)U (Li) ≥
n0X
j=1

π
¡
E0j
¢
U
¡
L0j
¢

19
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Proof of Theorem:

(2) implies (1) (Exercise.)

(1) implies (2)

Preliminary Results The axioms imply that < exhibits the following

properties.

Mixture Monotonicity For any a, a0 ∈ A, such that a Â a0, and any
α ∈ (0, 1),

a Â αa+ (1− α) a0 Â a0

Proof of Mixture Monotonicity: By independence

a = αa+ (1− α) a Â αa+ (1− α) a0

and αa+ (1− α) a0 Â αa0 + (1− α) a0 = a. ¤
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Mixture Solvability For any a, a0, a00 ∈ A, for which a0 Â a Â a00, there
exists a unique α ∈ (0, 1) such that

αa0 + (1− α) a00 ∼ a

Proof of Mixture Solvability: Consider the sets

α+ = {α ∈ [0, 1] : αa0 + (1− α) a00 Â a} , and
α− = {α ∈ [0, 1] : a Â αa0 + (1− α) a00} .

From Mixture Monotonicity it follows that both α+ and α− are non-empty,
non-intersecting and connected subsets of [0, 1]. Moreover, the greatest

lower bound for α+ equals the least upper bound for α−. Denote this

number by ᾱ.

21
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Thus it must be the case that one of the following hold: (i) ᾱ ∈ α+ and

ᾱ /∈ α−, or (ii) ᾱ /∈ α+ and ᾱ ∈ α−, or (iii) ᾱ /∈ α+ and ᾱ /∈ α−. So first
suppose ᾱ ∈ α+ and ᾱ /∈ α−, that is,

ᾱa0 + (1− ᾱ) a00 Â a Â a00.

But then it follows that for any β in (0, 1), we have

a Â β (ᾱa0 + (1− ᾱ) a00) + (1− β) a00

= βᾱa0 + (1− βᾱ) a00 (since βᾱ ∈ α−)

a violation of the Archimedean axiom. By similar reasoning we also get a

violation of the Archimedean axiom if we assume ᾱ /∈ α+ and ᾱ ∈ α−.
Hence we must have ᾱ /∈ α+ and ᾱ /∈ α−, and hence by completeness we
have ᾱa0 + (1− ᾱ) a00 ∼ a, as required. ¤
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We are now in a position to show (1) implies (2), by explicitly constructing

the SEU-representation for %. We proceed by first deriving an Expected
Utility representation for the preference relation restricted to the set of

constant acts. That is, we construct the affine real-valued function U

defined on L. In the second step, we use this U to calibrate the decision

weights on events to construct the probability measure π defined on S, that

enables us to extend the representation to the entire set of acts.

23
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Step 1. Constructing the EU-Representation on % restricted to L
(the set of constant acts).

Set U (δM) := 1 and U (δm) := 0. For any x ∈ X set U (δx) := β, where,

by Mixture Solvability, β is the unique solution to βδM + (1− β) δm ∼ δx.

For any L =
Pm

i=1αiδxi ∈ L we can apply Independence and transitivity of
indifference (Ordering) m times to obtain

L ∼ α1 (U (δx1) δM + (1− U (δx1)) δm) +

mX
i=2

αiδxi

∼ · · · ∼
mX
i=1

αi (U (δxi) δM + (1− U (δxi)) δm)

=

Ã
mX
i=1

αiU (δxi)

!
δM +

Ã
1−

Ã
mX
i=1

αiU (δxi)

!!
δm
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Hence for any pair of constant acts L =
Pm

i=1αiδxi and L
0 =

Pm0
j=1 βjδxj,

transitivity of preference (Ordering) implies L % L0 iff

Ã
mX
i=i

αiU (δxi)

!
δM +

Ã
1−

Ã
mX
i=i

αiU (δxi)

!!
δm

%

⎛⎝ m0X
j=i

βjU
¡
δxj
¢⎞⎠ δM +

⎛⎝1−
⎛⎝ m0X

j=1

βjU
¡
δxj
¢⎞⎠⎞⎠ δm.

But by Mixture Monotonicity this holds if and only if

Ã
mX
i=i

αiU (δxi)

!
≥
⎛⎝ m0X

j=i

βjU
¡
δxj
¢⎞⎠ .
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Hence the affine function

U

Ã
mX
i=1

αiδxi

!
=

mX
i=1

αiU (δxi)

represents % restricted to the set of constant acts.
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Step 2. Constructing the SEU-Representation for %.

Fix any a in A and express it in a form [L1, E1; . . . ; Ln, En], where

Li % Li+1, for all i = 1, . . . , i − 1. For each i = 1, . . . , n, it follows from

Step 1 that there is a unique number U (Li) ∈ [0, 1], for which

Li ∼ U (Li) δM + (1− U (Li)) δm.

For each i = 1, . . . , n − 1, it follows from Mixture Solvability that there

exists a unique πi satisfying

[δM on E1 ∪ . . . ∪Ei; δm on Ei+1 ∪ . . . ∪En] ∼ πiδM + (1− πi) δm.

From Mixture Monotonicity it follows 1 ≥ U (L1) ≥ . . . ≥ U (Ln) ≥ 0.
From State-independence it follows 0 ≤ π1 ≤ . . . ≤ πn−1 ≤ 1.

27

S.Grant ECON501

By applying State-independence n times we obtain

a =

⎡⎣ L1 on E1
... ...

Ln on En

⎤⎦ ∼
⎡⎣ U (L1) δM + (1− U (L1)) δm on E1

... ...

U (Ln) δM + (1− U (Ln)) δm on En

⎤⎦

= (1− U (L1))

⎡⎢⎢⎢⎢⎣
δm on E1
δm on E2
... ...

δm on En−1
δm on En

⎤⎥⎥⎥⎥⎦+(U (L1)− U (L2))

⎡⎢⎢⎢⎢⎣
δM on E1
δm on E2
... ...

δm on En−1
δm on En

⎤⎥⎥⎥⎥⎦+· · ·

+(U (Ln−1)− U (Ln))

⎡⎢⎢⎢⎢⎣
δM on E1
δM on E2
... ...

δM on En−1
δm on En

⎤⎥⎥⎥⎥⎦+ U (Ln)

⎡⎢⎢⎢⎢⎣
δM on E1
δM on E2
... ...

δM on En−1
δM on En

⎤⎥⎥⎥⎥⎦
28
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By applying Independence n− 1 times we have a is indifferent to:

(1− U (L1)) δm + (U (L1)− U (L2)) [π1δM + (1− π1) δm]

+ (U (L2)− U (L3)) [π2δM + (1− π2) δm]

+ . . .+ (U (Ln−1)− U (Ln)) [πn−1δM + (1− πn−1) δm] + U (Ln) δM

=

"
n−1X
i=1

(U (Li)− U (Li+1))πi + U (Ln)

#
δM

+

"
1− U (Ln)−

n−1X
i=1

(U (Li)− U (Li+1))πi

#
δm.

29
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Hence if we take any given pair of acts

a =

⎡⎣ L1 on E1
... ...

Ln on En

⎤⎦ and a0 =

⎡⎣ L01 on E01
... ...

L0n0 on E0n0

⎤⎦
and apply the above methods, it follows from Mixture Monotonicity that

a % a0 if and only if"
n−1X
i=1

(U (Li)− U (Li+1))πi + U (Ln)

#

≥
⎡⎣n0−1X
j=1

¡
U
¡
L0j
¢− U

¡
L0j+1

¢¢
π0j + U (L0n0)

⎤⎦
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Hence, if we set, π (∅) := 0, π (S) := 1 and π ¡∪ij=1Ei

¢
:= πi then we have

established that % can be represented by the functional

V

⎛⎝⎡⎣ L1 on E1
... ...

Ln on En

⎤⎦⎞⎠ =

n−1X
i=1

(U (Li)− U (Li+1))π
¡∪ij=1Ej

¢
+ U (Ln)

= U (L1)π (E1) +

nX
i=2

(U (Li))
¡
π
¡∪ij=1Ej

¢− π
¡∪i−1j=1Ej

¢¢
.

Just remains to show that π (.) to be additive.

That is, for any pair of events A and B,

π (A ∪B) = π (A) + π (B)− π (A ∩B) .
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To see that this indeed holds, consider

1

2

∙
δM on A ∪B
δm on S − (A ∪B)

¸
+
1

2

∙
δM on A ∩B
δm on S − (A ∩B)

¸

∼ 1

2
(π (A ∪B) δM + (1− π (A ∪B)) δm)

+
1

2
(π (A ∩B) δM + (1− π (A ∩B)) δm) (applying Independence twice)

=
1

2
[π (A ∪B) + π (A ∩B)] δM +

µ
1− π (A ∪B) + π (A ∩B)

2

¶
δm
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But

1

2

∙
δM on A ∪B
δm on S − (A ∪B)

¸
+
1

2

∙
δM on A ∩B
δm on S − (A ∩B)

¸

=
1

2

⎡⎣ δM on A

δm on B

δm on S − (A ∪B)

⎤⎦+ 1
2

⎡⎣ δm on A

δM on B

δm on S − (A ∪B)

⎤⎦
∼ 1

2
(π (A) δM + (1− π (A)) δm) +

1

2
(π (B) δM + (1− π (B)) δm)

=
1

2
(π (A) + π (B)) δM +

1

2
(1− π (A)− π (B)) δm
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So by Mixture Monotonicity it follows

π (A ∪B) + π (A ∩B) = π (A) + π (B), as required.

Hence we have established that % can be represented by the functional

V

⎛⎝⎡⎣ L1 on E1
... ...

Ln on En

⎤⎦⎞⎠
= U (L1)π (E1) +

nX
i=2

(U (Li))
¡
π
¡∪ij=1Ej

¢− π
¡∪i−1j=1Ej

¢¢
= π (E1)U (L1) + π (E2)U (L2) + . . .+ π (En)U (Ln) .
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Utility Paradoxes and Rationality.
1. Violations of the ‘Expected Utility Rule’

1
1 million

Choice Problem 1
0.89

0.01

1 million

0

1 million

Choice Problem 2

0.89

0.11

0

5 million

0.9

0.1

0.1

0 

5 million

v.

v.

u (1) > 0.01u (0) + 0.89u (1) + 0.1u (5)

⇒ u (1) > 1
11
u (0) + 10

11
u (5)

and

0.89u (0) + 0.11u (1)

< 0.9u (0) + 0.1u (5)

⇒ u (1) < 1
11
u (0) + 10

11
u (5)
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1
1

1 

Choice Problem 1'

0.89

0.11

0

5

1/11
1

1
10.89

10/11

0.11

1
0

1 

Choice Problem 2'

0.89

0.11

0

5

1/11
1

1
00.89

10/11

0.11

v.

v.
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Are preferences linear in probabilities?

δx

δy δz
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Can Beliefs Always be Represented by Probabilities?

Urn contains 90 balls. 30 are red. The other sixty are black and white balls

in unknown proportions.

Acts

EVENT a b a0 b0

Red 100 0 100 0

White 0 100 0 100

Black 0 0 100 100

a Â b⇒

π (Red)U (δ100) + (1− π (Red))U (δ0)

> π (White)U (δ100) + (1− π (White))U (δ0)

I.e. π (Red) > π (White)
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Can Beliefs Always be Represented by Probabilities?

Urn contains 90 balls. 30 are red. The other sixty are black and white balls

in unknown proportions.

Acts

EVENT a b a0 b0

Red 100 0 100 0

White 0 100 0 100

Black 0 0 100 100

b0 Â a0⇒

π (White or Black)U (δ100) + (1− π (White or Black))U (δ0)

> π (Red or Black)U (δ100) + (1− π (Red or Black))U (δ0)

I.e. π (Red) < π (White)

39

S.Grant ECON501

Multiple Priors Expected Utility
Fix D ⊂ ∆. For any pair of acts

a = [L1, E1; . . . ;Ln, En] and a
0 = [L01, E

0
1; . . . ;Ln0, En0]

a % a0⇔

min
π∈D

Ã
nX
i=1

π (Ei)U (Li)

!
≥ min

π∈D

⎛⎝ n0X
j=1

π
¡
E0j
¢
U
¡
L0j
¢⎞⎠ .

For example with

D = {(πR, πB, πW ) ∈ ∆ : πR = 1/3, πW ∈ {1/6, 1/3, 1/2}}

V (a) = 1/3 > 1/6 = V (b)

V (b0) = 2/3 > 1/2 = 1/3 + 1/6 = V (a0)
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Role of Expected Utility in Economics

• Economists use EU as an element of models of choice in uncertain
environments

— asset allocation, insurance, saving, investment

— any alternative needs to be capable of being incorporated

into more complicated models of market behavior.

• All models are approximations. Challenge is to show departures from
maximizing EU have consequences that are not minor for issues under

examination.

— e.g. departures from EU that are not systematic may not bias

predictions of market behavior or outcomes.
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• Growing body of literature showing some key features of insurance and
financial markets can be better explained by models that allow for

systematic departures from EU.

— But always easier to obtain better fit by adding parameters to model.

— Unclear, whether out of sample performance is superior to simpler

models based on EU.

• For rest of course, we will assume DMs are subjective expected utility
maximizers. Likely to be better approximation to real world behavior:

— the more situation is a repeated event

— the more significant the choice is for individual wealth

— the more alternative gambles under consideration can be viewed as

“local deviations” from each other.
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