1

ECON501

S.Grant

2. CHOICE UNDER UNCERTAINTY

Ref: MWG Chapter 6

Subjective Expected Utility Theory

Elements of decision under uncertainty

Under uncertainty, the DM is forced, in effect, to gamble.

A right decision consists in the choice of the best possible bet, not simply in whether it is won or lost after the fact.

Two essential characteristics:

- 1. A choice must be made among various possible courses of actions.
- 2. This choice or sequence of choices will ultimately lead to some *consequence*, but DM cannot be sure in advance what this consequence will be, because it depends not only on his or her choice or choices but on an unpredictable *event*.

S.Grant

Simple and Compound Lotteries

- X = (finite) set of outcomes (what DM cares about).
- \mathcal{L} set of simple lotteries (prob. distributions on X with finite support). A lottery L in \mathcal{L} is a $fn \ L : X \to \mathbb{R}$, that satisfies following 2 properties:
 - 1. $L(x) \ge 0$ for every $x \in X$.
 - 2. $\sum_{x \in X} L(x) = 1.$

Examples: Take $X = \{-1000, -900, \dots, -100, 0, 100, 200, \dots, 900, 1000\}$

1. A 'fair' coin is flipped and the individual wins \$100 if heads, wins nothing if tails

 $L_1(x) = \begin{cases} 1/2 & \text{if } x \in \{0, 100\} \\ 0 & \text{if } x \notin \{0, 100\} \end{cases}$

2. Placing a bet of \$100 on black on a (European) roulette wheel

$$L_2(x) = \begin{cases} 18/37 & \text{if } x = 100\\ 19/37 & \text{if } x = -100\\ 0 & \text{if } x \notin \{-100, 100\} \end{cases}$$

3. A pack of 52 playing cards is shuffled. Win \$200 if the top card is an Ace, lose \$500 if the top card is the Queen of Spades otherwise no change in wealth.

$$L_3 = \begin{cases} 1/13 & \text{if } x = 200\\ 47/52 & \text{if } x = 0\\ 1/52 & \text{if } x = -500\\ 0 & \text{if } x \notin \{-500, 0, 200\} \end{cases}$$

3

S.Grant

ECON501

4. A 'balanced' die is rolled. Win \$100 if number on top is even & win nothing otherwise.

$$L_4(x) \equiv L_1(x) = \begin{cases} 1/2 & \text{if } x \in \{0, 100\} \\ 0 & \text{if } x \notin \{0, 100\} \end{cases}$$

A *compound lottery* is a two-stage lottery in which the outcomes from the first-stage randomization are themselves lotteries.

Formally, a compound lottery is a fn $\mathbf{C}: \mathcal{L} \to \mathbb{R}$, that satisfies the following 2 properties:

1. $\mathbf{C}(L) \geq 0$ for every $L \in \mathcal{L}$, with strict inequality for only finitely many lotteries L.

2.
$$\sum_{L \in \mathcal{L}} \mathbf{C}(L) = 1.$$

ECON501

S.Grant

Example: A 'fair' coin is flipped and the individual then plays out L_2 if heads and L_3 if tails.

$$\mathbf{C}_{1}(L) = \begin{cases} 1/2 & \text{if } L \in \{L_{2}, L_{3}\} \\ 0 & \text{if } L \notin \{L_{2}, L_{3}\} \end{cases}$$

REDUCTION: 'Multiply through' 1^{st} -stage prob. to reduce a compound lottery to a one-stage lottery. I.e., if $\alpha_1, \ldots, \alpha_n$ are the prob. of the possible 2^{nd} -stage lotteries L_1, \ldots, L_n then the reduction is the lottery

$$\alpha_1 L_1 + \alpha_2 L_2 + \ldots + \alpha_n L_n$$

Example cont.: Reduction of $C_1(L)$ is lottery $R_1 = (1/2) L_2 + (1/2) L_3$,

i.e.,
$$R_1(x) = \begin{cases} 1/26 & \text{if } x = 200 \\ 9/37 & \text{if } x = 100 \\ 47/104 & \text{if } x = 0 \\ 19/74 & \text{if } x = -100 \\ 1/104 & \text{if } x = -500 \\ 0 & \text{otherwise} \end{cases}$$

5

ECON501

S.Grant

Consequentialism: assume individual indifferent between any compound lottery and the associated reduced lottery. We can also see that the set of lotteries is a 'mixture space'. If L & L' are lotteries in \mathcal{L} then for any α in [0,1], $\alpha L + (1-\alpha) L'$

is the lottery
$$L''(x) = \alpha L(x) + (1 - \alpha) L'(x)$$

To see that L'' is indeed a lottery, notice that:

1.
$$L''(x) = \alpha L(x) + (1 - \alpha) L'(x) \ge 0$$
, for every $x \in X$.
2. $\sum_{x \in X} L''(x) = \sum_{x \in X} [\alpha L(x) + (1 - \alpha) L'(x)]$
 $= \alpha \sum_{x \in X} L(x) + (1 - \alpha) \sum_{x \in X} L'(x) = \alpha + (1 - \alpha) = 1.$

Further notation: for any $x \in X$, let δ_x denote the *degenerate* lottery $(x, 1) \in \mathcal{L}$, i.e.

$$\delta_x \left(y \right) = \begin{cases} 1 & \text{if } y \equiv x \\ 0 & \text{if } y \neq x \end{cases}$$

Hence for any lottery L in \mathcal{L} we have $L = \sum_{x \in X} L(x) \, \delta_x$.

6

"States-of-nature" model

- *X* = set of outcomes (what DM cares about)
- \mathcal{L} set of simple lotteries (probability distributions on X with finite support).
- S = set of states (uncertain factors beyond the control of the DM)
- A = set of acts (what the DM controls or chooses)
- \succeq defined over acts

S.Grant

ECON501

7

Formally, we will take A to be the set of functions

 $a: S \to \mathcal{L}$

with *finite range*. That is, any act a may be expressed in a form

$$[L_1, E_1; \ldots; L_n, E_n]$$

where $\{E_1, \ldots, E_n\}$ forms a *finite* partition of the state space.

An act that maps each state to a degenerate lottery may be viewed as a purely subjectively uncertain act.

$$[\delta_{x_1}, E_1; \ldots; \delta_{x_n}, E_n]$$

ECON501

Set of acts is also a 'mixture space'.

For any pair of acts a and $a', \ \alpha a + (1-\alpha) \, a'$ is the act $a'':S \to \mathcal{L},$ for which

 $a''(s) = \alpha a(s) + (1 - \alpha) a'(s)$

State: complete specification of the past, present and future configuration of the world, except for those details that are part of the DM's actions.

Often can analyze situation in terms of a finite partition of the state space

 $\{E_1,\ldots,E_n\}$

Set of mutually exclusive and exhaustive events.

<u>S.Grant</u> ECON501
<u>ECON501</u>
Example: Jones faces choice between current employment or doing MBA.
Jones has the choice between two possible 'acts': *leave* and *stay*.
Three outcomes *x* = stay in current employment
0 = incur costs of undertaking MBA, but after graduating only get job similar to the one he had before. *M* = incur costs of undertaking MBA and after graduating land extremely well-paying and exciting job.

• The event *E* in which Jones obtains the high-paying job if he has chosen to *leave*.

$$leave\left(s\right) = \left\{ \begin{array}{ll} \delta_{M} & \text{if } s \in E \\ \delta_{m} & \text{if } s \notin E \end{array} \right. stay\left(s\right) = \left\{ \begin{array}{ll} \delta_{x} & \text{if } s \in E \\ \delta_{x} & \text{if } s \notin E \end{array} \right.$$

11

ECON501

Whether we have $leave \succeq stay$ or $stay \succeq leave$ would seem to depend on two separate considerations:

- 1. How good *Jones feels* the chances of obtaining the high-paying job would have to be to make it worth his while to leave his current employment;
- 2. How good *in his opinion* the chances of obtaining the high-paying job actually are.

Jones's answers to questions of type 1 quantify his personal preference for x relative to 0 and M.

Jones's answers to questions of type 2 quantify his personal judgement concerning the relative strengths of the factors that favor and oppose certain events.

If he behaves *reasonably* then he should choose the solution of the problem which is *consistent* with his personal preference and his personal judgement.

S.Grant

1. How might Jones quantify his preference for x relative to 0 and M? 2. How might Jones quantify his judgement for likelihood of event E? We know $\delta_M \succ \delta_x \succ \delta_m$, so set $U(\delta_M) := 1$ and $U(\delta_m) := 0$.

Let u_x be the unique probability for which

$$\delta_x \delta_M + (1 - u_x) \,\delta_m \sim \delta_x.$$

Let π_E be the unique probability for which

$$\pi_E \delta_M + (1 - \pi_E) \, \delta_m \sim \left[\begin{array}{cc} \delta_M & \text{on } E \\ \delta_m & \text{on } S - E \end{array} \right]$$

and set

$$U(stay) := u_x U(\delta_M) + (1 - u_x) U(\delta_m)$$
$$U(leave) := \pi_E U(\delta_M) + (1 - \pi_E) U(\delta_m)$$

Hence we have

$$leave \succeq stay \Leftrightarrow \pi_E \ge u_x$$

Principles of Choice Behavior.

Axioms for \succeq .

For ease of exposition, suppose there exists two outcomes M and m, such that $\delta_M \succ \delta_m$ and for all $x \in X$, $\delta_M \succeq \delta_x \succeq \delta_m$.

 $Ordering \ Axiom \succeq$ is complete and transitive.

Archimedean Axiom For any three acts, a, a' and a'', for which $a' \succ a \succ a''$, there exists numbers α and β , both in (0,1) such that

 $\alpha a' + (1 - \alpha) a'' \succ a \succ \beta a' + (1 - \beta) a''.$

The Archimedean axiom rules out a *lexicographic* preference for certainty. Thus it plays a similar role to that played by the continuity axiom in decision making under certainty: ruling out discontinuous 'jumps' in the preference relation.

13

ECON501

S.Grant

Example (MWG p171) Suppose

M = 'beautiful & uneventful trip by car'

x = 'staying at home'

m = 'death by car crash'.

Set $a':=\delta_M$, $a:=\delta_x$ and $a'':=\delta_m$. If

 $a' \succ a \succ a''$

then there exists sufficiently large $\alpha < 1$, such that

 $\begin{array}{rcl} \alpha a' + (1-\alpha) \, a'' &\succ & a \\ \text{i.e.} & [M,\alpha;m,1-\alpha] &\succ & [x,1] \end{array}$

REMARK From people's *revealed behavior*, axiom is quite sound empirically.

Independence Axiom: For all $a, a', a'' \in A$ and $\lambda \in (0, 1)$ we have $a \succeq a' \Leftrightarrow \lambda a + (1 - \lambda)a'' \succeq \lambda a' + (1 - \lambda)a''$

Embodies a 'substitution' principle and a reduction of compound lotteries principle.

E.g. Akbar has free international round-trip ticket and is planning to use it for his winter vacation. His preferred destinations, Hawaii and Madrid, are sold out. So he makes a reservation for Cancun. He can also choose to be wait-listed for Hawaii or Madrid, but not both. If he decides to get on the waiting list for Hawaii, then he has a fifty percent chance of ultimately getting a reservation otherwise he will go to Cancun. If he decides to get on the waiting list for Madrid, however, the situation is completely different. First, the probability of getting a reservation for Madrid is only 1/4 rather than 1/2 and secondly, to get on this waiting list, he has to *drop* his reservation for Cancun. If he doesn't get a reservation for Madrid, there is a 2/3 chance he can get back his reservation for Cancun, but there is a 1/3 chance he will only be able to get a reservation for Toronto.

16

Further notation: for any act a, any lottery L and any event E, let $L_E a$ denote the act a' where

$$a'(s) = \begin{cases} L & \text{if } s \in E \\ a(s) & \text{if } s \notin E \end{cases}$$

State-Independence Axiom: For any pair of lotteries L and L', and any event E, such that $(\delta_M)_E(\delta_m) \succ \delta_m$,

$$L \succeq L' \Leftrightarrow L_E a \succeq L'_E a$$

The unconditional preference between any pair of lotteries is the same as the preference between those lotteries conditional on any non-null event having obtained.

17

S.Grant

ECON501

A function $U: \mathcal{L} \to \mathbb{R}$ is affine, if for all $L, L' \in \mathcal{L}$ and $\alpha \in [0, 1]$,

$$U(\alpha L + (1 - \alpha) L') = \alpha U(L) + (1 - \alpha) U(L').$$

Fact: If $U : \mathcal{L} \to \mathbb{R}$ is affine, then there exists a function $u : X \to \mathbb{R}$ such that for all $L = [x_1, p_1; \ldots; x_m, p_m]$, $U(L) = \sum_{i=1}^m p_i u(x_i)$.

The big result: THEOREM: Suppose there exists two outcomes M and m, such that $\delta_M \succ \delta_m$ and for all $x \in X$, $\delta_M \succsim \delta_x \succsim \delta_m$. Then the following are equivalent:

- 1. The preference relation \succsim satisfies the Ordering, Archimedean, Independence and State-Independence Axioms.
- 2. The preference relation \succeq admits a subjective expected utility representation. That is, there exists a unique probability measure π and a unique affine function $U: \mathcal{L} \to [0,1]$, with $U(\delta_m) = 0$ and $U\left(\delta_{M}
 ight)=1$, such that for any pair of acts

$$a = [L_1, E_1; \ldots; L_n, E_n]$$
 & $a' = [L'_1, E'_1; \ldots; L_{n'}, E_{n'}]$

$$a \succeq a' \Leftrightarrow \sum_{i=1}^{n} \pi\left(E_{i}\right) U\left(L_{i}\right) \geq \sum_{j=1}^{n'} \pi\left(E_{j}'\right) U\left(L_{j}'\right)$$

1	0
T	9

ECON501

S.Grant

Proof of Theorem:

- (2) implies (1) (Exercise.)
- (1) implies (2)
- **Preliminary Results** The axioms imply that \succ exhibits the following properties.

Mixture Monotonicity For any $a, a' \in A$, such that $a \succ a'$, and any $\alpha \in (0, 1),$

$$a \succ \alpha a + (1 - \alpha) a' \succ a'$$

Proof of Mixture Monotonicity: By independence

 $a = \alpha a + (1 - \alpha) a \succ \alpha a + (1 - \alpha) a'$ and $\alpha a + (1 - \alpha) a' \succ \alpha a' + (1 - \alpha) a' = a$.

Mixture Solvability For any $a, a', a'' \in A$, for which $a' \succ a \succ a''$, there exists a unique $\alpha \in (0, 1)$ such that

$$\alpha a' + (1 - \alpha) a'' \sim a$$

Proof of Mixture Solvability: Consider the sets

$$\begin{aligned} \alpha^{+} &= \{ \alpha \in [0,1] : \alpha a' + (1-\alpha) \, a'' \succ a \}, \text{ and} \\ \alpha^{-} &= \{ \alpha \in [0,1] : a \succ \alpha a' + (1-\alpha) \, a'' \}. \end{aligned}$$

From *Mixture Monotonicity* it follows that both α^+ and α^- are non-empty, non-intersecting and connected subsets of [0,1]. Moreover, the greatest lower bound for α^+ equals the least upper bound for α^- . Denote this number by $\bar{\alpha}$.

21

S.Grant

ECON501

Thus it must be the case that one of the following hold: (i) $\bar{\alpha} \in \alpha^+$ and $\bar{\alpha} \notin \alpha^-$, or (ii) $\bar{\alpha} \notin \alpha^+$ and $\bar{\alpha} \in \alpha^-$, or (iii) $\bar{\alpha} \notin \alpha^+$ and $\bar{\alpha} \notin \alpha^-$. So first suppose $\bar{\alpha} \in \alpha^+$ and $\bar{\alpha} \notin \alpha^-$, that is,

$$\bar{\alpha}a' + (1 - \bar{\alpha})a'' \succ a \succ a''.$$

But then it follows that for any β in (0,1), we have

$$a \succ \beta \left(\bar{\alpha}a' + (1 - \bar{\alpha}) a'' \right) + (1 - \beta) a''$$

= $\beta \bar{\alpha}a' + (1 - \beta \bar{\alpha}) a'' \text{ (since } \beta \bar{\alpha} \in \alpha^{-} \text{)}$

a violation of the Archimedean axiom. By similar reasoning we also get a violation of the Archimedean axiom if we assume $\bar{\alpha} \notin \alpha^+$ and $\bar{\alpha} \in \alpha^-$. Hence we must have $\bar{\alpha} \notin \alpha^+$ and $\bar{\alpha} \notin \alpha^-$, and hence by completeness we have $\bar{\alpha}a' + (1 - \bar{\alpha})a'' \sim a$, as required. We are now in a position to show (1) implies (2), by explicitly constructing the SEU-representation for \succeq . We proceed by first deriving an Expected Utility representation for the preference relation restricted to the set of constant acts. That is, we construct the affine real-valued function Udefined on \mathcal{L} . In the second step, we use this U to calibrate the decision weights on events to construct the probability measure π defined on S, that enables us to extend the representation to the entire set of acts.

23

S.Grant

ECON501

Step 1. Constructing the EU-Representation on \succeq restricted to \mathcal{L} (the set of *constant acts*).

Set $U(\delta_M) := 1$ and $U(\delta_m) := 0$. For any $x \in X$ set $U(\delta_x) := \beta$, where, by *Mixture Solvability*, β is the unique solution to $\beta \delta_M + (1 - \beta) \delta_m \sim \delta_x$. For any $L = \sum_{i=1}^m \alpha_i \delta_{x_i} \in \mathcal{L}$ we can apply *Independence* and transitivity of indifference (*Ordering*) m times to obtain

$$L \sim \alpha_1 \left(U\left(\delta_{x_1}\right) \delta_M + \left(1 - U\left(\delta_{x_1}\right)\right) \delta_m \right) + \sum_{i=2}^m \alpha_i \delta_{x_i}$$
$$\sim \cdots \sim \sum_{i=1}^m \alpha_i \left(U\left(\delta_{x_i}\right) \delta_M + \left(1 - U\left(\delta_{x_i}\right)\right) \delta_m \right)$$
$$= \left(\sum_{i=1}^m \alpha_i U\left(\delta_{x_i}\right)\right) \delta_M + \left(1 - \left(\sum_{i=1}^m \alpha_i U\left(\delta_{x_i}\right)\right)\right) \delta_m$$

Hence for any pair of constant acts $L = \sum_{i=1}^{m} \alpha_i \delta_{x_i}$ and $L' = \sum_{j=1}^{m'} \beta_j \delta_{x_j}$, transitivity of preference (*Ordering*) implies $L \succeq L'$ iff

$$\left(\sum_{i=i}^{m} \alpha_{i} U\left(\delta_{x_{i}}\right)\right) \delta_{M} + \left(1 - \left(\sum_{i=i}^{m} \alpha_{i} U\left(\delta_{x_{i}}\right)\right)\right) \delta_{m}$$
$$\succeq \quad \left(\sum_{j=i}^{m'} \beta_{j} U\left(\delta_{x_{j}}\right)\right) \delta_{M} + \left(1 - \left(\sum_{j=1}^{m'} \beta_{j} U\left(\delta_{x_{j}}\right)\right)\right) \delta_{m}$$

But by Mixture Monotonicity this holds if and only if

$\left(\sum_{i=i}^{m} \alpha_{i} U\left(\delta_{x_{i}}\right)\right)$	$) \geq 0$	$\left(\sum_{j=i}^{m'}\beta_{j}U\left(\delta_{x_{j}}\right)\right)$).
i=i	/	i = i	/

25

S.Grant

ECON501

Hence the affine function

$$U\left(\sum_{i=1}^{m} \alpha_i \delta_{x_i}\right) = \sum_{i=1}^{m} \alpha_i U\left(\delta_{x_i}\right)$$

represents \succsim restricted to the set of constant acts.

Step 2. Constructing the SEU-Representation for \succeq .

S.Grant

S.Grant

Fix any a in A and express it in a form $[L_1, E_1; \ldots; L_n, E_n]$, where $L_i \succeq L_{i+1}$, for all $i = 1, \ldots, i-1$. For each $i = 1, \ldots, n$, it follows from Step 1 that there is a unique number $U(L_i) \in [0, 1]$, for which

$$L_i \sim U(L_i)\,\delta_M + (1 - U(L_i))\,\delta_m.$$

For each i = 1, ..., n - 1, it follows from *Mixture Solvability* that there exists a unique π_i satisfying

$$[\delta_M \text{ on } E_1 \cup \ldots \cup E_i; \ \delta_m \text{ on } E_{i+1} \cup \ldots \cup E_n] \sim \pi_i \delta_M + (1 - \pi_i) \delta_m$$

From *Mixture Monotonicity* it follows $1 \ge U(L_1) \ge \ldots \ge U(L_n) \ge 0$.

From *State-independence* it follows $0 \le \pi_1 \le \ldots \le \pi_{n-1} \le 1$.

ECON501

27

By applying State-independence n times we obtain

$$a = \begin{bmatrix} L_1 & \text{on } E_1 \\ \vdots & \vdots \\ L_n & \text{on } E_n \end{bmatrix} \sim \begin{bmatrix} U(L_1) \,\delta_M + (1 - U(L_1)) \,\delta_m & \text{on } E_1 \\ \vdots & \vdots \\ U(L_n) \,\delta_M + (1 - U(L_n)) \,\delta_m & \text{on } E_n \end{bmatrix}$$

$$= (1 - U(L_1)) \begin{bmatrix} \delta_m & \text{on } E_1 \\ \delta_m & \text{on } E_2 \\ \vdots & \vdots \\ \delta_m & \text{on } E_n \end{bmatrix} + (U(L_1) - U(L_2)) \begin{bmatrix} \delta_M & \text{on } E_1 \\ \delta_m & \text{on } E_2 \\ \vdots & \vdots \\ \delta_m & \text{on } E_n \end{bmatrix} + \cdots$$

$$+ (U(L_{n-1}) - U(L_n)) \begin{bmatrix} \delta_M & \text{on } E_1 \\ \delta_M & \text{on } E_2 \\ \vdots & \vdots \\ \delta_M & \text{on } E_n \end{bmatrix} + U(L_n) \begin{bmatrix} \delta_M & \text{on } E_1 \\ \delta_M & \text{on } E_n \end{bmatrix}$$

28

By applying *Independence* n-1 times we have a is indifferent to:

$$(1 - U(L_1)) \,\delta_m + (U(L_1) - U(L_2)) \,[\pi_1 \delta_M + (1 - \pi_1) \,\delta_m] \\ + (U(L_2) - U(L_3)) \,[\pi_2 \delta_M + (1 - \pi_2) \,\delta_m] \\ + \dots + (U(L_{n-1}) - U(L_n)) \,[\pi_{n-1} \delta_M + (1 - \pi_{n-1}) \,\delta_m] + U(L_n) \,\delta_M$$

$$= \left[\sum_{i=1}^{n-1} \left(U(L_{i}) - U(L_{i+1})\right)\pi_{i} + U(L_{n})\right]\delta_{M} + \left[1 - U(L_{n}) - \sum_{i=1}^{n-1} \left(U(L_{i}) - U(L_{i+1})\right)\pi_{i}\right]\delta_{m}$$

ļ

ECON501

S.Grant

Hence if we take any given pair of acts

$$a = \begin{bmatrix} L_1 & \text{on } E_1 \\ \vdots & \vdots \\ L_n & \text{on } E_n \end{bmatrix} \text{ and } a' = \begin{bmatrix} L'_1 & \text{on } E'_1 \\ \vdots & \vdots \\ L'_{n'} & \text{on } E'_{n'} \end{bmatrix}$$

and apply the above methods, it follows from $\mathit{Mixture\ Monotonicity}$ that $a \succsim a'$ if and only if

$$\left[\sum_{i=1}^{n-1} \left(U\left(L_{i}\right) - U\left(L_{i+1}\right)\right) \pi_{i} + U\left(L_{n}\right)\right] \geq \left[\sum_{j=1}^{n'-1} \left(U\left(L'_{j}\right) - U\left(L'_{j+1}\right)\right) \pi'_{j} + U\left(L'_{n'}\right)\right]\right]$$

Hence, if we set, $\pi(\emptyset) := 0$, $\pi(S) := 1$ and $\pi(\bigcup_{j=1}^{i} E_i) := \pi_i$ then we have established that \succeq can be represented by the functional

$$V\left(\begin{bmatrix} L_{1} & \text{on } E_{1} \\ \vdots & \vdots \\ L_{n} & \text{on } E_{n} \end{bmatrix}\right) = \sum_{i=1}^{n-1} \left(U\left(L_{i}\right) - U\left(L_{i+1}\right)\right) \pi\left(\cup_{j=1}^{i} E_{j}\right) + U\left(L_{n}\right)$$
$$= U\left(L_{1}\right) \pi\left(E_{1}\right) + \sum_{i=2}^{n} \left(U\left(L_{i}\right)\right) \left(\pi\left(\cup_{j=1}^{i} E_{j}\right) - \pi\left(\cup_{j=1}^{i-1} E_{j}\right)\right).$$

Just remains to show that $\pi(.)$ to be additive.

That is, for any pair of events A and B,

$$\pi \left(A \cup B \right) = \pi \left(A \right) + \pi \left(B \right) - \pi \left(A \cap B \right).$$

31

ECON501

S.Grant

To see that this indeed holds, consider

$$\frac{1}{2} \begin{bmatrix} \delta_{M} & \text{on } A \cup B \\ \delta_{m} & \text{on } S - (A \cup B) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \delta_{M} & \text{on } A \cap B \\ \delta_{m} & \text{on } S - (A \cap B) \end{bmatrix}$$

$$\sim \frac{1}{2} (\pi (A \cup B) \delta_{M} + (1 - \pi (A \cup B)) \delta_{m})$$

$$+ \frac{1}{2} (\pi (A \cap B) \delta_{M} + (1 - \pi (A \cap B)) \delta_{m}) \text{ (applying Independence twice)}$$

$$=\frac{1}{2}\left[\pi\left(A\cup B\right)+\pi\left(A\cap B\right)\right]\delta_{M}+\left(1-\frac{\pi\left(A\cup B\right)+\pi\left(A\cap B\right)}{2}\right)\delta_{m}$$

But

$$\frac{1}{2} \begin{bmatrix} \delta_{M} & \text{on } A \cup B \\ \delta_{m} & \text{on } S - (A \cup B) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \delta_{M} & \text{on } A \cap B \\ \delta_{m} & \text{on } S - (A \cap B) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} \delta_{M} & \text{on } A \\ \delta_{m} & \text{on } B \\ \delta_{m} & \text{on } S - (A \cup B) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \delta_{m} & \text{on } A \\ \delta_{M} & \text{on } B \\ \delta_{m} & \text{on } S - (A \cup B) \end{bmatrix}$$
$$\sim \frac{1}{2} (\pi (A) \delta_{M} + (1 - \pi (A)) \delta_{m}) + \frac{1}{2} (\pi (B) \delta_{M} + (1 - \pi (B)) \delta_{m})$$
$$= \frac{1}{2} (\pi (A) + \pi (B)) \delta_{M} + \frac{1}{2} (1 - \pi (A) - \pi (B)) \delta_{m}$$

33

S.Grant

ECON501

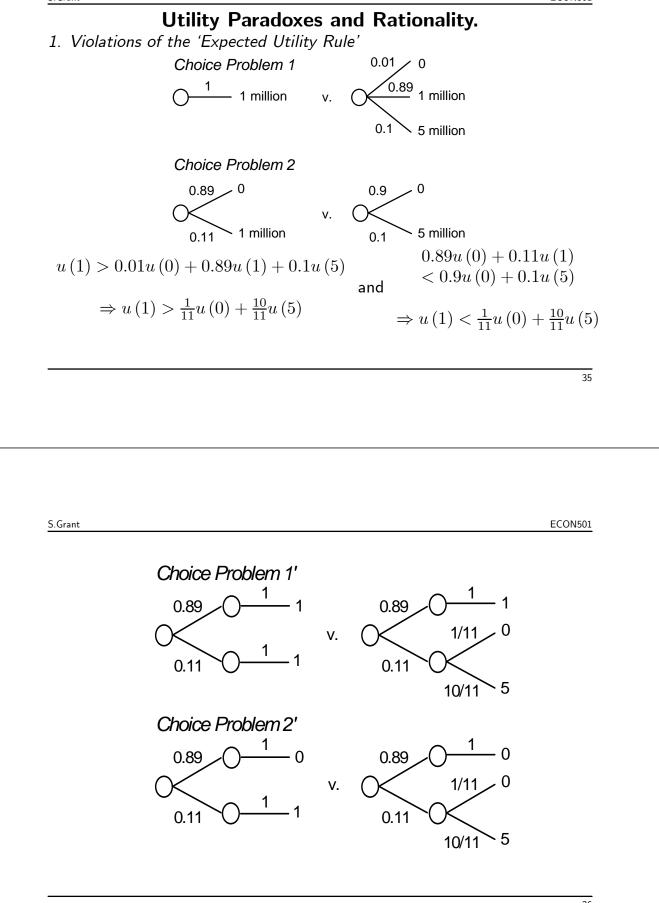
So by Mixture Monotonicity it follows

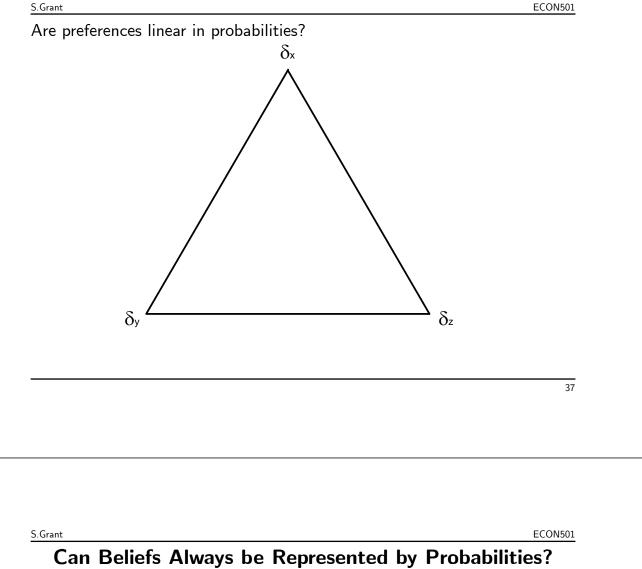
 $\pi\left(A\cup B\right)+\pi\left(A\cap B\right)=\pi\left(A\right)+\pi\left(B\right)\text{, as required}.$

Hence we have established that \succsim can be represented by the functional

$$V\left(\begin{bmatrix} L_{1} & \text{on } E_{1} \\ \vdots & \vdots \\ L_{n} & \text{on } E_{n} \end{bmatrix}\right)$$

= $U(L_{1}) \pi(E_{1}) + \sum_{i=2}^{n} (U(L_{i})) \left(\pi\left(\cup_{j=1}^{i} E_{j}\right) - \pi\left(\cup_{j=1}^{i-1} E_{j}\right)\right)$
= $\pi(E_{1}) U(L_{1}) + \pi(E_{2}) U(L_{2}) + \ldots + \pi(E_{n}) U(L_{n}).$





Urn contains 90 balls. 30 are red. The other sixty are black and white balls in unknown proportions.

	Acts				
EVENT	a	b		a'	b'
Red	100	0		100	0
White	0	100		0	100
Black	0	0		100	100

$$a \succ b \Rightarrow$$

$$\pi (\operatorname{\mathsf{Red}}) U (\delta_{100}) + (1 - \pi (\operatorname{\mathsf{Red}})) U (\delta_0)$$

> $\pi (\operatorname{White}) U (\delta_{100}) + (1 - \pi (\operatorname{White})) U (\delta_0)$

I.e. π (Red) > π (White)

Can Beliefs Always be Represented by Probabilities?

Urn contains 90 balls. 30 are red. The other sixty are black and white balls in *unknown* proportions.

	Acts				
EVENT	a	b		a'	b'
Red	100	0		100	0
White	0	100		0	100
Black	0	0		100	100

$$b' \succ a' \Rightarrow$$

 π (White or Black) $U(\delta_{100}) + (1 - \pi \text{ (White or Black)}) U(\delta_0)$

 $> \quad \pi \left(\mathsf{Red \ or \ Black} \right) U \left(\delta_{100} \right) + \left(1 - \pi \left(\mathsf{Red \ or \ Black} \right) \right) U \left(\delta_0 \right)$

I.e. π (Red) $< \pi$ (White)

S.Grant

ECON501

39

Multiple Priors Expected Utility

Fix $\mathcal{D} \subset \Delta$. For any pair of acts

$$a = [L_1, E_1; \ldots; L_n, E_n]$$
 and $a' = [L'_1, E'_1; \ldots; L_{n'}, E_{n'}]$

 $a\succsim a'\Leftrightarrow$

$$\min_{\pi \in \mathcal{D}} \left(\sum_{i=1}^{n} \pi\left(E_{i}\right) U\left(L_{i}\right) \right) \geq \min_{\pi \in \mathcal{D}} \left(\sum_{j=1}^{n'} \pi\left(E_{j}'\right) U\left(L_{j}'\right) \right)$$

For example with

$$\mathcal{D} = \{ (\pi_R, \pi_B, \pi_W) \in \Delta : \pi_R = 1/3, \ \pi_W \in \{1/6, 1/3, 1/2\} \}$$

$$V(a) = 1/3 > 1/6 = V(b)$$

 $V(b') = 2/3 > 1/2 = 1/3 + 1/6 = V(a')$

Role of Expected Utility in Economics

- Economists use EU as an *element* of models of choice in uncertain environments
 - asset allocation, insurance, saving, investment
 - any alternative needs to be capable of being incorporated into more complicated models of market behavior.
- All models are approximations. Challenge is to show departures from maximizing EU have consequences that are not minor for issues under examination.
 - e.g. departures from EU that are not systematic may not bias predictions of *market* behavior or outcomes.

41

S.Grant

ECON501

- Growing body of literature showing some key features of insurance and financial markets can be better explained by models that allow for systematic departures from EU.
 - But always easier to obtain better fit by adding parameters to model.
 - Unclear, whether *out of sample* performance is superior to simpler models based on EU.
- For rest of course, we will assume DMs are *subjective expected utility maximizers*. Likely to be better approximation to real world behavior:
 - the more situation is a repeated event
 - the more significant the choice is for individual wealth
 - the more alternative gambles under consideration can be viewed as "local deviations" from each other.