October 2005

Abstract

Notes on vector differentiation and some simple economic applications and examples.

1. Functions of One Variable

 $g: \mathbb{R} \to \mathbb{R}$ derivative (slope) $\frac{d}{dx}g(\overline{x}) \equiv g'(\overline{x}) \equiv \lim_{h \to 0} \frac{g(\overline{x}+h) - g(\overline{x})}{h}$

2nd derivative (rate of change of slope)

$$\frac{d^2}{dx^2}g\left(\overline{x}\right) \equiv g''\left(\overline{x}\right) \equiv \lim_{h \to 0} \frac{g'\left(\overline{x} + h\right) - g'\left(\overline{x}\right)}{h}$$

2. Functions of Several Variables

2.1. Real-valued function of a vector $x (N \times 1)^1$

$$g:\mathbb{R}^N\to\mathbb{R}$$

Partial derivative of g wrt x_n is defined as

$$\frac{\partial}{\partial x_n} g\left(\overline{x}\right) \equiv g_n\left(\overline{x}\right) \equiv \lim_{h \to 0} \frac{g\left(\overline{x}_1, \dots, \overline{x}_n + h, \dots, x_N\right) - g\left(\overline{x}\right)}{h}$$

$$Dg\left(\overline{x}\right) \equiv D_x g\left(\overline{x}\right) \equiv \left[\nabla g\left(\overline{x}\right)\right]^T \equiv \begin{bmatrix}\frac{\partial}{\partial x_1} g\left(\overline{x}\right), \dots, \frac{\partial}{\partial x_N} g\left(\overline{x}\right)\end{bmatrix}$$
(2)

I.e. the gradient of g evaluated at $x = \overline{x}$, and denoted $\nabla g(\overline{x})$, is the vector (i.e. $N \times 1$ matrix) of partial derivatives.

¹Vectors are assumed to be column vectors, i.e. $(N \times 1)$ matrices. Row vectors $[(1 \times N) \text{ matrices}]$ will be denoted by vector transposed. E.g. $(x_1, \ldots, x_N) = x^T$

Example 1 Let $u : \mathbb{R}^L_+ \to \mathbb{R}$ be a utility function for consumption bundles that can be represented by points in \mathbb{R}^L_+ . $\nabla u(\overline{x})$ is then the gradient of the utility function at consumption bundle \overline{x} .

I.e.
$$\nabla u(\overline{x}) \equiv [Du(\overline{x})]^T \equiv \begin{bmatrix} \frac{\partial}{\partial x_1} u(\overline{x}) \\ \vdots \\ \frac{\partial}{\partial x_L} u(\overline{x}) \end{bmatrix}$$

2.2. Vector function of a vector x

 $g: \mathbb{R}^N \to \mathbb{R}^M$ I.e. g maps points from \mathbb{R}^N to points in \mathbb{R}^M

Example 2 Demand function x(p, w) which will later be referred to as a system of demand functions, maps a price vector and income/wealth level to a consumption bundle. Denote $x_{\ell}(\overline{p}, \overline{w})$ as the quantity of good ℓ demanded by a consumer facing an L-dimensional vector of prices \overline{p} and who has wealth level \overline{w} .

I.e.
$$x: \mathbb{R}^{L+1}_+ \to \mathbb{R}^L_+$$
 and for each $\ell, x_\ell: \mathbb{R}^{L+1}_+ \to \mathbb{R}_+$

Example 3 The gradient of the utility function from example 1, may be viewed as a function from \mathbb{R}^N into \mathbb{R}^N .

The vector function $g:\mathbb{R}^N\to\mathbb{R}^M$ may be viewed as M scalar functions:

$$g_m: \mathbb{R}^N \to \mathbb{R}, \ m = 1, \dots, M.$$

From equation (2) we have

$$Dg_m\left(\overline{x}\right) \equiv \left[\frac{\partial}{\partial x_1}g_m\left(\overline{x}\right), \dots, \frac{\partial}{\partial x_N}g_m\left(\overline{x}\right)\right]$$

thus we may view the derivative of g(x), evaluated at $x = \overline{x}$, as the M stacked row vectors of partial derivatives for each $g_m(\overline{x})$. Thus we

have an $M \times N$ matrix of partial derivatives:

$$Dg\left(\overline{x}\right) = \begin{bmatrix} \frac{\partial}{\partial x_1} g_1\left(\overline{x}\right) & \dots & \frac{\partial}{\partial x_N} g_1\left(\overline{x}\right) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} g_M\left(\overline{x}\right) & \dots & \frac{\partial}{\partial x_N} g_M\left(\overline{x}\right) \end{bmatrix}$$
(3)

Notice that if we took the derivative of g(x) at \overline{x} w.r.t. $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$,

holding $\begin{pmatrix} x_3 \\ \vdots \\ x_N \end{pmatrix}$ fixed at $\begin{pmatrix} \overline{x}_3 \\ \vdots \\ \overline{x}_N \end{pmatrix}$, our derivative would then be the first two columns of $Dg(\overline{x})$.

$$D_{\begin{pmatrix} x_1\\ x_2 \end{pmatrix}}g\left(\overline{x}\right) = \begin{bmatrix} \frac{\partial}{\partial x_1}g_1\left(\overline{x}\right) & \frac{\partial}{\partial x_2}g_1\left(\overline{x}\right) \\ \vdots & \vdots \\ \frac{\partial}{\partial x_1}g_M\left(\overline{x}\right) & \frac{\partial}{\partial x_2}g_M\left(\overline{x}\right) \end{bmatrix}$$
(4)

Example 4 (Example 2 cont.): For our system of demand functions x(p, w)

$$D_{\begin{pmatrix}p\\w\end{pmatrix}}x(\overline{p},\overline{w}) = \begin{bmatrix} \frac{\partial}{\partial p_1}x_1(\overline{p},\overline{w}) & \dots & \frac{\partial}{\partial p_L}x_1(\overline{p},\overline{w}) & \frac{\partial}{\partial w}x_1(\overline{p},\overline{w}) \\ \vdots & \vdots & \vdots \\ \frac{\partial}{\partial p_1}x_L(\overline{p},\overline{w}) & \dots & \frac{\partial}{\partial p_L}x_L(\overline{p},\overline{w}) & \frac{\partial}{\partial w}x_L(\overline{p},\overline{w}) \end{bmatrix} \\ = [D_px(\overline{p},\overline{w}) \quad D_w(\overline{p},\overline{w})]$$
(5)

where $D_p x(\overline{p}, \overline{w})$ is the $L \times L$ matrix of price partial derivatives and $D_w x(\overline{p}, \overline{w})$ is the $L \times 1$ matrix of wealth effects.

Example 5 (Example 3 cont.): $\nabla u(\overline{x}) \equiv [Du(\overline{x})]^T$ is a function from \mathbb{R}^L to \mathbb{R}^L . The derivative of this function (i.e. the "derivative

of the gradient" of u) is called the Hessian of u.

$$H_{u} \equiv \nabla^{2} u\left(\overline{x}\right) \equiv D\left[\nabla u\left(\overline{x}\right)\right] \equiv D^{2} u\left(\overline{x}\right)$$
$$\equiv \begin{bmatrix} \frac{\partial}{\partial x_{1}} u_{1}\left(\overline{x}\right) & \dots & \frac{\partial}{\partial x_{L}} u_{1}\left(\overline{x}\right) \\ \vdots & \vdots & \vdots \\ \frac{\partial}{\partial x_{1}} u_{L}\left(\overline{x}\right) & \dots & \frac{\partial}{\partial x_{L}} u_{L}\left(\overline{x}\right) \end{bmatrix}$$
$$\equiv \begin{bmatrix} \frac{\partial^{2}}{\partial x_{1}\partial x_{1}} u\left(\overline{x}\right) & \dots & \frac{\partial^{2}}{\partial x_{1}\partial x_{L}} u\left(\overline{x}\right) \\ \vdots & \vdots & \vdots \\ \frac{\partial^{2}}{\partial x_{L}\partial x_{1}} u\left(\overline{x}\right) & \dots & \frac{\partial^{2}}{\partial x_{L}\partial x_{L}} u\left(\overline{x}\right) \end{bmatrix}$$

3. Applications

3.1. Differentiation of an Inner Product.

$$g(x) = p^T x = \sum_{\ell=1}^{L} p_\ell x_\ell$$

By equation (2)

$$Dg(\overline{x}) \equiv \left[\frac{\partial}{\partial x_1}g(\overline{x}), \dots, \frac{\partial}{\partial x_L}g(\overline{x})\right] = (p_1, \dots, p_L).$$

Notice that the budget hyperplane, $\{x \in \mathbb{R}^L | p^T x = w\}$, is the *level* set of the *linear* function $g(x) = p^T x$. Thus the gradient of the budget hyperplane is the price vector p.

3.2. Euler's Theorem Applied to a Demand System.

$$x(\alpha p, \alpha w) \equiv x(p, w)$$
 for all p, w and $\alpha > 0$ (6)

Differentiating equation (6) wrt α and evaluating at $\alpha = 1$, $p = \overline{p}$ and $w = \overline{w}$, from equation (5) we obtain

$$\left[D_p x\left(\overline{p}, \overline{w}\right) \quad D_w\left(\overline{p}, \overline{w}\right)\right] \left(\begin{array}{c} \overline{p} \\ \overline{w} \end{array}\right) = 0$$

and multiplying out

$$D_{p}x\left(\overline{p},\overline{w}\right)\overline{p} + D_{w}\left(\overline{p},\overline{w}\right)\overline{w} = 0 \tag{7}$$

To see this, let us focus on the demand for commodity 1. From (6) we have:-

$$x_1\left(\alpha \overline{p}_1, \alpha \overline{p}_2, \dots, \alpha \overline{p}_L, \alpha w\right) \equiv x_1\left(\overline{p}, \overline{w}\right) \tag{8}$$

When α changes, each price changes and income changes in the LHS. So we should expect (L + 1) partial derivatives appearing in our LHS expression for the effect on the demand for commodity 1 from a change in α .

Notice that the rate at which each price p_{ℓ} changes as α changes is \overline{p}_n (i.e. $\frac{\partial}{\partial \alpha} (\alpha \overline{p}_{\ell}) = \overline{p}_{\ell}$) and the rate at which the demand for commodity 1 changes as p_{ℓ} changes is $\frac{\partial}{\partial p_{\ell}} x_1(\overline{p}, \overline{w})$. So the effect on the quantity demanded of commodity 1 of a change in α via its effect on the price p_{ℓ} is $\frac{\partial}{\partial p_{\ell}} x_1(\overline{p}, \overline{w}) \times \overline{p}_{\ell}$. Similarly the effect on the quantity demanded of commodity 1 from a change in α via its effect on wealth is $\frac{\partial}{\partial w} x_1(\overline{p}, \overline{w}) \times \overline{w}$. So differentiating the LHS of equation (8) yields

$$\sum_{\ell=1}^{L} \frac{\partial}{\partial p_{\ell}} x_1\left(\overline{p}, \overline{w}\right) \times \overline{p}_{\ell} + \frac{\partial}{\partial w} x_1\left(\overline{p}, \overline{w}\right) \times \overline{w}$$

and as α does not appear on the RHS of equation (8), the derivative of the RHS wrt α is simply 0. Stacking the *L* equations, one for each commodity, we obtain (7), the result in matrix form.

Exercise 1 Using the definitions for $D_p x(\overline{p}, \overline{w})$ and $D_w(\overline{p}, \overline{w})$, multiply out the matrices in (7) and check that you indeed obtain L equations of the form:-

$$\sum_{k=1}^{L} \frac{\partial}{\partial p_k} x_\ell(\overline{p}, \overline{w}) \times \overline{p}_k + \frac{\partial}{\partial w} x_\ell(\overline{p}, \overline{w}) \times \overline{w} = 0$$
(9)

Define

$$\varepsilon_{\ell k} \equiv \frac{\partial}{\partial p_k} x_\ell \left(\overline{p}, \overline{w} \right) \times \frac{\overline{p}_k}{x_\ell \left(\overline{p}, \overline{w} \right)}$$

as the price elasticity of demand for commodity ℓ wrt price p_k ; and

$$\varepsilon_{\ell w} \equiv \frac{\partial}{\partial w} x_{\ell} \left(\overline{p}, \overline{w} \right) \times \frac{\overline{w}}{x_{\ell} \left(\overline{p}, \overline{w} \right)}$$

as the wealth elasticity of demand for commodity ℓ .

Dividing equation (9) by $x_{\ell}(\overline{p}, \overline{w})$ we obtain:-

$$\sum_{k=1}^{L} \varepsilon_{\ell k} + \varepsilon_{\ell w} = 0 \tag{10}$$

I.e. the sum of the price elasticities of demand for commodity ℓ is equal to minus its wealth elasticity.

3.3. Differentiating Walras' Law

$$p^T x \left(p, w \right) \equiv w \tag{11}$$

3.3.1. Differentiating with respect to wealth.

If we differentiate (11) wrt w and evaluate at $p = \overline{p}$ and $w = \overline{w}$ we obtain

$$D_w \left[\overline{p}^T x \left(\overline{p}, \overline{w} \right) \right] = \overline{p}^T D_w x \left(\overline{p}, \overline{w} \right) = 1$$

or
$$\sum_{\ell=1}^L \overline{p}_\ell \times \frac{\partial}{\partial w} x_\ell \left(\overline{p}, \overline{w} \right) = 1$$
 (12)

Equation (12) is known as the Engel Aggregation. If we let

$$m_{\ell} \equiv \overline{p}_{\ell} \times \frac{\partial}{\partial w} x_{\ell} \left(\overline{p}, \overline{w} \right)$$

denote the marginal propensity spend on commodity ℓ , then the Engel aggregation may be interpreted as saying (loosely):

"The sum of the marginal propensities to spend out of a dollar on all commodities equals a dollar."

3.3.2. Differentiating with respect to prices.

If we differentiate (11) wrt p and evaluate at $p = \overline{p}$ and $w = \overline{w}$ we obtain

$$D_p\left[\overline{p}^T x\left(\overline{p},\overline{w}\right)\right] = \overline{p}^T D_p x\left(\overline{p},\overline{w}\right) + \left[x\left(\overline{p},\overline{w}\right)\right]^T = 0$$
(13)

Equation (13) is known as the *Cournot Aggregation*. If we multiply out the matrices in (13) we obtain L equations for the form:-

$$\sum_{k=1}^{L} \overline{p}_{k} \times \frac{\partial}{\partial p_{\ell}} x_{k} \left(\overline{p}, \overline{w}\right) + x_{\ell} \left(\overline{p}, \overline{w}\right) = 0$$
(14)

In words it says that the sum of the rate of change on expenditure of all commodities for an increase in the price p_{ℓ} is equal to minus the quantity of commodity ℓ currently demanded. That is, if p_{ℓ} rises, the rate at which wealth would have to rise to enable the consumer to purchase the original consumption bundle is $x_{\ell}(\bar{p}, \bar{w})$. In other words the *purchasing power* of the consumer falls at the rate $x_{\ell}(\bar{p}, \bar{w})$ as the price of that commodity rises.