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This paper analyzes the optimal and free market utilization of the lobster fishery 
and applies the results to two f&ring areas in Canada. Biomass relationships and 
a production function are estimated and the empirical results are used to calculate 
hypothetical optimal fishing solutions. The .welfare losses from overutilization of the 
fishing areas are examined. 

In this paper biomass equations and a production function for two lobster 
areas in Canada are estimated. The equations are used to calculate fishing 
solutions when the fishery is optimally exploited and when utilization of the 
fishery is unregulated. The solutions are compared and social welfare losses 
are examined. 

When utilization is unregulated, solutions are nonoptimal for two reasons. 
First, fisherman do not properly account for the effect of their fishing on future 
stocks of fish and thus they tend to nonoptimally deplete the stock of fish 
[3, 51. Second when effort is applied to the fishery, fisherman receive not just 
the marginal product of their effort but they also appropriate the rents accruing 
to the resource. This extra return on effort in any time period tends to lead 
fishermen to enter the industry until the rents are dissipated and effort is paid 
the value of its average rather than marginal product. This type of over- 
utilization of the fishery results in a social wastage of effort in any period 
C4, 6, 111. 

This paper represents the only paper we know of in which the biomass equa- 
tion and production function are separately estimated and combined to find 
equilibrium and optimal solutions (cf. [l] and [12]). Thus while the model is 
very simplistic the results are most suggestive and demonstrate the numerical 
magnitudes involved in fishing solutions and the way for further empirical work. 

1 Working Paper No. 78-30, Brown University. 
* We are indebted to Gordon Douglas for help in estimating the biomass equation and com- 

piling references. We are indebted to Herbert Mohrmg, Anthony Scott, and two anonymous 
referees for helpful comments on earlier versions of this paper. 
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FK. 1. The bioeconomic relationships. 

1. THE MODEL 

The Biomass Equation 

The growth and number of lobsters in an area is dependent on their envi- 
ronment: temperature, food sources, and predators. A maximum naturally 
sustainable population exists determined by food availability and crowding 
which affects reproduction, cannibalism, and growth. Up to the maximum 
population level, population growth will occur at various rates. Taking an 
aggregative approach to this relationship which ignores the details of death, 
reproduction, and age structure, we postulate a local quadratic relationship 
between population and population growth measured in pounds of fish.3 

dX/dt E J? = aX - bX2 (1) 

where X is population in time t and 8 is the gross change in area population. 
Maximum population is a/b. Maximum growth is a/2b. 

If there is fishing, catch in time t, Q, reduces the population so that net 
growth is 8 - Q. I n a stationary fishing solution X = Q, or catch exactly 
matches the gross growth in lobster stock in each period. A biomass equation 
is illustrated in Fig. 1, plotting growth in the stock against the stock. 

a See Lotka [S] and Beverton and Holt [2] on this formulation. It would be desirable to 
incorporate water temperature into the analysis. Lobsters grow and mature much more quickly 
in warmer water. It takes about 36 molts (shell changes) for a lobster to reach sexual maturity 
at a weight of about 1 lb and a carapace length (body length excluding tail and claws) of 
around 3 in. This molting to maturity takes 8 years in Nova Scotia, 6 to 6 years in Massachu- 
setts, and 2 years in controlled high-temperature laboratory conditions [7]. To incorporate 
temperature would require specifying some of lag structure to account for the effect of previous 
bottom temperatures on current population growth. 
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The Production Function 

Lobster catch in an area is a function of the stock of lobsters and fishing 
effort as measured by the number of tra,ps or man days. A variety of ot,her 
factors such as water temperature and season length which are represented in 
this theoretical section by a parameter A affect catch. These effect,s are anal- 
yzed in the empirical sections below. The production function is 

Q = AXaEo, 

where E is effort and A is a shift factor. 

(3 

Theoretical Solutions 

The optimal solution. The optimal solution for a fishing area is that which 
maximizes the present value of profits. Such a solution could be reached by 
assigning ownership of the fishery to one private entity or through government 
regulation. The present value of profits is 

s 

m 
e-66(pQ .- wE)dt, (3) 

0 

where p is the price of catch, w the price of effort, and 6 the discount rate. 
Maximization is constrained by the equation of motion for the system where 
net additions to the stock of fish are X - Q, or aX - bX2 - Q, and by the 
production relationship which we rewrite as E = A-l’fiX-a’@Q1’fl. 

Thus the current value Hamiltonian for the maximization problem is 

H = e-66[ (pQ - ~A-“@X-~‘flQl’fl) + X(aX - bX2 - Q)], 

where X is the costate variable. Necessary conditions for an optimum are that 
at any point in time 

aH 

a(e-6%)/at = - aH/aX = -e-*l[ - wA-l’~X-e’+‘-lQl’b/p + k(a - %X)1. 

Rearranging we get 

w = (p - X)/?A”flXa’flQ’-o’@ 3 (p - X)PQ/E, (5) 
j, - x(2bX + 6 - a) = .-WA-‘/8X-a/B-lQlIB,/p, (6) 

where i = ah/at. 

Viewing X as a capital good, X is the shadow price of stock. In Eq. (5), 
X relates to the opportunity cost of additional catch reducing stock. Thus 
p - x is the shadow value of catch. 

In a stationary fishing solution where dX/dt = dQ/dt = 0 by differentiating 
Eq. (5), we know i = 0. The stationary value of X in Eq. (6) equals its value 
in Eq. (5), or 

x = (wA-“8X-“/8-1Q1/8,/~) (2bX + 6 - ,a)-’ = p - (,A-“eX-ai8QalS-lp-l) (7) 

for X and Q equal to their stationary values. We can substitute t,he biomass 
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constraint on stationary solutions, Q = aX - bX2, into (7) to solve for X 
and Q. Such a solution is illustrated later. 

Free entry. Without regulation, we assume effort is applied in fishing until 
the rent to the fishery is dissipated, or effort receives its average product. Then 

w = p&/E _= p~l/BXdBQl--I/8. 

Rearranging, for any X, Q is given by 
(8) 

Q = (wp-lA-lI8X-~IS)8/8-1. 
(9) 

Equation (9) is illustrated of the graph of Q esuil in Fig. 1. The curve represents 
the equilibrium Q for any X. Thus a stationary equilibrium occurs at n where 
Q = 8. To the left of nk > Q, so that X is increasing and we are always 
moving toward n. To the right of n-% < Q, so that X is decreasing and we are 
always moving toward n. Thus in a market situation, equilibrium stock and 
catch move monotonically toward their values at n. 

2. EMPIRICAL ESTIMATES 

The Biomass Equation 

We estimate the biomass Eq. (1) by ordinary least squares for two lobster 
areas in the Maritimes accounting for 5-S% of Canada’s total catch. Clearly 
the two areas must be treated separately since the environments in terms of 
area size, food availability, temperature, etc., will be different. To find values 
for stock, a certain number of lobsters in both areas were tagged each year 
before the fishing season and stock is estimated from the percentage of tagged 
lobsters in the catch. (Stock at the beginning of the lobster season is defined 
to be that year’s catch in pounds multiplied by the ratio of total tagged lobsters 
to tagged lobsters caught.) For this to be a reasonable estimate of the stock 
we must assume that tagged and untagged lobsters are caught at the same 
rate.4 The gross change in stock in a year is the catch plus the net change in 
stock (the estimated change in stock between two seasons calculated from 
taggings) . 

The data on stock and catch is only for lobsters larger than the minimum 
legal catch size (carapace length of 2s” for Miminegash and 3 3/16” for Port 
Maitland). Thus by estimating the biomass equation with our data, we are 
estimating the growth function for the existing stock of harvestable fish, as- 
suming that current catches do not influence the number of recruits in the 
future. Apparently for certain species such as lobster, this is not an unreason- 
able assumption as long as annual catches do not fluctuate too much. This 
would suggest that the annual growth of stock is a constant (the influx of 
recruits) plus a growth function for the existing greater-than-legal-size stock. 
Our estimates of various forms of such a function were unsuccessful. Thus 
the simple quadratic function presented below with a constant term of zero 
should be viewed as the function that provides the best local fit of our data 
and that best describes the growth of the existing stock of harvestable fish 
within the ranges observed. These problems clearly limit the interpretation 
of optimal solutions presented later, as will be discussed. 

4 See Paloheimo [9] on using tagged lobsters to estimate stock. 
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The biomass equations are estimated to be: 

Port Maitland (1954-1969) 

8 = 1.80167 X - 0.00051 Xe 
(6.30) (4.70) R2 = 0.42 DW = 1.72 

Miminegash (1957-197 1) 

2 = 1.27024 X - 0.00039 X2 
(4.40) (1.69) R2 = 0.08 DW = 1.97 

The t statistics are in parentheses, although due to measurement errors in X 
they may not be especially meaningful. The Port Maitland equation is graphed 
in Fig. 1. By our locally fit equation, maximum growth is 1766 thousand lb 
and the natural equilibrium stock is 3532 thousand lb. For Port Maitland, 
while the sample points are quite variable, they are all to the right of the 
maximum growth point, which makes our locally fit function more palatable 
for application in this region. 

The Production Function 

The production function is taken from Tugwell’s [13] extensive investiga- 
tion of the production function. The function was estimated from 22 observa- 
tions from various fishing areas in Nova Scotia, covering the years 1953 to 
1960. When estimates of stock are available, the only measure of effort is simply 
the number of traps fished. We have no information on men, boats, and equip- 
ment but must implicitly assume some fixed relationships between these and 
traps-i.e., a fixed rate of fishing of traps. In Tugwells’ work when there is 
information on both traps and numbers of fishermen, the latter variable is 
almost always insignificant whereas traps is almost always significant. Thus 
our assumption may not be too restrictive. We include season length in our 
equation, because it varies considerably over the 22 observations. We include 
average bottom temperatures and temperatures lagged which also vary con- 
siderably over the 22 observations. 5 This is an important variable since lobsters 
move around much more, covering more territory, as temperature rises. The 
production function in estimated form is 

In Q = - 1.57 + 0.48 In E + 0.44 In X + 0.16 In D + 0.45 In !Yr 
(4.23) (4.56) (1.32) (2.81) 

+ 0.30 111 TI-, 
(2.81) R2 = 0.94 

where Q is lobster landings in thousands of pounds, E is fishing effort in hundreds 
of traps, X is lobster stock in thousands of pounds, D is season length in days, 
and T,, T,-, are average seasonal bottom temperature in degrees Centigrade. 
The t statistics are in parentheses. Note there are strong diminishing returns 
to both labor and the biomass. The small effect of changing season length 
holding traps fished and stock fixed is due to two facts. Longer seasons are 

6 The inclusion of Tt-l is difficult to defend. However, it is the specification of the produc- 
tion function with the other variables present that is available. For any area Tt-l and T1 should 
be highly correlated. 
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associated with the winter months when the level of daily activity is quite 10~. 
Second in most situations even with short seasons, fishermen do not fully utilize 
the full season. They harvest most of the lobster crop in much less time than 
the maximum allowed. 

There are several possible sources of statistical bias in this production func- 
tion. The best known problem is that effort is chosen according to the pro- 
ductivity rule in Eq. (8), and, therefore, in the production function, the error 
term and the independent variable E(1) are correlated. It can also be argued 
that since our stock data are estimated from catch the error term and X(t) 
are correlated. However, this seems unlikely since stock is estimated from the 
ratio of tagged catch to total catch (see above) and hence does not depend 
on the absolute level of catch or variations in catch due to factors in the error 
term. Note that it is not possible to properly simultaneously estimate the 
biomass equations and production function since there is almost no overlap 
in observations. 

In using the production function in our calculation below we insert the season 
length and average seasonal temperature for the two areas we are examining. 
The season lengths for Port Maitland and Miminegash are, respectively, 185 and 
61 days and the average seasonal temperatures are, respectively, 6.34 and 
8.87”C. Inserting these values in the production function we get a measure 
of the normal shift factor A in Eq. (2) for one two areas.6 The production 
functions for the two areas become 

Port Maitland 

Miminegash 
Q = 2.26 EO.48 X0.” 

Q = 2.51 go.** X0.“. 

Prices 

To solve the model presented in Section 1, we need information on prices. 
We have excellent month-by-month data on landed price of lobsters. In the 
results presented below the difference between the Port Maitland and Mimi- 
negash average price occurs because the Port Maitland season is in the winter 
and spring when prices are high and the Miminegash season is in the summer 
and early fall when prices are low.’ 

Our problem is finding values for u), the opportunity cost of effort. One way 
to calculate the opportunity cost of effort is to assume the prevailing fishing 
situation is one of complete rent dissipation. Then effort is paid its average 
product and this equals opporbunity cost. Therefore, the opportunity cost of 
effort is simply total revenue divided by the number of traps. We follow this 
simplistic procedure. However, survey data from 1961 in Rutherford et al. [lo] 
allow us to check the empirical validity of this assumption. 

In Rutherford et al., for our lobster areas, expenses per fishing enterprise 
are recorded. First, we evaluate capital and equipment costs in annual, or 

6 To avoid introducing uncertainty into the production process we assume that within an 
area there is negligible variation in average seasonal bottom temperature. This assumption ap- 
pears to be reasonable 

7 Our figures are from Rutherford et al. [lo] and Canada, D.B.S., Monthly Review of Canadian 
Fisheries Statistics, Queen’s Printer. 
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rental terms. Capital stock valued at current prices per enterprise for lobster 
plus other fishing activities is given. We calculate an annual implicit rental 
for all activities on boats and shore equipment, based on interest payments 
at 6% and depreciation at 17.5% for boats and engines and 7.5% for shore 
equipment (rates suggested in Rutherford et aE. [lo]). Part of this annual 
rental is charged to lobstering according to the fraction of time items are used 
in lobstering as opposed to other activities. Then an annual rental on gear used 
solely for lobstering is calculated given a depreciation rate of 15%. 

We subtract these calculated capital rentals to be charged to lobster fishing 
from total revenue. The residual is the return to the operators or fishermen. 
If this residual equals the opportunity wage of fishermen in other activities, 
our assumption of complete rent dissipation where opportunity cost equals 
average product is justified. For Port, Maitland this is certainly the case. 

The residual return to lobster operators in Port Maitland is $35.32/week 
in 1961. Operators spend 359;d of their annual time lobstering, 21% in other 
fishing, 19% in other employment, and 25% unemployed. The weekly return 
to lobstering is $35.32, to all fishing is $47.00, to other employment is $42.00, 
and t’o all annual activities is $38.55. Therefore, an opportunity cost of time 
of $35.32 seems reasonable. For Miminegash where 27% of one’s time is spent 
lobstering and 45y0 is spent unemployed in 1961, the return to lobstering per 
week is $60.54 versus an annual average weekly income of $42.98. Our oppor- 
tunity cost, of effort, set at the average product of effort in lobstering, may be 
too high for Miminegash. 

In the solutions below, the discount rate used is 0.06 because that is the 
figure used in calculating the opportunity cost of effort. 

3. SOLUTIONS TO THE MODELS 

Given our estimates of the biomass equations and production functions, 
we calculate stationary solutions for optimal and equilibrium solutions, based 
on prices prevailing in 1961. Although our solutions are for stationary situ- 
ations, we believe the equilibrium solut’ions are comparable with the actual 
situations prevailing in the lobster areas in 1961. First, the assertion of rent 
dissipation as discussed in the above paragraphs seems reasonable. Second, 
given discussions with local officials of the Department of Fisheries in Canada, 
it appears that p/z0 was constant for the last part of the 1950s and for the first 
half decade of the 1960s. That is, given a fixed price ratio we should have been 
approaching a stationary equilibrium with free entry. Free entry solutions are 
obtained by solving Eqs. (l), (2), and (9) for Q, E, and X. As stated above, 
for Port Maitland, the equilibrium solution is at n in Fig. 1. Optimal stationary 
solutions for Q, X, and E are obtained by solving Eqs. (l), (2), and (7). A curve 
of optimal stationary X, Q combinations for Port Maitland is represented in 
Fig. l.* Given the biomass, the actual solution on the curve is at m. (Note that 
unlike the free entry solution, this curve is, of course, not an approach path 
since it assumes i = 0.) 

Our numerical solutions for 1961 are presented in Table I. There are two 

8 Note that stationary catch follows to zero as stationary X falls below 1760 thousand lb. 
Below 1760, profits are negative. This means that if the biomaes equation shifted leftward such 
that X,,, (where X = 0) fell below 1750, this fishing area would not be profitable to fieh. 
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TABLE I 

Results 

Biomass equation 

Production function 
Lobster price/thousand lb 
Opportunity coat/hundred traps 

Lobster stock (thousand lb) 
Lobster catch (thousand lb) 
Effort (100s traps) 
Ratio: catch/stock 
Shadow price of future stock (A) 
Optimal tax/thousand lb catch 
Amud resource savings: 

value of trap savings less 
value of reduced catch 

Port Msitland 
- 

dX/dt + Q = 1.80167X 
- 0.00051x~ 

Q(t) = 2.26 Ea.46 X0.44 
$485 

$1,421 

Optimal Free Actual 
solution entry average 

1959-1963 

3,050 2,490 2,467 
745 1,330 1,183 
112 454 

0.25 0.53 0.48 
36 II.*. n.a. 

270 La. Il.*. 

$202,173 rl.8. ma. 

Miminegash 

dX/dt + Q = 1.27024X 
- o.ooo39x~ 

Q(t) = 2.51 IW” X0.44 
8370 
$950 

Optimal Free Actual 
solution entry average 

1959-1963 

2,450 1,125 1.273 
801 936 1,094 
122 365 

0.33 0.83 0.86 
68 LB. *a. 

225 n.8. n.a. 

$180,470 n.a. Il.*. 

main features. First, the free entry solutions for both catches and stocks and 
the actual situations in the areas are similar, differing at the most by 12% 
and as little as 1%. Despite the inadequacy of the biomass equation in terms 
of low explained variance, errors in measurement, and being defined for greater 
than legal size lobsters and the bias inherent in estimating the production func- 
tion, our model predicts very well. 

The second feature is the extent to which the optimal solution dominates 
the free entry solution. Comparing the two stationary equilibria, although the 
free entry solution has higher catches (179 and 117% of the optimal solutions 
for Port Maitland and Miminegash, respectively), the associated effort is much 
greater (405 and 300% of the optimal solutions, respectively) because the 
equilibrium stocks are smaller. The resource savings from being at the optimal 
solution-the savings in traps less the value of the reduced catch-are very 
large. For Port Maitland it is $202,173 per year. These savings are 62% of 
the total value of the optimal catch. 

To sustain the optimal solution through government regulation, catch could 
be taxed. With free entry and no regulation, effort is employed so that w = p&/E. 
We want effort employed so that in Eq. (5) w = (p - A) p&/E. Thus we want 
to redefine p through taxation so that p - t = (p - X)p where t is a unit tax 
price. Thus the stationary t = p - p(p - X), where the stationary value of X 
is defined in Eq. (7). From Table I, for Port Maitland X = $36/thousand lb 
and the unit tax is $270/thousand lb. This is 56% of revenue. 

In the early literature on fishing [S, 111 the biomass effects and the dynamics 
of this problem were ignored. It is interesting to note that in our situation if 
we also ignore these effects (by setting X = 0 in the stationary solution) and 
only examine the problem of overutilization of effort applied to the unpriced 
resource in any period, our results are minimally affected. Setting the unit 
tax equal to t = p(1 - fi), we move to a solution for Port Maitland where 
X = 3015 thousand lb, Q = 796 thousand lb, and E = 13,100 traps: Profits 
in this situation are $199,908, representing a loss of only 1% relative to the 
optimal solution where X > 0. 
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Our final comment concerns the adjustment process. Our equations satisfy 
the assumptions in Brown [3]. Thus in moving from the free market to optimal 
solution, starting at the initial X, X should decline continuously and X increase 
continuously to their stationary values. This would imply a declining schedule 
of unit taxes to the stationary tax. In applying Eqs. (l), (2), (5), and (6) to 
our empirical results to solve for the optimal approach path, unfortunately 
the assumption of continuous time and a,djustment does not hold up because 
the changes in Q, X, and E from period to period are noninfinitesimal. (This 
also presents a problem in the production function because X varies over the 
fishing season given the pattern of X and Q over the season. Given X and Q 
are large, our specification of costs and production is not very sophisticated.) 
If we formulate a discrete adjustment process in our nonlinear model [5, chap. 71 
(where i, = X1 - Xt-.l and X, = X,+1 - X,), we do converge to the stationary 
solution (but a cyclical adjustment path can be involved). As a practical mattet, 
and ignoring distributive considerations, given the limitations of our specifica- 
tion and estimation, for Port Maitland, for example, we would suggest an im- 
mediate move to the stationary solution at m. This would involve, for X0 
= 2490 thousand lb, setting to such that Q,, was reduced from the free market 
1330 to 770 thousand lb, yielding an 8 of 560 thousand lb so that X1 = Xopt 
= 3050 thousand lb. This would require an initial tax of to = $217/thousand lb, 
followed by a tax in all succeeding periods of $270/thousand lb. 

The suggestion that a regulator should move the fishing solutions to their 
optimal levels as quickly as possible is ba,sed upon the assumption that current 
resources in fishing can be immediately shifted to other uses (equipment sold 
off at prevailing prices and fisherman relemployed at the same compensation). 
This assumption may not be met and a more sophisticated economic and po- 
litical approach might suggest a more graduated phasing out of the excess 
resources commit’ted to fishing. 

4. CONCLUSIONS 

Our calculations indicate that the welfare losses from nonregulation of the 
lobster fishery are about 20 and 3Oyo of the value of the current or free market 
catch in the areas we studied. The calculation of optimal solutions based upon 
the fitted biomass equations concerns reductions in the rate of harvest of stocks 
of greater than legal size lobsters, assuming that the annual influx of recruits 
is unaffected by catch. More sophisticated data could indicate that a reduction 
in the rate of harvest would stimu1at.e recruits and bring even greater benefits 
from regulation. 
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