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Urban Air Pollution Progress Despite Sprawl: The “Greening” of the Vehicle Fleet 
 

Abstract 
 

 
Growing cities, featuring more people with higher incomes who live and work in the 
suburbs and do not commute by public transit should be a recipe for increased air 
pollution.  Instead, California’s major polluted urban areas have experienced sharp 
reductions in air pollution.   Technological advance has helped to “green” the average in 
fleet vehicle.  Such quality effects have offset the rising quantity of miles driven.   This 
paper uses several data sets to investigate how California’s major cities have enjoyed 
environmental gains over the last 20 years despite ongoing growth.
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Introduction 
 

In 2004, roughly 18 million people lived in the greater Los Angels area.  Given its 

geography and climate patterns and the scale of economic activity within this basin, the 

Los Angeles Basin suffers from the highest levels of air pollution in the United States.  

Much of this pollution is caused by vehicle emissions.  But Los Angeles has made 

dramatic progress on air pollution over the last 25 years.  For ambient ozone, a leading 

indicator of smog, the average of the top 30 daily peak one-hour readings across the 

county’s 9 continuously operated monitoring stations declined 55% from 0.21 to 0.095 

parts per million between 1980 and 2002. The number of days per year exceeding the 

federal one-hour ozone standard declined by an even larger amount—from about 150 

days per year at the worst locations during the early 1980s, down to 20 to 30 days per 

year today.2 

  Recent pollution gains are especially notable because Los Angeles County’s 

population grew by 29 percent between 1980 and 2000, while total automobile mileage 

grew by 70 percent (California Department of Transportation 2003).  For air quality to 

improve as total vehicle mileage increases indicates that emissions per mile of driving 

must be declining sharply over time.   This suggests that technological advance is helping 

to reduce an important external cost of urban living.     

A growing empirical literature has examined the external benefits of urban 

agglomeration  (Rosenthal and Strange 2004).   The future of cities also hinge on the 

                                                 
2 Data source: California Ambient Air Quality Data CD, 1980-2002 (California Air 
Resources Board).   This CD-ROM provides all air quality readings taken in the state 
during this time period.   In this dataset, the unit of analysis is a monitoring station.  
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external costs of urbanization (Tolley 1974, Glaeser 1998,  Kahn 1999, Henderson 2002).  

Technological advance offers the possibility of achieving the “win-win” of urban growth 

without the exacerbation of classic pigouvian externalities.  Recent studies have 

documented how technological progress has helped to mitigate other urban externalities 

such as noise pollution (see McMillen 2004) and traffic congestion (Olszewski and Xie 

2005).    New crime fighting technologies such as the use of real time GIS maps for 

deploying police to “hot spots” has helped to reduce urban crime levels.  If technological 

advance can reduce the external pollution costs of “city bigness”, then urban quality of 

life will sharply improve (Portney and Mullahy  1986, Small and Kazimi 1995, Gyourko, 

Kahn and Tracy 1999).    

 In this paper, we examine why there has been a  “greening” of California’s 

vehicle fleet.   Environmentalists tend to focus on the scale effects induced by urban 

growth (Wackernagel et. al. 2002).  In many growing cities, the population is 

suburbanizing and enjoying rising incomes.  In addition, the urban form of these growing 

cities is conducive to travel by private vehicle (Bertaud 2003, Bento et. al. 2005).  These 

trends help to explain why miles driven have soared.  If the quality of driving (i.e 

emissions per mile) did not improve, then such urban growth could sharply degrade local 

air quality.  Technological advance, both due to government regulation and vehicle 

company innovation, has significantly reduced the local air pollution impact of driving.  

Since vehicles are durable goods, it takes years for new vehicle emissions progress to 

significantly reduce the emissions of the average vehicle on the roads.      

We use two waves of the California Random Roadside Emissions tests spanning 

the years 1997 to 2002 to estimate vehicle level emissions production functions.  These 
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regressions allow us to estimate infleet emissions by vehicle model year.   We document 

that infleet vehicle emissions decline sharply as new vehicle emissions regulation is 

phased in.   Controlling for a vehicle’s model year and mileage, richer households pollute 

less per-mile of driving.   By combining estimates of average vehicle emissions by model 

year and data on the age distribution of the vehicle fleet, we document the reduction in 

average vehicle emissions by calendar year.   Our estimates of how the average vehicle’s 

emissions have declined over time provide a measure of overall technological progress.  

Using California air pollution data for ambient carbon monoxide, nitrogen dioxide and 

ozone, we document that despite increased population, rising per-capita income and 

ongoing population sprawl, reductions in average emissions per-vehicle have helped to 

improve ambient air quality and hence raise urban quality of life. 

 

Measuring Vehicle Emissions Progress Over Time  

Private vehicle emissions are leading contributors to California’s ambient carbon 

monoxide, nitrogen dioxide and ozone levels.  Vehicles are durable goods.  The median 

age of a vehicle in the United States is over 8 years old.   In any calendar year t, the 

average vehicle’s emissions represent a weighted average of emissions of each previous 

vintage weighted by that vintage’s share of the fleet.   Equation (1) shows this 

relationship using the identity that in year t a vehicle built in t-j is j years old. 

Et  =  Σγj*Emodel year t-j        (1) 

In equation (1),  γj represents the share of the vehicle fleet that is j years old.  These 

shares sum to one.  Emodel year t-j  represents vehicle emissions for the average vehicle built 
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in year t-j.     Equation (1) represents an aggregation equation mapping heterogeneous 

vehicles’ emissions into an “average” vehicle’s emissions in any calendar year. 

In this paper, we will use a rich data set (described below) to estimate how Emodel 

year t-j varies a function of model year.  Equation (2) reports our multivariate vehicle 

emissions production function.  The unit of analysis is a vehicle.  We estimate log-linear 

OLS regressions in order to explain vehicle i that is registered in zip code l’s emissions.  

Log(1+Eil) = c + Σj βj*Model_Yearj  +  Zipcodel  + controlsi + Uil           (2) 

 

In equation (2), ZipCode is a vector of zip code of vehicle registration fixed 

effects.   These fixed effects allow us to control for socio-economic differences across 

communities.  Controls include vehicle characteristics such as dummy variables for 

whether the vehicle is a light truck, built by a USA manufacturer, climate indicators for 

the day of the emissions test, engine size, log of mileage and a time trend indicating the 

month in which the vehicle was emissions tested in the Random Roadside test.  Model 

year represents a set of dummy variables from 1966 to 2002.   

Our empirical approach is to first estimate equation (2).  This yields new 

estimates of how infleet vehicle emissions vary as a function of vehicle model year, type 

and vehicle owner attributes.  We will use estimates of these regressions and combine 

this with data on the age distribution of California’s vehicle fleet to compute estimates of 

the average vehicle emissions by calendar year (see equation 1).  This will represent our 

overall emissions “progress” index.  In the last section of the paper, we will document 

how this measure correlates with ambient California air pollution. 
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Vehicle Data 

 To measure vehicle emissions, we use the 1997 to 1999 and 2000 to 2002 waves 

of the California Random Roadside data.   California’s Bureau of Automotive Repair 

(BAR) collected emissions tests on more than 25,000 vehicles between February 1997 

and October 1999 by pulling vehicles over at random at roadside sites in Enhanced Smog 

Check Program areas around the state.3 The roadside equipment for these tests is the 

same as that used in the Enhanced Smog Check Program (the state’s vehicle Inspection 

and Maintenance program).  BAR collects these data as an on-road check of how well the 

Smog Check program is performing.  

The data set provides detailed information on each vehicle’s emissions of oxides 

of nitrogen, hydrocarbons, and carbon monoxide. The data used in this study were 

collected using the Acceleration Simulation Mode (ASM) test, which measures emissions 

as concentration in the exhaust.  For each vehicle, the data set reports its type (i.e., car or 

light truck (i.e., SUV or pickup)), model year, mileage, make, weight, and other variables 

we will discuss below.    

Table One reports the empirical distribution for the three pollutants for the 37,519 

vehicles in our sample. Hydrocarbons and nitrogen oxide are measured in parts per 

million while carbon monoxide is measured as a percentage.  The data are clearly heavily 

right skewed with the mean being more than twice as high as the median for 

hydrocarbons and nitrogen oxide and six times higher for carbon monoxide. The 

existence of super emitters is apparent from this table.  Note that the ratio of the 99th 

                                                 
3 An additional 12,000 vehicles were sampled in the 2000 to 2002 wave of the Random 
Roadside test.   
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percentile to the 95th percentile is roughly equal to two for all three pollutant measures.4   

These pollution measures are not highly correlated.  The correlation between 

hydrocarbons and carbon monoxide equals .31 and the correlation between hydrocarbons 

and nitrogen oxide is .11.  The correlation between carbon monoxide and nitrogen oxide 

is -.02. 

 

Measuring Vehicle Emissions Progress by Model Year 

 

In this section, we present new evidence on how vehicle emissions vary as a 

function of model year.  The unit of analysis is a vehicle.   Table Two reports three OLS 

estimates of equation (2).  In column (1), the dependent variable is the log of vehicle 

hydrocarbon emissions.  In columns (2) and (3), the dependent variables are the log of 

carbon monoxide emissions and the log of oxides of nitrogen, respectively.   In these 

regressions, the omitted category is a 1966 imported non-luxury car tested between 1997 

and 1999.5  

The hydrocarbons regression results show that emissions have declined with 

respect to model year but the relationship is not linear.   Note the sharp drop in vehicle 

                                                 

4 The fact that a small percentage of vehicles contribute a large share of the total stock of 
emissions suggests that effective inspection and maintenance programs could play a key 
role in reducing California smog.  As documented by Hubbard (1997), private garages do 
not face the right incentives to pursue the public interest of reducing super-polluter’s 
emissions.  A more cost-effective means of reducing such vehicles’ emissions would be 
to use remote sensing to identify likely gross polluters for required repair (see 
http://www.rppi.org/smogcheck.html). 

 
5 The luxury makes include:  BMW, Ferrari, Alfa Romero, Lexus, Mercedes, Porsche, 
Rolls Royce, Saab, Audi, Jaguar and Cadillac. 
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emissions between 1974 makes and 1975 makes.   California’s new vehicle hydrocarbon 

emissions regulation tightened by 69% over this time period.   In the late 1990s, vehicles 

built between 1975 and 1983 emit roughly the same amount of hydrocarbons.  Starting 

with the 1984 makes there is a monotonic relationship between declining new vehicle 

emissions and model year. The model year estimates for the carbon monoxide regression 

reported in column (2) reveal a very similar pattern.    Note the improvements in carbon 

monoxide emissions between 1974 makes and subsequent makes.  In 1975, new vehicles 

were regulated to pollute 74% less carbon monoxide than pre-1975 makes.  The oxides of 

nitrogen regression also indicate declining vehicle emissions with respect to model year 

but there is no clear observable sharp decline in any model years.6  

Figure One graphs emissions patterns with respect to vehicle model year. To 

generate this figure, we predict vehicle emissions using the results from Table Two and 

then calculate average predicted emissions by model year.  For each of the three pollutant 

measures we normalize the predictions by dividing through by the predicted value for 

1966 model year vehicles.  The Figure shows sharp improvement with respect to model 

year and documents emissions progress even during years when new vehicle regulation 

did not tighten.   Table Three reports our estimates of average vehicle emissions by 

                                                 
6 Unlike in the cases of hydrocarbon and carbon monoxide emissions, we do not see sharp 
reductions by model year in vehicle emissions (as shown in Table Two) lining up with 
the phase in of new vehicle regulation.  For example,  in California nitrogen oxide 
emissions regulation for new vehicles tightened significantly in 1975, 1977, 1980 and 
1993.  As shown in Table Two,  only when we compare 1993 makes to 1992 makes do 
we see a large negative jump in emissions for this pollution measure.  
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model year as sampled in the 1997 to 2002 Random Roadside tests.  These represent our 

estimates of Emodel year t-j  that we will use to calculate equation (1).7   

Could our estimates of lower vehicle emissions for more recent vintages of 

vehicles reflect aging effects?8     Previous research has concluded that aging effects are 

not quantitatively important.9   The results presented in Table Two control for vehicle 

mileage.  We can test for the presence of aging effects because the California Random 

Roadside tests took place across 32 months between February 1997 and October 1999 

and over 32 months in the second wave.  In each of the regressions reported in Table 

Two, we include a time trend indicating what month each vehicle was tested in.  In the 

hydrocarbons and carbon monoxide regressions we cannot reject the hypothesis that the 

coefficient on the time trend equals zero.  The aging hypothesis would predict a positive 
                                                 
7 It is important to note the small mileage elasticity estimates reported in Table Two.  For 
example, the hydrocarbons regression indicates a mileage elasticity of only .07.  We 
recognize that pre-1975 vehicles that are emissions tested in the late 1990s are likely to 
have high mileage relative to newer vehicles but these small elasticity estimates reduce 
our concern that we need to standardize vehicles with respect to mileage by calendar 
year. 
8 We recognize that the scrappage of durables raises the issue of selection bias.  In 
calendar year 1998, the set of 1970 model year vehicles on the roads are 28 years old.  
Assuming that vehicle emissions and engine performance are negatively correlated, then 
high emissions vehicles would be more likely to be scrapped and would be under 
sampled when the Random Roadside tests take place.   Thus, in 1998 the dirtiest 1970 
vehicles are less likely to observed on the roads.  This means that we are under-
estimating the infleet average emissions progress over time. 
9 Research investigating whether model year effects or age effects better explains why 
older vehicles pollute more has concluded that aging effects are small compared to 
intrinsic improvements with each successive model year (Schwartz 2003; Pokharel et al. 
2003).  For example, data from vehicle inspection programs and on-road remote sensing 
have sampled given vehicle model years in each of several calendar years, allowing 
comparison of different model years at a given age. These data show that with each 
successive model year, the average automobile is starting out and staying cleaner than 
vehicles from previous model years. As a result, the average emissions of the vehicle 
fleet are declining even as the age of the average vehicle increases over time.  
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coefficient controlling for vehicle model year.  It is true that for nitrogen oxide emissions 

we find a positive and quite large time trend. When we investigated this by graphing 

average emissions with respect to the month of the Random Roadside test we observed 

enormous outliers for vehicles tested in two months in early 1998.10   

 

Measuring Vehicle Emissions Progress by Calendar Year 

Equation (1) provides a simple aggregation approach that links average vehicle 

emissions by model year to average vehicle emissions by calendar year.   We use the 

results reported in Table Three as our estimate of Emodel year.  As shown in equation (1), 

we need data on the age distribution of California’s vehicle fleet.  We have data from the 

R.L Polk Company over the years 1978 to 1988 for Los Angeles County.  In each year, 

the data report the count of vehicles registered in Los Angeles County by vehicle model 

year.  This allows us to construct the γ in equation (1).   In Figure Two, we graph the 

empirical age distribution of the fleet for calendar years 1978, 1982 and 1988.  Figure 

Two shows that there have not been quantitatively large fleet aging effects over the years 

1978 to 1988.    This is important because California new vehicle emissions regulation 

tightened for 1981 makes.  An influential environmental economics literature has posited 

that an unintended consequence of new vehicle emissions regulation is that households 

keep their used vehicles longer than they would have in the absence of the regulation 

                                                 
10 The positive coefficient estimates on the variable “Dummy for Tested in 1997 to 1999” 
provide additional evidence against the importance of vehicle aging.  If vehicle aging 
raises vehicle emissions, then we should observe that holding vehicle model year 
constant that vehicles tested in the early period (1997 to 1999) should have lower 
emissions than observationally identical vehicles tested in the later Random Roadside test 
(2000 to 2002).  As shown at the bottom of Table Two, for both hydrocarbons and oxides 
of nitrogen emissions we reject this hypothesis.  
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(Gruenspecht 1982, Stavins 2006).11   Figure Two does show some evidence of 

California fleet aging between 1978 and 1982 but not between 1982 and 1988.   The 

observed aging effects are not quantitatively large. 

Given that the vehicle age distribution does not change much over time, we use 

the 1980 fleet age distribution for calculating γj. in equation (1).  The estimates of how the 

average vehicle’s emissions change by calendar year (over the years 1982 to 2002) are 

reported in Table Four.   The table shows overall progress in the “greening” of the 

average vehicle.   For example, the index for hydrocarbon emissions declines between 

1982 and 2002 from 124 parts per million to 14.4 parts per million.  For all three 

emissions indicators, the average vehicle is much lower emitting in calendar year 2002 

than in calendar year 1982.  In a section below, we will use the data reported in Table 

Four to explain overall ambient air pollution trends. 

 

Explaining Vehicle Emissions Heterogeneity Within Model Year  

 

In this section, we estimate additional vehicle emissions production functions 

based on equation (2).  Instead of including zip code of registration fixed effects, we now 

include two zip code level variables.    We estimate these regressions to document the 

role of rising household income and household environmentalism as determinants of 

vehicle emissions. 

                                                 
11 Some government studies have claimed that emissions control regulation has added 
over $2,000 to the price of a new vehicle while other researchers have disputed this 
arguing that new vehicle emissions regulation actually raises the quality of the driving 
experience (see Bresnahan and Yao 1985). 
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The first variable proxies for a vehicle’s owner’s income.  We include the log of 

average household income in the zip code of registration.12   In Table Five, we report 

three estimates of equation (2) using the 1997 to 1999 California Random Roadside test 

data.   We include the same vehicle and climate data on the emissions testing day that we 

included in the specifications reported in Table Two.  As shown in the top row of Table 

Five,  higher income households pollute less.   Controlling for vehicle model year, all 

three income elasticity estimates are roughly -.23.  We believe that this is a substantial 

under-estimate of the income elasticity due to the measurement error issue introduced by 

using average zip code income. 

Vehicle emissions represent a classic negative externality.  All urbanites have 

little incentive to internalize the social consequences of their vehicle emissions.   

Potentially offsetting this self interested logic, recent research has documented evidence 

that people who reveal themselves as environmentalists engage in greater “civic restraint” 

and degrade the commons less (see Kotchen and Moore 2004). 

Environmentalists may be more willing to invest in vehicle maintenance to reduce 

their emissions. This group may intentionally not want to pollution. To test this 

hypothesis requires an observable ideology measure.   As our environmental ideology 

measure we use the Green Party’s share of registered voters in a person’s zip code.13  

Kahn (2006) documents this variable’s explanatory power with respect to household 

differences in aggregate gasoline consumption and the propensity to purchase hybrid 

                                                 
12 By merging on a zip code average, we recognize that this is a noisy measure of a 
household’s true income.  Thus, we are underestimating the effect of income on vehicle 
emissions. 
13 For details documenting this party’s commitment to environmental issues see 
http://cagreens.org/platform/ecology.htm.   
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vehicles such as the Toyota Prius.14   As shown in Table Five, all else equal, vehicles 

registered in Green Party areas emit less.  A one percentage point increase in the share of 

zip code voters who are registered in the Green Party reduces hydrocarbon emissions by 

5% and oxides of nitrogen emissions by 22%.  

The final hypothesis we test is whether vehicles recently tested in California’s 

inspection and maintenance program pollute less. In Table Five, we create a dummy 

variable that equals one if a vehicle tested in the 1997 to 1999 Random Roadside test has 

participated in the inspection and maintenance program within the last 50 days.15  If 

recent regulation is effective, then such “treated” vehicles should have lower emissions.  

We find evidence of small negative effects.  Relative to observationally identical vehicles 

that have not been recently emissions tested, the “treated vehicles” have 8% lower 

hydrocarbon emissions and 11% lower carbon monoxide emissions. 

 

                                                 
14 The Berkeley IGS (see http://swdb.berkeley.edu/) provides data for each California 
census tract on its count of registered Green Party Voters. We use a Geocorr mapping of 
tracts to zip codes to create the percentage of each California zip code’s voters who are 
registered in the Green party.   
 
15 California currently operates three different variations of the Smog Check 
program in different areas of the state (see 
http://www.smogcheck.ca.gov/ftp/pdfdocs/program_map.pdf for a map). The 
"Enhanced" program operates in the state's major metropolitan areas and requires 
biennial and change-of-ownership testing of automobiles using the "BAR97" test. In the 
BAR97 test, cars are placed on a treadmill-like machine called a dynamometer, allowing 
cars to be tested under conditions that simulate on-road driving. The Enhanced program 
began in June of 1998. The "Basic" program operates in smaller metropolitan areas and 
rural areas near metropolitan areas and requires biennial and change-of-ownership 
testing using the "BAR90" test. In the BAR90 test, cars are tested at idle without the 
engine in gear.  The BAR90 test was also used in Enhanced areas before the beginning of 
the Enhanced program.  Finally, the "Change-of-Ownerhip" program operates in the most 
rural and remote areas of the state. This program also uses the BAR90 test, but 
requires cars to be tested only when they change owners. 
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Urban Air Pollution Progress as a Function of Average Vehicle Emissions 

 

 In Table Four, we documented how the “average” vehicle’s emissions have 

declined over time.  In this section, we use data on ambient air pollution at multiple 

monitoring stations in California over the years 1982 to 2000 to test whether our estimate 

of average vehicle emissions levels predicts actual urban air pollution levels. 

To study this, we estimate urban ambient air pollution functions. The unit of 

analysis is monitoring station j located in county l’s time t average ambient pollution 

level.   Our ambient air pollution data is from the California Ambient Air Quality Data 

CD, 1980-2002 (California Air Resources Board).   This CD-ROM provides all air 

quality readings taken in the state during this time period.     

Equation (3) reports the functional form of our ambient pollution production 

function.   

Log(Ambient Pollutionjlt) =  Φ j +  β1*Population lt
 + β2Income lt

  + β3*E t+ Ujlt (3) 

In equation (3),  the “Et” term represents average vehicle emissions in calendar 

year t (see Table Four).  The monitoring station fixed effect, Φ, controls for the 

geography of a specific location and its average climate conditions.   The error term U 

reflects unobserved time varying variables such as climate variation at the monitoring 

station.  For example, during hotter summer months we would expect higher ambient 

ozone levels.   All else equal, pollution is an increasing function of the number of people 

who live in the county where the monitoring station is located, and of per-capita income.   

The data source for the county attributes is the Bureau of Economic Analysis’ REIS 

county data.    We have estimated versions of equation (3) where we include monitoring 
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station fixed effects and a time trend.  Based on these regressions, we find that ambient 

ozone is declining by 1.7% per year, ambient nitrogen oxide is declining by 2.6% per 

year and ambient carbon monoxide is declining by 3.9% per year. 

 Table Six reports three estimates of equation (3). In each of these regressions, the 

dependent variable is based on the annual arithmetic mean at a monitoring station in a 

specific year.   The standard errors are clustered by calendar year because the average 

vehicle emissions index (see Table Four) only varies across calendar years.  All three 

regressions highlight the tension between scale and technique effects.   For example, 

consider the ambient carbon monoxide regression reported in Table Six.  The elasticity of 

county population on pollution is .36 and the elasticity of county per-capita real income 

on pollution is .45.  These two facts suggest that urban growth will increase ambient 

carbon monoxide levels.  But, offsetting these effects is the technique effect.  The 

elasticity of the vehicle carbon monoxide emissions index (see Table Four) on ambient 

carbon monoxide is .65.   

As the average vehicle’s carbon monoxide emissions declines over time, ambient 

carbon monoxide improves.  A similar pattern is observed for ambient nitrogen oxide.  

The results for ambient ozone are not as strong.  Note that the elasticity estimates are 

small and I cannot reject the hypothesis that the proxies for scale (county population and 

county per-capita income) are statistically insignificant.  This makes sense because the 

formation of ozone as a byproduct of hydrocarbon emissions and xx does not respect 

physical boundaries and can float away imposing downwind externalities.16 Still, it must 

                                                 
16 We acknowledge that for certain ambient pollutants such as ozone, the relationship 
between emissions and ambient pollution can have very unusual isoquants (see the NRC 
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be noted that even in the case of ambient ozone, the vehicle hydrocarbon index is 

statistically significant in explaining its dynamics.  Average vehicle emissions declines 

have helped to offset the increased scale of economic activity in sprawling California. 

 

Conclusion 

Growing cities, featuring more people with higher incomes who live and work in 

the suburbs and do not commute by public transit should be a recipe for increased 

pollution and rising public health challenges.  Instead,  since 1980 California’s major 

polluted urban areas have experiences sharp reductions in air pollution.  This paper has 

used two novel micro data sets to report new facts on why these gains have taken place.   

We have shown how technological advance has played a key role in reducing the average 

vehicle’s emissions over time.   These emissions reductions have been sufficient to offset 

the rising scale of urban driving brought about by population and income growth. 

By documenting the role played by technological advance and diffusion of 

technologies in reducing vehicle emissions, this paper touches on a broader theme in 

urban economics.    Technological advance has reduced many of the social costs of city 

bigness.  It has reduced both air emissions and noise emissions associated with urban 

economic activity.  Information technology has allowed cities to start road pricing 

programs reducing the transaction costs of tracking which vehicle has entered what zone 

at what time.   Under Rudy Giuliani, New York City started to use a spatial mapping 

program called “CompStat”  to monitor the spatial distribution of crime.    Some futurists 

have argued that information technology would reduce the benefits of urbanization (for 
                                                                                                                                                 
1990).  Here we simply want to document the positive correlation between our average 
vehicle emissions indices and ambient pollution levels.   
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details on this debate see Glaeser 1998).  In this paper, we have argued that technological 

advance reduces the cost of urbanization and hence enhances the “consumer city’s” 

quality of life (Glaeser, Kolko and Saiz 2001). 
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Figure Two 
 
 

CDF of the Los Angeles Vehicle Age Distribution by Calendar Year
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Table One  Empirical Distribution of Vehicle Emissions

Percentile Hydrocarbons Carbon Monoxide Nitrogen Oxide
(ppm) (Percentage) (ppm)

1% 0 0 0
5% 2 0 0

10% 6 0 5
25% 15 0.02 82

50% 44 0.12 313

75% 114 0.49 827
90% 206 2.18 1587
95% 278 4.28 2306
99% 791 8.43 4304

mean 102.687 0.723 622.687
standard deviation 306.281 1.620 843.886

38691 observations



Table Two:  Vehicle Emissions Regressions   

Hydrocarbons Carbon Monoxide Nitrogen Oxide
  

Column (1) (2) (3)
beta s.e beta s.e beta s.e

Built in 1967 -0.0747 0.1379 0.1786 0.1287 -0.3155 0.2199
Built in 1968 -0.2940 0.1274 -0.0551 0.1189 -0.2736 0.2032
Built in 1969 -0.2357 0.1288 -0.0227 0.1201 -0.0413 0.2053
Built in 1970 -0.3148 0.1257 -0.2844 0.1172 -0.1153 0.2004
Built in 1971 -0.4279 0.1312 -0.2788 0.1223 -0.1932 0.2091
Built in 1972 -0.5669 0.1183 -0.4458 0.1103 -0.2672 0.1886
Built in 1973 -0.5374 0.1159 -0.3376 0.1081 -0.5455 0.1848
Built in 1974 -0.6438 0.1174 -0.3610 0.1095 -0.2918 0.1872
Built in 1975 -1.0081 0.1236 -1.0729 0.1153 -0.3953 0.1971
Built in 1976 -0.9000 0.1143 -0.6908 0.1066 -0.5692 0.1822
Built in 1977 -1.0074 0.1063 -0.8556 0.0992 -0.6114 0.1695
Built in 1978 -0.8270 0.1048 -0.8434 0.0978 -0.6439 0.1671
Built in 1979 -0.9487 0.1031 -0.9759 0.0962 -0.7155 0.1644
Built in 1980 -1.1181 0.1050 -0.8638 0.0979 -0.6923 0.1674
Built in 1981 -0.9597 0.1030 -0.9371 0.0961 -0.6920 0.1643
Built in 1982 -1.0137 0.1017 -1.0098 0.0948 -0.8103 0.1621
Built in 1983 -1.1076 0.1007 -1.1255 0.0939 -0.7877 0.1605
Built in 1984 -1.2072 0.0991 -1.1193 0.0925 -0.8462 0.1580
Built in 1985 -1.3222 0.0985 -1.2660 0.0919 -1.0242 0.1570
Built in 1986 -1.5678 0.0982 -1.4963 0.0916 -1.1849 0.1565
Built in 1987 -1.6384 0.0994 -1.5328 0.0927 -1.3795 0.1585
Built in 1988 -1.8875 0.0994 -1.7586 0.0927 -1.6892 0.1584
Built in 1989 -2.1277 0.0990 -1.8764 0.0924 -2.0518 0.1578
Built in 1990 -2.2678 0.0992 -1.9493 0.0925 -2.2875 0.1582
Built in 1991 -2.4266 0.0993 -2.0404 0.0926 -2.5611 0.1583
Built in 1992 -2.6569 0.1044 -2.0979 0.0974 -3.0041 0.1665
Built in 1993 -2.9904 0.1047 -2.2640 0.0977 -3.2827 0.1670
Built in 1994 -3.1769 0.1039 -2.3450 0.0969 -3.5051 0.1656
Built in 1995 -3.4355 0.1034 -2.4635 0.0965 -3.6360 0.1649
Built in 1996 -3.7544 0.1047 -2.5149 0.0977 -4.2601 0.1669
Built in 1997 -3.8481 0.1087 -2.5479 0.1014 -4.3668 0.1733
Built in 1998 -4.0278 0.1219 -2.5463 0.1137 -4.7680 0.1944
Built in 1999 -4.0459 0.1446 -2.4598 0.1348 -4.8986 0.2305
Built in 2000 -4.0924 0.1518 -2.5127 0.1416 -5.4331 0.2420
Built in 2001 -4.0695 0.1522 -2.4751 0.1419 -5.4489 0.2426
Light Truck 0.1874 0.0133 0.1766 0.0124 0.2281 0.0212
Engine Size -0.0071 0.0049 -0.0243 0.0045 -0.0945 0.0077
Luxury Car -0.2220 0.0258 -0.2546 0.0241 0.0628 0.0411
log(miles) 0.0719 0.0068 0.0279 0.0064 0.1201 0.0109
Vehicle Built by USA maker 0.1842 0.0140 -0.0381 0.0130 0.2742 0.0223
Time Trend (months) 0.0047 0.0009 -0.0016 0.0008 0.0282 0.0014
Dummy for Tested in 1997 to 1999 0.1862 0.0339 -0.0225 0.0316 0.4245 0.0540
Constant 4.3635 0.1441 0.1361 0.1344 5.2065 0.2297

climate controls yes  yes  yes
zip code fixed effects yes  yes  yes
observations 37519 37519 37519
Adjusted R2 0.394 0.245 0.314
 
This table reports three OLS estimates of equation (2) in the text.  In Column (1), the dependent variable equals the log of
1 plus the vehicle's hydrocarbons emissions. In Column (2), the dependent variable equals the log of .1 + the vehicle's
carbon monoxide emissions. In Column (3) the dependent variable equals the log of 1 + the vehicle's nitrogen 
oxide emissions. The omitted category is a non-luxury foreign car built in 1966 and tested in the 1999 to 2002
Random Roadside Tests.  Zip code fixed effects are based on each vehicle's zip code of registration.
Climate controls include a measure of the temperature, humidity and barometric pressure on the day of the emissions
test. 
 



Table Three:   Predicted Vehicle Emissions by Model Year
 
Model Year Hydrocarbons Carbon Monoxide Nitrogen Oxide

   
1966 236.9953 1.3782 898.9576
1967 221.6225 1.6644 658.3838
1968 178.8013 1.3292 690.2068
1969 192.8907 1.3764 896.6134
1970 173.9023 1.0691 760.6028
1971 155.0531 1.1121 696.3637
1972 138.7080 0.9242 692.8679
1973 142.3556 1.0236 523.6857
1974 126.6037 1.0157 670.1350
1975 90.2401 0.4987 619.4551
1976 99.3738 0.7301 516.1871
1977 89.2408 0.6109 502.2860
1978 104.7666 0.6187 495.7888
1979 92.5475 0.5403 462.7075
1980 75.1192 0.6282 467.6595
1981 88.1976 0.5788 472.3607
1982 85.5538 0.5450 446.2201
1983 77.4158 0.4813 459.6384
1984 71.2808 0.4895 443.3663
1985 63.9697 0.4197 382.2768
1986 50.5751 0.3388 333.8940
1987 47.5818 0.3231 290.4994
1988 37.4939 0.2579 214.1250
1989 29.6746 0.2279 151.6714
1990 25.6150 0.2105 120.9348
1991 21.8785 0.1924 92.1153
1992 17.4768 0.1903 52.7604
1993 12.4799 0.1643 36.4930
1994 10.3391 0.1507 29.9606
1995 7.8321 0.1331 25.1842
1996 5.4181 0.1246 12.6761
1997 4.7418 0.1177 11.1579
1998 4.0301 0.1148 9.6878
1999 4.1307 0.1131 10.1320
2000 3.8052 0.1062 5.5300
2001 3.7669 0.1074 5.3621

This table's entries for predicted emissions are generated using the regression coefficients reported in
Table Two.  For each vehicle, we predict its log(emissions) based on its observable attributes.
We then calculate the anti-log and average this prediction by vehicle model year.
 
 



Table Four:  Predicted Average Vehicle Emissions by Calendar Year

Calendar Year Hydrocarbons Carbon Monoxide Nitrogen Oxide

1982 124.0120 0.8327 592.7613
1983 115.9955 0.8019 556.7698
1984 107.5361 0.7359 542.6200
1985 103.0065 0.6951 537.4724
1986 95.0150 0.6296 505.0494
1987 87.7633 0.5949 476.1184
1988 81.3736 0.5464 448.7502
1989 76.1200 0.5139 408.5739
1990 69.3089 0.4766 388.5949
1991 61.5315 0.4116 353.7858
1992 57.1082 0.3990 315.2044
1993 51.3500 0.3618 283.2889
1994 47.1625 0.3344 252.7107
1995 41.2004 0.3027 221.1146
1996 35.3204 0.2829 193.1058
1997 31.8538 0.2553 167.2449
1998 27.6735 0.2325 141.5550
1999 23.5349 0.2104 120.5795
2000 20.0032 0.1951 100.1234
2001 16.8992 0.1767 80.1658
2002 14.4175 0.1634 67.2371

This table uses equation (1) in the text to calculate average vehicle emissions 
by calendar year.  Predicted vehicle emissions by model year are reported in
Table Three.  The age distribution of Los Angeles County vehicles in calendar year 1980
is used to measure the age distribution.
 
 
 



Table Five: Explaining Within Model Year Variation in Vehicle Emissions
 

Hydrocarbons Carbon Monoxide Nitrogen Oxide

Column (1) (2) (3)
beta s.e beta s.e beta s.e

log(zip code Average Income) -0.2211 0.0390 -0.2346 0.0289 -0.2530 0.0629
Zip Code Green Party Share of Registered Voters -0.0522 0.0229 -0.0261 0.0180 -0.2233 0.0556
I/M Tested in Last 50 Days -0.0800 0.0301 -0.1071 0.0269 -0.0689 0.0532
Constant 5.5205 0.4355 1.2839 0.3343 7.7881 0.7888

Vehicle Model Year Fixed Effects Yes Yes Yes
Vehicle Attribute Controls Yes Yes Yes
Emissions Test Day Climate Controls Yes Yes Yes
 
observations 19577 19577 19577
Adjusted R2 0.319 0.219 0.232

This table reports three estimates of equation (2) based on the 1997 to 1999 Random Roadside Sample.
The zip code variables are based on the vehicle's zip code of registration.  These explanatory variables vary
across zip codes but not within zip codes.  The standard errors are clustered by zip code.  The dummy variable
"I/M tested in last 50 days" equals one if the vehicle's last inspection and maintenance test was within
fifty days of the date when the vehicle was tested by the Random Roadside test.
The variable "Zip Code Green Party Share of Registered Voters" is measured in percentage points.
It has a mean of .80 and a standard deviation of .52. 
 



Table Six:  The Determinants of California Ambient Pollution from 1982 to 2000

Dependent Variable Log(Ozone) Log(Nitrogen Log(Carbon 
Dioxide) Monoxide)

beta s.e beta s.e beta s.e

log(county population) 0.0507 0.1067 0.2452 0.1256 0.3612 0.1682
log(vehicle hydrocarbon index) 0.1932 0.0318
log(vehicle nitrogen oxide index) 0.3194 0.0387
log(vehicle carbon monoxide index) 0.6513 0.0598
log(county real per-capita income) 0.1030 0.1376 0.2946 0.1407 0.4469 0.1596
constant -4.4922 2.4707 -10.3106 2.2019 -6.5646 3.2980

Monitoring Station Fixed Effects Yes Yes Yes
Observations 4343 2670 2502
Adjusted R2 0.703 0.851 0.7470

Each ambient pollutant is measured by the maximum one hour reading at a monitoring station during a calendar year.  The
unit of analysis is a monitoring station/year. Standard errors are clustered by calendar year.
The three explanatory variables measuring vehcile emissions indices are based on the data reported in Table Four.  These
variables vary across calendar years but not within calendar years.


