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Chapter 12 

 

Autocorrelation 

12.1 The Nature of the Problem 

• The randomness of the sample implies that the error terms for different observations 

(households or firms) will be uncorrelated.  

• When we have time-series data, where the observations follow a natural ordering 

through time, there is always a possibility that successive errors will be correlated with 

each other.  

• In any one period, the current error term contains not only the effects of current shocks 

but also the carryover from previous shocks. This carryover will be related to, or 

correlated with, the effects of the earlier shocks. When circumstances such as these 

lead to error terms that are correlated, we say that autocorrelation exists.  



• The possibility of autocorrelation should always be entertained when we are dealing 

with time-series data.  

• Suppose we have a linear regression model with two explanatory variables. That is, 
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y x x1 2 2 3 3t t t teβ +β +β +                                       (12.1.1) =

• The error term assumptions utilized in Chapters 3 through 9 are 

( ) 0tE e =                                      (12.1.2a) 2var( )te = σ

( )cov , 0t se e =     for t ≠ s                                    (12.1.2b) 

• When (12.1.2b) does not hold, we say that the random errors et are autocorrelated. 

12.1.1 An Area Response Model for Sugar Cane 

• Letting A denote area planted, and P denote output price, and assuming a log-log 

(constant elasticity) functional form, an area response model of this type can be written 

as 



( ) ( )1 2ln lnA P= β +β                                              (12.1.3) 

• We use the model in (12.1.3) to explain the area of sugar cane planted in a region of the 

South-East Asian country of Bangladesh.  

• The econometric model is  

( ) ( )1 2ln lnt t tA P e= β +β +

y

                                         (12.1.4) 

• We can write this equation as 

1 2t t tx eβ +β +                                                  (12.1.5) =

where 

( )lnt t
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y A=   and  ( )lnt tPx =                                         (12.1.6) 

  



12.1.1a Least Squares Estimation 

• Application of least squares yields the following estimated equation 

ˆty  = 6.111 +0.971 xt R2 = 0.706                          (R12.1) 

   (0.169)(0.111)                                           (std. errors) 

 

• The least squares residuals appear in Table 12.2 and are plotted against time in Figure 

12.1. 

[Figure 12.1  Least squares residuals plotted against time ] 

• We can see that there is a tendency for negative residuals to follow negative residuals 

and for positive residuals to follow positive residuals. This kind of behavior is 

consistent with an assumption of positive correlation between successive residuals.  
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• With uncorrelated errors, we would not expect to see any particular pattern. If the errors 

are negatively autocorrelated, we would expect the residuals to show a tendency to 

oscillate in sign.  

12.2 First-Order Autoregressive Errors 

• If the assumption cov( , ) 0t se e =  is no longer valid, what alternative assumption can we 

use to replace it? Is there some way to describe how the et are correlated? If we are 

going to allow for autocorrelation then we need some way to represent it.  

• The most common is model is a first-order autoregressive model or, more simply, an 

AR(1) model.  

1t t tve e −= ρ +

tE v = v

                                               (12.2.1) 

 

 0  v( ) 2var( )t σ          cov( , ) 0t sv v =  t ≠ s                  (12.2.2) =
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• The rationale for the AR(1) model is that the random component et in time period t is 

composed of two parts: (i) 1te −ρ  is a carry over from the random error in the previous 

period (ii) vt is a “new” shock to the level of the economic variable.  

• The autoregressive model asserts that shocks to an economic variable do not work 

themselves out in one period.  

12.2.1  Properties of an AR(1) Error 

• Assume  

1 1< ρ <                                                      (12.2.3) −

 

 It can be shown that  

( ) 0tE e =                                                     (12.2.4) 
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2
2

2var( )
1

v
t ee σ
= σ =

−ρ
                                      (12.2.5) 

Because  does not change over time, the error e2
eσ t  is also homoskedastic. 

( ) 2cov , k
t t k ee e − = σ ρ                                         (12.2.6) 0k >

The error correlation  

( )
cov( , )corr( , )

var( ) var
t t k

t t k
t t k

e ee e
e e

−
−

−

=  

 
2

2 2

k
ke

e e

σ ρ
= = ρ

σ σ
                                           (12.2.7) 

• ρ is the correlation between two errors that are one period apart; it is sometimes called 

the autocorrelation coefficient. 
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12.3 Consequences for the Least Squares Estimator 

• If we have an equation whose errors exhibit autocorrelation, but we ignore it, or are 

simply unaware of it, what does it have on the properties of least squares estimates?  

1. The least squares estimator is still a linear unbiased estimator, but it is no longer best. 

2. The formulas for the standard errors usually computed for the least squares estimator 

are no longer correct, and hence confidence intervals and hypothesis tests that use these 

standard errors may be misleading. 



Proofs: 

• For the simple regression model t t1 2ty x e= β +β + , we wrote the least squares estimator 

for β2 as 

2 2 t tb w e
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= β +∑                                           (12.3.1) 

 where 

( )
( )2

t
t

t

x x
w

x x
−

=
−∑

                                            (12.3.2) 

• We prove b2 is still an unbiased estimator for β2 under autocorrelation by showing that 

2 2 2( ) ( )t tE b w E e= β + = β∑                                  (12.3.3) 

• For the variance of b2 we have 

( )2
2var( ) var cov( , )t t i j i ji j

b w e w w e e
≠
ΣΣ= +∑  



 
Slide 12.10 

Undergraduate Econometrics, 2nd Edition-Chapter 12 
 

≠
ΣΣ= σ + σ ρ2 2 2 k

e t e i ji j
w w w∑  (where k = |i−j|) 

( ) ( )
( )( )

2

2 2
11 ke

i ji j
t t

x x x x
x x x x ≠

ΣΣ
⎛ ⎞σ

= ⎜ + ⎟ − −  ρ
⎜ ⎟− −⎝ ⎠∑ ∑

(12.3.4) 

• When we were proving that 2 2x2var( ) ( )e tb x= σ −∑  in the absence of autocorrelation, 

the terms  were all zero. This simplification no longer holds, however.  cov( , )i je e

 



• Return to least squares estimation of the sugar cane example.  

• Given estimates for ρ and 2
eσ , it is possible to use a computer to calculate an estimate 

for var(b2) from equation 12.3.4. A similar estimate for var(b1) can also be obtained.  

• Suppose that we have estimates of ρ and 2
eσ , and that we have used them to estimate 

var(b1) and var(b2).  

• The square roots of these quantities we can call correct standard errors, while those we 

calculated with our least squares estimates and reported in equation 12.1.7 we call 

incorrect. The two sets of standard errors, along with the estimated equation are: 

ˆty =6.111+0.971 xt 

                                                             (0.169)(0.111) "incorrect" s.e.'s             (R12.2) 

                                                             (0.226)(0.147) "correct" s.e.'s 

• Note that the correct standard errors are larger than the incorrect ones.  
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• If we ignored the autocorrelation, we would tend to overstate the reliability of the least 

squares estimates. The confidence intervals would be narrower than they should be. 

For example, using tc = 2.037, we find the following 95% confidence interval for β2: 

 For β2: (0.745, 1.197) (incorrect) 

  (0.672, 1.269) (correct) 

 



12.4 Generalized Least Squares 

12.4.1 A Transformation 

• Our objective is to transform the model in equation 12.1.5 
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y x1 2t t te= β +β +

e e −

                                            (12.4.1) 

• The relationship between  and  is given by te tv

1t t tvρ +                                                   (12.4.2) =

Substituting (12.4.2) into (12.4.1) yields 

1 2 1t t t ty x e − v= β +β + ρ +

t te y

                                       (12.4.3) 

• To substitute out , we note that (12.4.1) holds for every single observation.  1te −

1 1 1 2 1tx− − −−β −β                                            (12.4.4) =



• Multiplying (12.4.4) by ρ yields 
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t te y1 1 1 2 1tx− − −= ρ −ρβ −ρβ                                         (12.4.5) ρ

• Substituting (12.4.5) into (12.4.3) yields 

1 2 1 1 2 1t t t t ty x y x v− −= β +β + ρ −ρβ −ρβ +  

or, after rearranging, 

 ( ) ( )1 1 2 11t t t t ty y x− −− ρ = β −ρ +β −ρ +x v                             (12.4.6) 

• The transformed dependent variable is 

1t t ty y∗y = −−ρ

t tx x x∗

 t = 2,3,...,T                                      (12.4.7a) 

• The transformed explanatory variable is 

2 1t−− ρ  t = 2,3,...,T                                       (12.4.7b) =

• The new constant term is 



 1 1tx∗ = −ρ  t = 2,3,...,T                                           (12.4.7c) 

• Making these substitutions we have 

1 1 2 2t t t tx x∗ ∗ ∗ vy β + β +                                                 (12.4.8) =

• Thus we have formed a new statistical model with transformed variables ty∗ , 1tx∗  and 

 and, importantly, with an error term that is not the correlated e2tx∗
t, but the 

uncorrelated vt that we have assumed to be distributed (0, 2
vσ ).  

• There are two additional problems that we need to solve, however: 

1.  Because lagged values of ty  and  had to be formed, only (T−1) new observations 

were created by the transformation in (12.4.7). We have values )

tx

1 2( , ,t t t
∗y x x∗ ∗  for t = 

2,3,...,T. But, we have no )1 11 12( , ,∗
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y x x∗ ∗ . 

2.  The value of the autoregressive parameter ρ. 



12.4.1a Transforming the First Observation 

 The first observation in the regression model is 
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y x1 1 1 2 1eβ + β +                                               (12.4.9) =

with error variance 2 2 2
1var( ) (1 )e ve σ = σ −ρ .  =

• The transformation that yields an error variance of  is multiplication by 2
vσ

21−ρ . The 

result is 

 2 2 2 2
11 1 1 21 1 1 1y x eρ = −ρ β + −ρ β + −ρ                   (12.4.10) −

or 

1 11 1 12 2 1
∗y x x e∗ ∗ ∗β + β +                                    (12.4.11a) =

where 



 
2

1 1

2
12 1

1

1

y y

x x

∗

∗

= −ρ

= −ρ
 

2
11

2
1 1

1

1

x

e e

∗

∗

= −ρ

= −ρ
                       (12.4.11b) 

• Note that 

2
2 2 2

1 1 2var( ) (1 ) var( ) (1 )
1

v
ve e∗ σ

= −ρ = −ρ = σ
−ρ
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Remark:  We can summarize these results by saying that, providing ρ is 

known, we can find the best linear unbiased estimator for β1 and β2 by 

applying least squares to the transformed model 

 t1 1 2 2t t tx x∗ ∗ ∗ vy β +β +                              (12.4.12) =

where the transformed variables are defined by 

 2
1 11y y∗ = −ρ  2

11 1x∗ = −ρ  2
12 11x x∗ = −ρ  

for the first observation, and 
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 t 1t ty y∗
−= −ρ  1 1tx∗ = −ρ  t2 1t tx x x∗

−y −ρ  =

for the remaining T2,3,...,t = observations.  

 

 



12.5 Implementing Generalized Least Squares 

The remaining problem is the fact that the transformed variables ty∗ , 1tx∗  and 2tx∗  cannot be 

calculated without knowledge of the parameter ρ  

Consider the equation 

1t t tve e −= ρ +

e y

                                                    (12.5.1) 

• If the et values were observable, we could treat this equation as a linear regression 

model and estimate ρ by least squares.  

• However, the et are not observable because they depend on the unknown parameters β1 

and β2 through the equation 

1 2t t tx= −β −β

e y b b

                                                 (12.5.2) 

• As an approximation to the et we use instead the least squares residuals 

1 2t̂ t tx− −                                                     (12.5.3) =
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 where b1 and b2 are the least squares estimates from the untransformed model. 

• Substituting the  for the et̂e t in (12.5.1) is justified providing the sample size T is large. 

Making this substitution yields the model 
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e e −1垐 ?t t tvρ +                                                     (12.5.4) =

• The least squares estimator of ρ from (12.5.4) has good statistical properties if the 

sample size T is large; it is given by 

1
2

2
1

2

垐

ˆ
ˆ

T

t t
t

T

t
t

e e

e

−
=

−
=

ρ =
∑

∑
                                                         (12.5.5) 



12.5.1 The Sugar Cane Example Revisited 

• We obtain  

1
2

2
1

2

垐

ˆ 0.342
ˆ

T

t t
t

T

t
t

e e

e

−
=

−
=

ρ = =
∑

∑
                                          (11.5.6) 

• As examples, note that 

( )

2
1 1

2

ˆ1

1 0.342 3.3673
3.1642

y y∗ = −ρ

= −

=

                                         (R12.5) 
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and 

                                          32 32 22ˆx x x∗ = −ρ        

= −2.2919 − (0.342)(−2.1637) 

= −1.5519                                                                   (R12.6) 

• Applying least squares to all transformed observations yields the generalized least 

squares estimated model 

ˆln( )tA  =6.164 +1.007ln(Pt) 

(0.213)      (0.137)                                      (R12.7) 
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12.6 Testing for Autocorrelation 

• Looking for runs in the least squares residuals gives some indication of whether 

autocorrelation is likely to be a problem.  

• The Durbin-Watson test is by far the most important one for detecting AR(1) errors. 

• Consider again the linear regression model 

1 2t t ty x e= β +β +

e e −

                                         (12.6.1) 

where the errors may follow the first-order autoregressive model 

1t t tvρ +                                               (12.6.2) =

• It is assumed that the vt are independent random errors with distribution N(0, 2
vσ ). The 

assumption of normally distributed random errors is needed to derive the probability 

distribution of the test statistic used in the Durbin-Watson test. 
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• For a null hypothesis of no autocorrelation, we can use H0: ρ = 0. For an alternative 

hypothesis we could use H1: ρ > 0 or H1: ρ < 0 or H1: ρ ≠ 0.  

• We choose H1: ρ > 0; in most empirical applications in economics, positive 

autocorrelation is the most likely form that autocorrelation will take.  

• Thus, we consider testing  

H0:  ρ = 0      against      H1:  ρ > 0                             (12.6.3) 

• The DW statistic is 

( )2
1

2

2

1

垐

ˆ

T

t t
t

T

t
t

e e
d

e

−
=

=

−
=
∑

∑
                                                (12.6.4) 

where the  are the least squares residuals txt̂e 1 2t̂ te y b b− − .  =

• To see why d is closely related to ρ̂  expand (12.6.4) as 
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2 2
1 1

2 2 2

2

1

2 2
1 1

2 2 2

2 2 2

1 1 1

垐 垐2

ˆ

垐 垐

2
垐 ?

T T T

t t t t
t t t

T

t
t

T T T

t t t t
t t t
T T T

t t t
t t t

e e e e
d

e

e e e e

e e e

− −
= = =

=

− −
= = =

= = =

+ −
=

= + −

∑ ∑ ∑

∑

∑ ∑ ∑

∑ ∑ ∑

 

ˆ1 1 2≈ + − ρ                                                               (12.6.5) 

 

• Thus, we have 

( )ˆ2 1d ≈ −ρ                                                           (12.6.6) 

• If  = 0, then the Durbin-Watson statistic d ≈ 2, which is taken as an indication that the 

model errors are not autocorrelated.  

ρ̂
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• If  = 1 then d ≈ 0, and thus a low value for the Durbin-Watson statistic implies that 

the model errors are correlated, and ρ > 0. 

ρ̂

• What is a critical value dc such that we reject H0 when 

cd d≤  

• Determination of a critical value and a rejection region for the test requires knowledge 

of the probability distribution of the test statistic under the assumption that the null 

hypothesis, H0: ρ = 0, is true.  

• If a 5% significance level is required find dc such that P(d ≤ dc) = 0.05.  

• Then, as illustrated in Figure 12.2, we reject H0 if d ≤ dc and fail to reject H0 if d > dc.  

• For this one-tail test, the p-value is given by the area under ( )f d  to the left of the 

calculated value of d. Thus, if the p-value is less than or equal to 0.05, it follows that d 

≤ dc and H0 is rejected. If the p-value is greater than 0.05, then d > , and H0 is 

accepted. 

cd
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[ Insert Figure 12.2 here ] 

 

• A difficulty associated with ( )f d , and one that we have not previously encountered 

when using other test statistics, is that this probability distribution depends on the 

values of the explanatory variables. It is impossible to tabulate critical values that can 

be used for every possible problem. 

• There are two ways to overcome this problem. The first way is to use software 

(SHAZAM is an example) that computes the p-value for the explanatory variables in 

the model under consideration. Instead of comparing the calculated d value with 

some tabulated values of , we get our computer to calculate the p-value of the test. 

If this p-value is less than the specified significance level, 0

cd

0 :H ρ =  is rejected and 

we conclude that autocorrelation does exist. 
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• In the sugar cane area response model the calculated value for the Durbin-Watson 

statistic is d = 1.291. Is this value sufficiently close to zero (or sufficiently less than 

2), to reject 0H  and conclude that autocorrelation exists? Using SHAZAM, we find 

that 

p-value = P(d ≤ 1.291) = 0.0098 

• This value is much less than a conventional 0.05 significance level; we conclude, 

therefore, that the equation's error is positively autocorrelated. 

12.6.1a  The Bounds Test 

• In the absence of software that computes a p-value, a test known as the bounds test 

can be used to partially overcome the problem of not having general critical values. 

Durbin and Watson considered two other statistics Ld  and  whose probability 

distributions do not depend on the explanatory variables and which have the property 

that 

Ud

L Ud d d< <                                                 (12.6.7) 
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• That is, irrespective of the explanatory variables in the model under consideration, d 

will be bounded by an upper bound  and a lower bound Ud Ld . The relationship 

between the probability distributions ( )Lf d , ( )f d , and )(f Ud  is depicted in Figure 

12.3.  

• Let Lcd  be the 5% critical value from the probability distribution for Ld . Similarly, let 

 be such that Ucd ( ) .05U UcP d d< = . Since the probability distributions )(f Ld

U

 and 

)(f d  do not depend on the explanatory variables, it is possible to tabulate the critical 

values Lcd  and . Table 5 at the end of this book. Ucd

• In Figure 12.3 we have three critical values.  

• If the calculated value d is such that Lcd d< , then it must follow that cd d< , and  

is rejected.  

0H

• If , then it follows that , and  is accepted.  U cd d> cd d> 0H

• If Lc Uc , then, we cannot be sure whether to accept or reject.  d d d< <
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• These considerations led Durbin and Watson to suggest the following decision rules, 

which are known collectively as the Durbin-Watson bounds test. 

 If ,Lcd d<  reject 00 :H ρ =  and accept 1 : 0H ρ > ; 

 if  do not reject ,Ucd d> 0 : 0H ρ = ; 

 if ,Lc Uc  the test is inconclusive. d d d< <

 

 To find the critical bounds for the sugar cane example we consult Table 5 at the end of 

the book for T = 34 and K = 2. The values are 

1.393Lcd =  1.514Ucd =  

Since 1.291 ,Lcd d  we conclude that = < ,cd d<  and hence we reject 0H ; there is evidence 

to suggest that autocorrelation exists. 
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12.6.2 A Lagrange Multiplier Test 

• To introduce this test, return to equation (12.4.3) which was written as 
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y x e −1 2 1t t t tvβ +β + ρ +                                          (12.6.8) =

 

• If  was observable, an obvious way to test the null hypothesis 01te − 0 :H ρ =  would be to 

regress ty  on  and tx 1te −  and to use a t- or F-test to test the significance of the 

coefficient of . Because 1te − 1te −  is not observable, we replace it by the lagged least 

squares residuals  and then perform the test in the usual way. 1ˆ ,te −

• Proceeding in this way for the sugar can example yields 

 

t = 2.006 F = 4.022 p-value = 0.054 

 



• Obtaining a p-value greater than 0.05 means that, at a 5% significance level, the LM 

test does not reject a null hypothesis of no autocorrelation. This test outcome conflicts 

with that obtained earlier using the Durbin-Watson test. Such conflicts are a fact of 

life.  

 You should note the following 4 points: 

1. When estimating the regression in (12.6.8), using the first observation, t = 1, requires 

knowledge of . Two ways of overcoming this lack of knowledge are often 

employed. One is to set 

0ê

0 0.e =  The other is to omit the first observation. In our 

calculations we set 0 0.e =  The results change very little if the first observation is 

omitted instead. 

2. The Durbin-Watson test is an exact test valid in finite samples. The LM test is an 

approximate large-sample test, the approximation occurring because 1te −  is replaced 

by  1ˆ .te −
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3. The Durbin-Watson test is not valid if one of the explanatory variables is the lagged 

dependent variable 1.ty −  The LM test can still be used in these circumstances. This 

fact is particularly relevant for a distributed lag model studied in Chapter 15. 

4. We have only been concerned with testing for autocorrelation involving one lagged 

error . To test for more complicated autocorrelation structures, involving higher 

order lags such as 

1te −

2 ,te −  3,te −  etc, the LM test can be used by including the additional 

lagged errors in (12.6.8), and using an F test to test the relevance of their inclusion. 
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12.7 Prediction With AR(1) Errors 

• For the problem of forecasting or predicting a future observation y0 that we assume 
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y x0 1 0 2 0eβ + β +                                          (12.7.1) =

where  is a given future value of an explanatory variable and e0x 0 is a future error 

term.  

• When the errors are uncorrelated, the best linear unbiased predictor for 0y  is the least 

squares predictor 

0 1 2 0xŷ b b+                                               (12.7.2) =

• When the errors are autocorrelated, the generalized least squares estimators, denoted 

by  and , are more precise than their least squares counterparts b1β̂ 2β̂ 1 and b2. A 

better predictor is obtained, therefore, if we replace b1 and b2 by 1β̂  and 2β̂ . 



• When e0 is correlated with past errors we can use information contained in the past 

errors to improve upon zero as a forecast for . 0e

• For example, if the last error  is positive, then it is likely that the next error Te 1Te +  will 

also be positive. 

• When we are predicting one period into the future, the model with an AR(1) error 

can be written as 

1 1 2 1 1T T Ty x e+ + += β +β +  

1 2 1 1TvT Tx e= + +β +β + ρ +

e e

                                (12.7.3) 

where we have used Tv1 1T T
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+ +ρ + .  =



Equation 12.7.3 has three distinct components: 

 

1. Given the explanatory variable 1Tx + , the best linear unbiased predictor for 11 2 Txβ ++β

垐
Tx +β +β β β

 is 

1 where )  are generalized least squares estimates.  1 2 1 2
垐( ,

2. To predict the component Teρ , we need estimates for both ρ and . For ρ we can use 

the estimator  specified in (12.5.5). To estimate  we use the generalized least 

squares residual, defined as 

Te

ρ̂ Te

1 2
垐

T T Txe y= −β −β%                                          (12.7.4) 

3. The best forecast of the third component 1Tv +  is zero because this component is 

uncorrelated with past values . 1 2, ,..., Tv v v

• Collecting all these results, our predictor for 1Ty +  is given by 

1 1 2 1
垐 ˆˆT T Ty x+ + eβ +β +ρ %                                        (12.7.5) =
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• What about predicting more than one period into the future? For h periods ahead, it 

can be shown that the best predictor is 

1 2
垐 ˆˆ h

T h T h Ty x e+ +β +β + ρ %                                      (12.7.6) =

• Assuming | | < 1, the influence of the term ρ̂ ˆ h
Teρ %  diminishes the further we go into the 

future (the larger h becomes). 

• In the Bangladesh sugar cane example 

1β̂  = 6.1641        2β̂  = 1.0066         = 0.342 ρ̂

and 

( ) ( )
( )

1 2

1 2

垐

垐ln ln

5.4596 6.1641 1.0066 0.9374
0.239

T T T

T T

e y x

A P

= −β −β

= −β −β

= − − −

=

%

                (R12.10) 
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• To predict yT+1 and yT+2 for a sugar cane price of 0.4, in both periods (T + 1) and (T + 

2), we have 

1 1 2 1
垐 ˆˆT T Ty x e+ += β +β + ρ %  

                                                             = 6.1641 + 1.0066 ln(0.4) + (0.342)(0.239)        

 = 5.3235                                                      (R12.11) 

2
2 1 2 1

2

垐 ˆˆ

6.1641 1.0066 ln(0.4) (0.342) (0.239)
5.2697

T T Ty x e+ += β +β + ρ

= + +
=

%

          (R12.12) 

• Note that these predictions are for the logarithm of area; they correspond to areas of 

205 and 194, respectively. 
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	1. The least squares estimator is still a linear unbiased estimator, but it is no longer best. 
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