
Chapter 11 

 

Heteroskedasticity 

11.1 The Nature of Heteroskedasticity 

• In Chapter 3 we introduced the linear model 

1 2y x= β +β                                                          (11.1.1) 

to explain household expenditure on food (y) as a function of household income (x).  

• We begin this section by asking whether a function such as y = β1 + β2 x is better at 

explaining expenditure on food for low-income households than it is for high-income 

households.  

• Income is less important as an explanatory variable for food expenditure of high-

income families. It is harder to guess their food expenditure. 
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• This type of effect can be captured by a statistical model that exhibits 

heteroskedasticity.  

1 2t t ty x e= β +β +

tE e =

                                              (11.1.2) 

• We assumed the et  were uncorrelated random error terms with mean zero and constant 

variance σ2. That is, 

( ) 0            2var( )te = σ            cov( , ) 0i je e =                            (11.1.3) 

• Including the standard errors for b1 and b2, the estimated mean function was 

 ˆty  =  40.768+0.1283 tx                                          (11.1.4) 

     (22.139)(0.0305) 

• A graph of this estimated function, along with all the observed expenditure-income 

points )( ,
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t tx , appears in Figure 11.1.  y
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t t• Notice that, as income (xt) grows, the observed data points )( ,y x

e

 have a tendency to 

deviate more and more from the estimated mean function.  

• The least squares residuals, defined by 

1 2t̂ t ty b b x= − −

te

e

                                                 (11.1.5) 

 increase in absolute value as income grows. 

[Figure 11.1 here] 

• The observable least squares residuals )  are proxies for the unobservable errors  

that are given by 

ˆ( ( )te

1 2t t ty x= −β −β

t

                                               (11.1.6) 

• The information in Figure 11.1 suggests that the unobservable errors also increase in 

absolute value as income )(x  increases.  

• Is this type of behavior consistent with the assumptions of our model?  



• The parameter that controls the spread of yt around the mean function, and measures the 

uncertainty in the regression model, is the variance σ2.  

• If the scatter of ty  around the mean function increases as xt increases, then the 

uncertainty about ty  increases as tx  increases, and we have evidence to suggest that 

the variance is not constant.  

• Thus, we are questioning the constant variance assumption 

2var( ) var( )t ty e= = σ                                            (11.1.7) 

• The most general way to relax this assumption is to add a subscript t to σ2, recognizing 

that the variance can be different for different observations. We then have 

2var( ) var( )t t ty e = σ                                            (11.1.8) =

• In this case, when the variances for all observations are not the same, we say that 

heteroskedasticity exists. Alternatively, we say the random variable ty  and the random 

error  are heteroskedastic.  te
 

Slide 11.4 
Undergraduate Econometrics,2nd Edition-Chapter 11 

  



• Conversely, if (11.1.7) holds we say that homoskedasticity exists, and ty  and  are 

homoskedastic. 

te

• The heteroskedastic assumption is illustrated in Figure 11.2.  

[Figure 11.2 here] 

The existence of different variances, or heteroskedasticity, is often encountered when 

using cross-sectional data.  

11.2 The Consequences of Heteroskedasticity for the Least Squares Estimator 

• If we have a linear regression model with heteroskedasticity and we use the least 

squares estimator to estimate the unknown coefficients, then: 

1. The least squares estimator is still a linear and unbiased estimator, but it is no longer 

best. It is no longer B.L.U.E. 
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2. The standard errors usually computed for the least squares estimator are incorrect. 

Confidence intervals and hypothesis tests that use these standard errors may be 

misleading. 

• Consider the model 

1 2t t ty x e= β +β +

E e e e e

                                             (11.2.1) 

 where 

2( ) 0 var( ) cov( , ) 0t t t i j= = σ =  (i ≠ j) 

• In Chapter 4, equation 4.2.1, we wrote the least squares estimator for β2 as 

2 2 t tb w e
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= β +∑                                             (11.2.2) 

 where 

( )2
t

t
t

x xw
x x
−

=
−∑

 



• The first property that we establish is that of unbiasedness.  

 

( ) ( ) ( )
( )

2 2

2 2

t t

t t

E b E E w e

w E e

= β +

= β + = β

∑
∑

                                   (11.2.4) 

 

• The next result is that the least squares estimator is no longer best. The way we tackle 

this question is to derive an alternative estimator which is the best linear unbiased 

estimator. This new estimator is considered in Sections 10.3 and 11.5. 

• To show that the usual formulas for the least squares standard errors are incorrect 

under heteroskedasticity, we return to the derivation of var(b2) in (4.2.11). From that 

equation, and using (11.2.2), we have 
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( ) ( ) ( )
( )

( ) ( )

2 2

2

2 2

var var var

var

var cov ,

t t

t t

t t i j i j
i j

t t

b w e

w e

w e w w e e

w
≠

= β +

=

= +

= σ

∑
∑

∑ ∑∑

∑

 

 

( )

( )

2 2

22

t t

t

x x

x x

⎡ ⎤− σ⎣ ⎦=
⎡ ⎤−⎣ ⎦

∑
∑

                                                     (11.2.5) 

 

• Note from the last line in (11.2.5) that 

( )

2

2 2var( )
t

b
x x
σ

≠
−∑

                                                        (11.2.6) 
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• Note that standard computer software for least squares regression will compute the 

estimated variance for b2 based on (11.2.6), unless told otherwise. 

11.2.1 White's Approximate Estimator for the Variance of the Least Squares Estimator 

• Halbert White, an econometrician, has suggested an estimator for the variances and 

covariances of the least squares coefficient estimators when heteroskedasticity exists. 

• In the context of the simple regression model, his estimator for var(b2) is obtained by 

replacing σt
2 by the squares of the least squares residuals , in (11.2.5).  2

t̂e

• Large variances are likely to lead to large values of the squared residuals.  

• Because the squared residuals are used to approximate the variances, White's estimator 

is strictly appropriate only in large samples. 

 

• If we apply White's estimator to the food expenditure-income data, we obtain 
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1ˆvar( )b  = 561.89              = 0.0014569 2ˆvar( )b

• We could write our estimated equation as 

 ˆty  =40.768 + 0.1283 xt 

   (23.704)  (0.0382) (White) 

   (22.139)  (0.0305) (incorrect) 

• In this case, ignoring heteroskedasticity and using incorrect standard errors tends to 

overstate the precision of estimation; we tend to get confidence intervals that are 

narrower than they should be.  

• We can construct two corresponding 95% confidence intervals for β2. 

White: 2  = 0.1283 ± 2.024(0.0382) = [0.051, 0.206] 2 se( )cb t b±

se( )cb t b±Incorrect: 2  = 0.1283 ± 2.024(0.0305) = [0.067, 0.190] 2
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11.3 Proportional Heteroskedasticity 

• Return to the example where weekly food expenditure (yt) is related to weekly income 

(xt) through the equation 

1 2t t t
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y x eβ +β +                                                (11.3.1) =

• We make the following assumptions: 

( ) ( ) 20 vart t tE e e= = σ  

cov( , ) 0i je e =  (i ≠ j) 

• By itself, the assumption var(et) = σt
2 is not adequate for developing a better procedure 

for estimating β1 and β2.  



• We overcome this problem by making a further assumption about the 2
tσ . Our earlier 

inspection of the least squares residuals suggested that the error variance increases as 

income increases. A reasonable model for such a variance relationship is 

( ) 2 2var t t txe = σ = σ                                              (11.3.2) 

• The assumption of heteroskedastic errors in (11.3.2) is a reasonable one for the 

expenditure model.  

• Under heteroskedasticity the least squares estimator is not the best linear unbiased 

estimator. One way of overcoming this dilemma is to change or transform our 

statistical model into one with homoskedastic errors. Leaving the basic structure of the 

model intact, it is possible to turn the heteroskedastic error model into a homoskedastic 

error model. Once this transformation has been carried out, application of least squares 

to the transformed model gives a best linear unbiased estimator. 

• Begin by dividing both sides of the original equation in (11.3.1) by tx  
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1 2
1t t t

x
                                     (11.3.3) 

t t t t

y x e
x x x
= β +β +

• Define the transformed variables 

* t
t

t

yy
x

=  *
1

1
t

t

x
x

=  *
2

t
t

t

xx
x

=  * t
t

t

ee
x

=               (11.3.4) 

 

• (11.3.3) can be rewritten as 

1 1 2 2t t t tey x x
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∗ ∗ ∗ ∗β + β +                                             (11.3.5) =

• The beauty of this transformed model is that the new transformed error term te∗  is 

homoskedastic. The proof of this result is: 

 2 2
tx1 1var( ) var var( )t

t t
t tt

ee e
x xx

∗
⎛ ⎞

= = σ⎜ ⎟⎜ ⎟
⎝ ⎠

= σ                            (11.3.6) =
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tE e• The transformed error term will retain the properties )( ∗  = 0 and zero correlation 

between different observations, cov( , ) 0i je e∗ ∗ =  for i ≠ j.  

• As a consequence, we can apply least squares to the transformed variables, ,ty∗  1tx∗  and 

2tx∗  to obtain the best linear unbiased estimator for β1 and β2. 

• The transformed model is linear in the unknown parameters β1 and β2. These are the 

original parameters that we are interested in estimating.  

• The transformed model satisfies the conditions of the Gauss-Markov Theorem, and the 

least squares estimators defined in terms of the transformed variables are B.L.U.E. 

• The estimator obtained in this way is called a generalized least squares estimator. 

• One way of viewing the generalized least squares estimator is as a weighted least 

squares estimator. Recall that the least squares estimator is those values of β1 and β2 

that minimize the sum of squared errors. In this case, we are minimizing the sum of 

squared transformed errors that are given by 



2
*2

1 1

T T
t

t
t t t

ee
x= =

=∑ ∑  

• The errors are weighted by the reciprocal of xt. When xt is small, the data contain more 

information about the regression function and the observations are weighted heavily. 

When xt is large, the data contain less information and the observations are weighted 

lightly. In this way we take advantage of the heteroskedasticity to improve parameter 

estimation. 

 
Slide 11.15 

Undergraduate Econometrics,2nd Edition-Chapter 11 
  



 

Remark: In the transformed model 1 1.tx∗ ≠  That is, the variable associated 

with the intercept parameter is no longer equal to “1”. Since least squares 

software usually automatically inserts a “1” for the intercept, when dealing 

with transformed variables you will need to learn how to turn this option 

off. If you use a “weighted” or “generalized” least squares option on your 

software, the computer will do both the transforming and the estimating. In 

this case suppressing the constant will not be necessary. 

 

• Applying the generalized (weighted) least squares procedure to our household 

expenditure data yields the following estimates: 

ˆty =31.924+0.1410 tx                                           (11.3.7) 

(17.986)(0.0270) 
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• It is important to recognize that the interpretations for β1 and β2 are the same in the 

transformed model in (11.3.5) as they are in the untransformed model in (11.3.1).  

 The standard errors in (11.3.8), namely se( 1β̂ ) = 17.986 and se( 2β̂ ) = 0.0270 are both 

lower than their least squares counterparts that were calculated from White's estimator, 

namely se(b1) = 23.704 and se(b2) = 0.0382. Since generalized least squares is a better 

estimation procedure than least squares, we do expect the generalized least squares 

standard errors to be lower. 

 

Remark: Remember that standard errors are square roots of estimated 

variances; in a single sample the relative magnitudes of variances may not 

always be reflected by their corresponding variance estimates. Thus, lower 

standard errors do not always mean better estimation. 
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• The smaller standard errors have the advantage of producing narrower more 

informative confidence intervals. For example, using the generalized least squares 

results, a 95% confidence interval for β2 is given by 
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垐 se( )ctβ ± β2 2  = 0.1410 ± 2.024(0.0270) = [0.086, 0.196] 

The least squares confidence interval computed using White's standard errors was [0.051, 

0.206]. 
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11.4 Detecting Heteroskedasticity 

11.4.1  Residual Plots 

• One way of investigating the existence of heteroskedasticity is to estimate your model 

using least squares and to plot the least squares residuals.  

• If the errors are homoskedastic, there should be no patterns of any sort in the residuals. 

If the errors are heteroskedastic, they may tend to exhibit greater variation in some 

systematic way. 

 

11.4.2 The Goldfeld-Quandt Test 

• A formal test for heteroskedasticity is the Goldfeld-Quandt test. It involves the 

following steps: 

1. Split the sample into two approximately equal subsamples. If heteroskedasticty exists, 

some observations will have large variances and others will have small variances. 



Divide the sample such that the observations with potentially high variances are in one 

subsample and those with potentially low variances are in the other subsample.  

2. Compute estimated error variances 2
1σ̂  and 2

2σ̂  for each of the subsamples. Let 2
1σ̂  be the 

estimate from the subsample with potentially large variances and let 2
2σ̂  be the estimate 

from the subsample with potentially small variances. If a null hypothesis of equal 

variances is not true, we expect 2 2
21垐 σ  to be large. σ

3. Compute 2 2
2  and reject the null hypothesis of equal variances if  

where 

1垐GQ = σ σ cGQ F>

cF  is a critical value form the F-distribution with 1( )T K−  and )2(T K−  degrees 

of freedom. The values  and  are the numbers of observations in each of the 

subsamples; if the sample is split exactly in half, 

1T 2T

1 2 2T T T= = . 

• Applying this test procedure to the household food expenditure model, we set up the 

hypotheses 
2 2

0 : tH σ = σ  tx2 2
1 : tH = σ                                   (11.4.1) σ
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• After ordering the data according to decreasing values of tx , and using a partition of 20 

observations in each subset of data, we find  and  Hence, the 

value of the Goldfeld-Quandt statistic is 

2
1ˆ 2285.9σ = 2

2ˆ 682.46.σ =

2285.9 3.35
682.46

GQ = =  

• The 5 percent critical value for (18, 18) degrees of freedom is 2.22.cF =  Thus, because 

 we reject  and conclude that heteroskedasticity does exist; 

the error variance does depend on the level of income. 

3.35 2.22,cGQ F= > = 0H
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REMARK:  The above test is a one-sided test because 

the alternative hypothesis suggested which sample 

partition will have the larger variance. If we suspect that 

two sample partitions could have different variances, 

but we do not know which variance is potentially larger, 

 

 

 

 

 

11.5 A Sample With a Heteroskedastic Partition 

11.5.1 Economic Model 

• Consider modeling the supply of wheat in a particular wheat growing area in Australia. 

In the supply function the quantity of wheat supplied will typically depend upon the 

production technology of the firm, on the price of wheat or expectations about the 

price of wheat, and on weather conditions.  
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• We can depict this supply function as 

Quantity  =  f (Price, Technology, Weather)                  (11.5.1) 

 

• The data we have available from the Australian wheat growing district consist of 26 

years of aggregate time-series data on quantity supplied and price.  

• Because there is no obvious index of production technology, some kind of proxy needs 

to be used for this variable. We use a simple linear time-trend, a variable that takes the 

value 1 in year 1, 2 in year 2, and so on, up to 26 in year 26.  

• An obvious weather variable is also unavailable; thus, in our statistical model, weather 

effects will form part of the random error term. Using these considerations, we specify 

the linear supply function 

1 2 3t t tq p t eβ +β + β +        1,2,...,26t =                              (11.5.2) =
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  is the quantity of wheat produced in year t, tq

 tp  is the price of wheat guaranteed for year t, 

  is a trend variable introduced to capture changes in production 

technology, and 

1,2,...,26t =

  is a random error term that includes, among other things, the influence of 

weather. 

te

• To complete the econometric model in (11.5.2) some statistical assumptions for the 

random error term et are needed.  

• In this case, however, we have additional information that makes an alternative 

assumption more realistic. After the 13th year, new wheat varieties whose yields are 

less susceptible to variations in weather conditions were introduced. These new 

varieties do not have an average yield that is higher than that of the old varieties, but 

the variance of their yields is lower because yield is less dependent on weather 

conditions.  
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• Since the weather effect is a major component of the random error term et, we can 

model the reduced weather effect of the last 13 years by assuming the error variance in 

those years is different from the error variance in the first 13 years. Thus, we assume 

that 

 

( )
( )
( )

2
1

2
2

0

var 1, ,13

var 14, ,26

t

t

t

E e

e t

e t

=

= σ =

= σ =

K

K

 (11.5.3) 

• From the above argument, we expect that 2 2
2 1σ < σ . 

11.5.2    Generalized Least Squares Through Model Transformation 

• Write the model corresponding to the two subsets of observations as 

 
( )
( )

2
1 2 3 1

2
1 2 3 2

var 1, ,13

var 14, ,26
t t t t

t t t t

q p t e e t

q p t e e t

= β +β +β + = σ =

= β +β +β + = σ =

K

K
 (11.5.4) 
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• Dividing each variable by 1σ  for the first 13 observations and by 2σ  for the last 13 

observations yields 

1 2 3
1 1 1 1 1

1 2 3
2 2 2 2 2

1 1, ,13

1 14, ,26

t t t

t t t

q p t e t

q p t e t

= β +β +β + =
σ σ σ σ σ

= β +β +β + =
σ σ σ σ σ

K

K

                  (11.5.5) 

• This transformation yields transformed error terms that have the same variance for all 

observations. Specifically, the transformed error variances are all equal to one because 

( )

( )

2
1

2 2
1 1 1

2
2

2 2
2 2 2

1var var 1 1, ,13

1var var 1 14, ,26

t
t

t
t

e e t

e e t

⎛ ⎞ σ
= = = =⎜ ⎟σ σ σ⎝ ⎠

⎛ ⎞ σ
= = = =⎜ ⎟σ σ σ⎝ ⎠

K

K
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• Providing  and  are known, the transformed model in (11.5.5) provides a set of 

new transformed variables to which we can apply the least squares principle to obtain 

the best linear unbiased estimator for (β

1σ 2σ

1, β2, β3).  

• The transformed variables are 

1t t

i i i i

q p t
σ σ σ σ

                                            (11.5.6) 

where  is either  or iσ 1σ 2σ , depending on which half of the observations are being 

considered.  

• Like before, the complete process of transforming variables, then applying least 

squares to the transformed variables, is called generalized least squares. 
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11.5.3   Implementing Generalized Least Squares 

• The transformed variables in (11.5.6) depend on the unknown variance parameters 2
1σ  

and . Thus, as they stand, the transformed variables cannot be calculated.  2
2σ

• To overcome this difficulty, we use estimates of 2
1σ  and 2

2σ  and transform the variables 

as if the estimates were the true variances. 

• It makes sense to split the sample into two, applying least squares to the first half to 

estimate  and applying least squares to the second half to estimate 2
1σ

2
2σ . Substituting 

these estimates for the true values causes no difficulties in large samples. 

• For the wheat supply example we obtain 

 2
1σ̂  = 641.64 2

2σ̂  = 57.76                                       (R11.7) 
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• Using these estimates to calculate observations on the transformed variables in (11.5.6), 

and then applying least squares to the complete sample defined in (11.5.5) yields the 

estimated equation: 



  = 138.1 +21.72pˆtq t+3.283t                                                     (R11.8) 

                                       (12.7)    (8.81)   (0.812)      
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Remark: A word of warning about calculation of the standard errors is 

necessary. As demonstrated below (11.5.5), the transformed errors in  

(11.5.5) have a variance equal to one. However, when you transform your 

variables using 1σ̂  and 2σ̂ , and apply least squares to the transformed 

variables for the complete sample, your computer program will 

automatically estimate a variance for the transformed errors. This estimate 

will not be exactly equal to one. The standard errors in (R11.8) were 

calculated by forcing the computer to use one as the variance of the 

transformed errors. Most software packages will have options that let you 

do this, but it is not crucial if your package does not; the variance estimate 

will usually be close to one anyway. 
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11.5.4 Testing the Variance Assumption 

• To use a residual plot to check whether the wheat-supply error variance has decreased 

over time, it is sensible to plot the least-squares residuals against time. See Figure 11.3. 

The dramatic drop in the variation of the residuals after year 13 supports our belief that 

the variance has decreased. 

• For the Goldfeld-Quandt test the sample is already split into two natural subsamples. 

Thus, we set up the hypotheses 

  2 2
0 1 2:H σ = σ  2

1                                (11.5.9) 2
1 2:H σ < σ

• The computed value of the Goldfeld-Quandt statistic is 

2
1
2
2

ˆ 641.64 11.11
ˆ 57.76

GQ σ
= = =
σ
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•  and 1 2 13T T= = 3K = ; thus, if  is true, 11.11 is an observed value from an F-

distribution with (10, 10) degrees of freedom. The corresponding 5 percent critical 

value is 

0H

2.98.cF =   

• Since  we reject  and conclude that the observed difference 

between  and  could not reasonably be attributable to chance. There is evidence to 

suggest the new varieties have reduced the variance in the supply of wheat. 

11.11 2.98,cGQ F= > = 0H
2
1σ̂

2
2σ̂
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