
 

Chapter 10 

Nonlinear Models 

• Nonlinear models can be classified into two categories. 

• Models that are nonlinear in the variables, but still linear in terms of the unknown 

parameters.  

• This category includes models which are made linear in the parameters via a 

transformation.  

• The Cobb-Douglas production function that relates output (Y) to labor (L) and capital 

(K) can be written as 

Y L Kβ γα  =

• Taking logarithms yields 

 
ln( ) ln( ) ln( )Y L K= δ +β + γ  
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• This function is nonlinear in the variables Y, L, and K, but it is linear in the parameters 

δ, β and γ.  

• Models of this kind can be estimated using the least-squares 

• The second category of nonlinear models contains models which are nonlinear in the 

parameters and which cannot be made linear in the parameters after a transformation. 

• An estimation procedure is nonlinear least squares. 

 

10.1 Polynomial and Interaction Variables 

 

• Models with polynomial and/or interaction variables are useful for describing 

relationships where the response to a variable changes depending on the value of that 

variable or the value of another variable.  
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We model relationships in which the slope of the regression model is continuously 

changing.  

10.1.1 Polynomial Terms in a Regression Model 

• Total cost and total product curves are mirror images of each other, taking the standard 

“cubic” shapes shown in Figure 10.1.   

[Figure 10.1 goes here] 

• Average and marginal cost curves, and their mirror images, average and marginal 

product curves, take quadratic shapes, usually represented as shown in Figure 10.2.   

[Figure 10.2 goes here] 

• The slopes of these relationships are not constant and cannot be represented by 

regression models that are “linear in the variables.”   

• These shapes are easily represented by polynomials, that are a special case of 

interaction variables in which variables are multiplied by themselves.   
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• For the average cost relationship a suitable regression model is: 

 
2

1 2 3AC Q Q eβ +β +β +                                       (10.1.1) =

 

• For the total cost curve a cubic polynomial is in order, 

 
2 3

1 2 3 4TC Q Q Q e= α +α + α +α +                                (10.1.2) 

 

• These functional forms, which represent nonlinear shapes, are still linear regression 

models, since the parameters enter in a linear way. The parameters in such equations 

can still be estimated by least squares. 

• A difference in these models is in the interpretation of the parameters.   
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• The parameters of these models are not themselves slopes.  The slope of the average 

cost curve (10.1.1) is 

 

2 3
( ) 2dE AC Q
dQ

β + β                                             (10.1.3) =

 

The slope of the average cost curve changes for every value of Q and depends on the 

parameters β2 and β3.  For this U-shaped curve we expect β2<0 and β3>0. 

• The slope of the total cost curve (10.1.2), which is the marginal cost, is  

 

2
2 3 4

( ) 2 3dE TC Q Q                                   (10.1.4) 
dQ

= α + α + α
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The slope is a quadratic function of Q, involving the parameters α2, α3, and α4.  For a 

U-shaped marginal cost curve α2>0, α3<0, and α4>0. 

10.1.2 Interactions Between Two Continuous Variables 

• We wish to study the effect of income and age on an individual’s expenditure on pizza. 

• We take a random sample of 40 individuals, age 18 and older, and record their annual 

expenditure on pizza (PIZZA), their income (Y) and age (AGE).   

• As an initial model consider 

 

1 2 3PIZZA AGE Y e= β +β +β +                                            (10.1.5) 
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• The implications of this specification are: 

 

1. 2
( )E PIZZA
AGE

∂
= β

∂
  For a given level of income, the expected expenditure on pizza 

changes by the amount β2 with an additional year of age. We expect the sign of β2 to be 

negative.  With the effects of income removed, we expect that as a person ages his/her 

pizza expenditure will fall. 

 

2. 3
( )i

i

E PIZZA
Y

∂
= β

∂
  For individuals of a given age, an increase in income of $1 

increases expected expenditures on pizza by β3. We expect the sign of β3 to be positive.  

The parameter β3 might be called the marginal propensity to spend on pizza. 
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• It would seem reasonable to assume that as a person grows older, their marginal 

propensity to spend on pizza declines. This is a case in which the effect of income 

depends on the age of the individual.  

• Add the variable (AGE•Y) to the regression model.  The result is 

 

P 1 2 3 4 ( )IZZA AGE Y AGE Y eβ +β +β +β • +                           (10.1.6) =
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• The effects of Y and AGE are: 

1. 2 4
( )E PIZZA Y
AGE

∂
= β +β

∂
  The effect of AGE now depends on income.  As a person 

ages his/her pizza expenditure is expected to fall, and, because β4 is expected to be 

negative, the greater the income the greater will be the fall attributable to a change in age. 

2. 3 4
( )E PIZZA AGE

Y
∂

= β +β
∂

  The effect of a change in income on expected pizza 

expenditure, which is the marginal propensity to spend on pizza, now depends on AGE.  

β4 should be negative.  Then, as AGE increases, the value of the partial derivative 

declines. 
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Estimates of models (10.1.5) and (10.1.6), with t-statistics in parentheses, are: 

 
ˆ 342.8848 7.5756 0.0024

              (4.740)      ( 3.270)         (3.947)
PIZZA AGE Y= − +

−
                      (R10.1) 

 
ˆ 161.4654 2.9774 0.0091 0.00016( )

               (1.338)    ( 0.888)          (2.473)     ( 1.847)
PIZZA AGE Y Y AGE= − + − •

− −
      (R10.2) 

 

• Using the estimates in (R10.2) let us estimate the marginal effect of age upon pizza 

expenditure for two individuals;  one with $25,000 income and one with $90,000 

income.  

 

2 4

ˆ 6.9774 for $25,000( ) 2.9774 0.00016
17.3774 for $90,000

YE PIZZA b b Y Y
YAGE

− =⎧∂
= + = − − = ⎨− =∂ ⎩
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10.2 A Simple Nonlinear-in-the-Parameters Model 

• To introduce nonlinear least squares we consider the following artificial example 

 te2
1 2t t ty x xβ +β +                                              (10.2.1) =

where  is a dependent variable,  and  are explanatory variables, β is an 

unknown parameter that we wish to estimate, and the  are uncorrelated random 

errors with mean zero and variance 

ty 1tx 2tx

te
2σ .  

• This example differs from the conventional linear model because the coefficient of  

is equal to the square of the coefficient . 

2tx

1tx

• When we had a simple linear regression equation with two unknown parameters 1β  and 

 we set up a sum of squared errors function 2β

• In the context of (10.2.1),  
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 2 2
2tx                                   (10.2.2) 2

1
1 1

( ) ( )
T T

t t t
t t

S e y x
= =

β = = −β −β∑ ∑

• When we have a nonlinear function like (10.2.1), we cannot derive an algebraic 

expression for the parameter β that minimizes (10.2.2).  

• For a given set of data, we can ask the computer to look for the parameter value that 

take us to the bottom of the bowl. This value is called a nonlinear least squares 

estimate.  

• It is also impossible to get algebraic expressions for standard errors, but, it is possible 

for the computer to calculate a numerical standard error. Estimates and standard errors 

computed in this way have good properties in large samples. 

• As an example, consider the data on ,  and  in Table 10.2.  ty 1tx 2tx
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• The sum of squared errors function in equation 10.2.2 is graphed in Figure 10.2. 

Because we have only one unknown parameter, we have a two-dimensional curve, not 

a "bowl". It is clear that the minimizing value for β lies between 1.0 and 1.5.  

• Using nonlinear least squares software, we find that the nonlinear least squares estimate 

and its standard error are 

 b = 1.1612 se(b) = 0.129                                    (R10.4) 

• Be warned, that different software can yield slightly different approximate standard 

errors. However, the nonlinear least squares estimate should be the same for all 

packages. 
 

10.3 A Logistic Growth Curve 

• A model that is popular for modeling the diffusion of technological change is the 

logistic growth curve 
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1 exp( )t t

αy e
t
+

+ −β− δ
                                       (10.3.1) =

•  is the adoption proportion of a new technology. In the example we use,  is the 

share of total U.S. crude steel production that is produced by electric arc furnace 

technology. 

ty ty

• There is only one explanatory variable on the right hand side, namely, time, t = 1, 2, 

…, T.  

• An example of a logistic curve is depicted in Figure 10.4. The rate of growth increases 

at first, to a point of inflection which occurs at  20.t = −β δ =  Then, the rate of growth 

declines, leveling off to a saturation proportion given by 0.8.α =   

• Since ( )0 1 exp( )y = α + −β , the parameter β determines how far the share is below 

saturation level at time zero. The parameter δ controls the speed at which the point of 
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inflection, and the saturation level, are reached. The curve is such that the share at the 

point of inflection is 2 0.4, half the saturation level. α =

• The  are assumed to be uncorrelated random errors with zero mean and variance te 2σ . 

Because the parameters in (10.3.1) enter the equation in a nonlinear way, it is 

estimated using nonlinear least squares. 
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Figure 10.4     Logistic Growth Curve 

 

• To illustrate estimation of equation (10.3.1) we use data on the electric arc furnace 

(EAF) share of steel production in the U.S. These data appear in Table 10.3. 

• Using nonlinear least squares to estimate the logistic growth curve yields the results in 

Table 10.4.  
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• We find that the estimated saturation share of the EAF technology is ˆ 0.46.α =  The 

point of inflection, where the rate of adoption changes from increasing to decreasing is 

estimated as 

  
ˆ 0.911 7.8ˆ 0.117
β

− = =
δ

 

 which is approximately the year 1977. 

• Suppose that you wanted to test the hypothesis that the point of inflection actually 

occurred in 1980. The corresponding null and alternative hypotheses can be written as 

  0 1: 11 : 11H Hβ β
− = − ≠
δ δ

 

• The null hypothesis is different from any that you have encountered so far because it is 

nonlinear in the parameters β and δ.  

• Despite this nonlinearity, the test can be carried out using most modern software.  
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• The outcome of this test appears in the last two rows of Table 10.4. From the very 

small p-values associated with both the F and the -statistics, we reject  and 

conclude that the point of inflection does not occur at 1980. 

2χ 0H
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Table 10.4    Estimated Growth Curve for EAF Share of Steel Production. 

Dependent Variable: Y 
Method: Least Squares 
Date: 11/20/99   Time: 15:19 
Sample: 1970 1997 
Included observations: 28 
Convergence achieved after 8 iterations 
Y=C(1)/(1+EXP(-C(2)-C(3)*T)) 

 Coefficient Std. Error t-Statistic Prob. 
C(1) 0.462303 0.018174 25.43765 0.0000
C(2) -0.911013 0.058147 -15.66745 0.0000
C(3) 0.116835 0.010960 10.65979 0.0000

Wald Test: 
Null Hypothesis: -C(2)/C(3)=11 
F-statistic 16.65686  Probability 0.000402
Chi-square 16.65686  Probability 0.000045
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10.4 Poisson Regression 

• To help decide the annual budget allocations for recreational areas, the State 

Government collects information on the demand for recreation.  

• It took a random sample of 250 households from households who live within a 120 

mile radius of Lake Keepit. Households were asked a number of questions, including 

how many times they visited Lake Keepit during the last year.  

• The frequency of visits appears in Table 10.5. Note the special nature of the data in this 

table. There is a large number of households who did not visit the Lake at all, and also 

large numbers for 1 visit, 2 visits and 3 visits. There are fewer households who made a 

greater number of trips, such as 6 or 7. 
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Table 10.5  Frequency of Visits to Keepit Dam 
Number of visits 0 1 2 3 4 5 6 7 8 9 10 13

Frequenc  y 1 5 1 3 8 7 2 1 1 16  5 41 3 2 19  

 

• Data of this kind are called count data.  

• The possible values that can occur are the countable integers 0, 1, 2, … .  

• Count data can be viewed as observations on a discrete random variable.  

• A distribution suitable for count data is the Poisson distribution. Its probability density 

function is given by  

  exp( )( )
!

y

f y
y

μ −μ
=                                           (10.4.1) 
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• In the context our example, y is the number of times a household visits Lake Keepit per 

year and μ is the average or mean number of visits per year, for all households. 

 In Poisson regression, we improve on equation (10.4.1) by recognizing that the mean 

μ is likely to depend on various household characteristics.  

  4ix1 2 2 3 3 4exp( )i i ix x= β +β +β +β                                (10.4.2) μ

where the 's are unknown parameters and jβ

  = distance of the i-th household from the Lake in miles, 2ix

  = household income in tens of thousands of dollars, and 3ix

  = number of household members. 4ix

Writing  as an exponential functionensures iμ iμ  will be positive. 
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• We define the zero-mean error term i ,i ie y −μ y or ie ,i i= = μ +

y x x

 from which we can 

write  

  ix e1 2 2 3 3 4 4exp( )i i i iβ +β +β +β +

x x x y

                            (10.4.4) =

Equation (10.4.4) can be estimated via nonlinear least squares. 

• The 250 sampled values for )  appear in the file keepit.dat in that order.  2 3 4( , , ,

• The nonlinear least squares estimates of equation (10.4.4) appear in Table 10.6. 

Because of the nonlinear nature of the function, we must be careful how we interpret 

the magnitudes of the coefficients.  

• Examining their signs, we can say the greater the distance from Lake Keepit, the less 

will be the expected number of visits. Increasing income, or the size of the household, 

increases the frequency of visits. The income coefficient is not significantly different 

from zero, but those for distance and household members are.  
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Table 10.6    Estimated Model for Visits to Lake Keepit 
 
Dependent Variable: VISITS 
Method: Least Squares 
Date: 11/20/99   Time: 09:15 
Sample: 1 250 
Included observations: 250 
Convergence achieved after 7 iterations 
VISITS=EXP(C(1)+C(2)*DIST+C(3)*INC+C(4)*MEMB) 

 Coefficient Std. Error t-Statistic Prob. 
C(1) 1.390670 0.176244 7.890594 0.0000
C(2) -0.020865 0.001749 -11.93031 0.0000
C(3) 0.022814 0.015833 1.440935 0.1509
C(4) 0.133560 0.030310 4.406527 0.0000
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• The estimated model can also be used to compute probabilities relating to a household 

with particular characteristics.  

• For example, what is the probability that a household located 50 miles from the Lake, 

with income of $60,000, and 3 family members, visits the park less than 3 times per 

year?  

• First we compute an estimate of the mean for this household 

             (R10.6) 
ˆ exp(1.39067 0.020865 50 0.022814 6 0.13356 3)

2.423
μ = − × + × + ×
=
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• Then, using the Poisson distribution, we have 

( 3) ( 0) ( 1) ( 2)P y P y P y P y< = = + = + =  

       
0 1 2(2.423) exp( 2.423) (2.423) exp( 2.423) (2.423) exp( 2.423)

0 ! 1 ! 2 !
− − −

= + +       (R10.7) 

        
0.0887 0.2148 0.2602
0.564

= + +
=
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