Chapter 10

Nonlinear Models

- Nonlinear models can be classified into two categories.
- Models that are nonlinear in the variables, but still linear in terms of the unknown parameters.
- This category includes models which are made linear in the parameters via a transformation.
- The Cobb-Douglas production function that relates output (*Y*) to labor (*L*) and capital (*K*) can be written as

$$Y = \alpha L^{\beta} K^{\gamma}$$

• Taking logarithms yields

 $\ln(Y) = \delta + \beta \ln(L) + \gamma \ln(K)$

- This function is nonlinear in the variables *Y*, *L*, and *K*, but it is linear in the parameters
 δ, β and γ.
- Models of this kind can be estimated using the least-squares
- The second category of nonlinear models contains models which are nonlinear in the parameters and which cannot be made linear in the parameters after a transformation.
- An estimation procedure is *nonlinear least squares*.

10.1 Polynomial and Interaction Variables

• Models with polynomial and/or interaction variables are useful for describing relationships where the response to a variable changes depending on the value of that variable or the value of another variable.

We model relationships in which the slope of the regression model is *continuously* changing.

10.1.1 Polynomial Terms in a Regression Model

• Total cost and total product curves are mirror images of each other, taking the standard "cubic" shapes shown in Figure 10.1.

[Figure 10.1 goes here]

• Average and marginal cost curves, and their mirror images, average and marginal product curves, take quadratic shapes, usually represented as shown in Figure 10.2.

[Figure 10.2 goes here]

- The slopes of these relationships are not constant and cannot be represented by regression models that are "linear in the variables."
- These shapes are easily represented by polynomials, that are a special case of interaction variables in which variables are multiplied by themselves.

• For the average cost relationship a suitable regression model is:

$$AC = \beta_1 + \beta_2 Q + \beta_3 Q^2 + e$$
 (10.1.1)

• For the total cost curve a cubic polynomial is in order,

$$TC = \alpha_1 + \alpha_2 Q + \alpha_3 Q^2 + \alpha_4 Q^3 + e$$
 (10.1.2)

- These functional forms, which represent nonlinear shapes, are still linear regression models, since the parameters enter in a linear way. The parameters in such equations can still be estimated by least squares.
- A difference in these models is in the interpretation of the parameters.

• The parameters of these models are not themselves slopes. The slope of the average cost curve (10.1.1) is

$$\frac{dE(AC)}{dQ} = \beta_2 + 2\beta_3 Q \qquad (10.1.3)$$

The slope of the average cost curve changes for every value of Q and depends on the parameters β_2 and β_3 . For this U-shaped curve we expect $\beta_2 < 0$ and $\beta_3 > 0$.

• The slope of the total cost curve (10.1.2), which is the marginal cost, is

$$\frac{dE(TC)}{dQ} = \alpha_2 + 2\alpha_3 Q + 3\alpha_4 Q^2$$
(10.1.4)

The slope is a quadratic function of Q, involving the parameters α_2 , α_3 , and α_4 . For a U-shaped marginal cost curve $\alpha_2 > 0$, $\alpha_3 < 0$, and $\alpha_4 > 0$.

10.1.2 Interactions Between Two Continuous Variables

- We wish to study the effect of income and age on an individual's expenditure on pizza.
- We take a random sample of 40 individuals, age 18 and older, and record their annual expenditure on pizza (*PIZZA*), their income (*Y*) and age (*AGE*).
- As an initial model consider

$$PIZZA = \beta_1 + \beta_2 AGE + \beta_3 Y + e \tag{10.1.5}$$

• The implications of this specification are:

1. $\frac{\partial E(PIZZA)}{\partial AGE} = \beta_2$ For a *given level of income*, the expected expenditure on pizza changes by the amount β_2 with an additional year of age. We expect the sign of β_2 to be negative. With the effects of income removed, we expect that as a person ages his/her pizza expenditure will fall.

2.
$$\frac{\partial E(PIZZA_i)}{\partial Y_i} = \beta_3$$
 For individuals of a given age, an increase in income of \$1

increases expected expenditures on pizza by β_3 . We expect the sign of β_3 to be positive. The parameter β_3 might be called the marginal propensity to spend on pizza.

- It would seem reasonable to assume that as a person grows older, their marginal propensity to spend on pizza declines. This is a case in which *the effect of income depends on the age of the individual*.
- Add the variable $(AGE \bullet Y)$ to the regression model. The result is

$$PIZZA = \beta_1 + \beta_2 AGE + \beta_3 Y + \beta_4 (AGE \bullet Y) + e \qquad (10.1.6)$$

• The effects of *Y* and *AGE* are:

1.
$$\frac{\partial E(PIZZA)}{\partial AGE} = \beta_2 + \beta_4 Y$$
 The effect of AGE now depends on income. As a person

ages his/her pizza expenditure is expected to fall, and, because β_4 is expected to be negative, the greater the income the greater will be the fall attributable to a change in age.

2.
$$\frac{\partial E(PIZZA)}{\partial Y} = \beta_3 + \beta_4 AGE$$
 The effect of a change in income on expected pizza

expenditure, which is the marginal propensity to spend on pizza, now depends on *AGE*. β_4 should be negative. Then, as *AGE* increases, the value of the partial derivative declines. Estimates of models (10.1.5) and (10.1.6), with *t*-statistics in parentheses, are:

$$PI\hat{Z}ZA = 342.8848 - 7.5756AGE + 0.0024Y$$
(R10.1)
(4.740) (-3.270) (3.947)

$$PI\hat{Z}ZA = 161.4654 - 2.9774AGE + 0.0091Y - 0.00016(Y \bullet AGE)$$
(R10.2)
(1.338) (-0.888) (2.473) (-1.847)

• Using the estimates in (R10.2) let us estimate the marginal effect of age upon pizza expenditure for two individuals; one with \$25,000 income and one with \$90,000 income.

$$\frac{\partial E(P\hat{I}ZZA)}{\partial AGE} = b_2 + b_4Y = -2.9774 - 0.00016Y = \begin{cases} -6.9774 & \text{for } Y = \$25,000\\ -17.3774 & \text{for } Y = \$90,000 \end{cases}$$

10.2 A Simple Nonlinear-in-the-Parameters Model

• To introduce nonlinear least squares we consider the following artificial example

$$y_t = \beta x_{t1} + \beta^2 x_{t2} + e_t \tag{10.2.1}$$

where y_t is a dependent variable, x_{t1} and x_{t2} are explanatory variables, β is an unknown parameter that we wish to estimate, and the e_t are uncorrelated random errors with mean zero and variance σ^2 .

- This example differs from the conventional linear model because the coefficient of x_{t2} is equal to the square of the coefficient x_{t1} .
- When we had a simple linear regression equation with two unknown parameters β_1 and β_2 we set up a sum of squared errors function
- In the context of (10.2.1),

$$S(\beta) = \sum_{t=1}^{T} e_t^2 = \sum_{t=1}^{T} (y_t - \beta x_{t1} - \beta^2 x_{t2})^2$$
(10.2.2)

- When we have a nonlinear function like (10.2.1), we *cannot* derive an algebraic expression for the parameter β that minimizes (10.2.2).
- For a given set of data, we can ask the computer to look for the parameter value that take us to the bottom of the bowl. This value is called a *nonlinear least squares estimate*.
- It is also impossible to get algebraic expressions for standard errors, but, it is possible for the computer to calculate a numerical standard error. Estimates and standard errors computed in this way have good properties in large samples.
- As an example, consider the data on y_t , x_{t1} and x_{t2} in Table 10.2.

- The sum of squared errors function in equation 10.2.2 is graphed in Figure 10.2.
 Because we have only one unknown parameter, we have a two-dimensional curve, not a "bowl". It is clear that the minimizing value for β lies between 1.0 and 1.5.
- Using nonlinear least squares software, we find that the nonlinear least squares estimate and its standard error are

$$b = 1.1612$$
 se(b) = 0.129 (R10.4)

• Be warned, that different software can yield slightly different approximate standard errors. However, the nonlinear least squares estimate should be the same for all packages.

10.3 A Logistic Growth Curve

• A model that is popular for modeling the diffusion of technological change is the logistic growth curve

$$y_t = \frac{\alpha}{1 + \exp(-\beta - \delta t)} + e_t \tag{10.3.1}$$

- y_t is the adoption proportion of a new technology. In the example we use, y_t is the share of total U.S. crude steel production that is produced by electric arc furnace technology.
- There is only one explanatory variable on the right hand side, namely, time, *t* = 1, 2, ..., *T*.
- An example of a logistic curve is depicted in Figure 10.4. The rate of growth increases at first, to a point of inflection which occurs at $t = -\beta/\delta = 20$. Then, the rate of growth declines, leveling off to a saturation proportion given by $\alpha = 0.8$.
- Since $y_0 = \alpha/(1 + \exp(-\beta))$, the parameter β determines how far the share is below saturation level at time zero. The parameter δ controls the speed at which the point of

inflection, and the saturation level, are reached. The curve is such that the share at the point of inflection is $\alpha/2 = 0.4$, half the saturation level.

The e_t are assumed to be uncorrelated random errors with zero mean and variance σ².
 Because the parameters in (10.3.1) enter the equation in a nonlinear way, it is estimated using nonlinear least squares.

Figure 10.4 Logistic Growth Curve

- To illustrate estimation of equation (10.3.1) we use data on the electric arc furnace (EAF) share of steel production in the U.S. These data appear in Table 10.3.
- Using nonlinear least squares to estimate the logistic growth curve yields the results in Table 10.4.

• We find that the estimated saturation share of the EAF technology is $\hat{\alpha} = 0.46$. The point of inflection, where the rate of adoption changes from increasing to decreasing is estimated as

$$-\frac{\hat{\beta}}{\hat{\delta}} = \frac{0.911}{0.117} = 7.8$$

which is approximately the year 1977.

• Suppose that you wanted to test the hypothesis that the point of inflection actually occurred in 1980. The corresponding null and alternative hypotheses can be written as

$$H_0: -\frac{\beta}{\delta} = 11 \quad H_1: -\frac{\beta}{\delta} \neq 11$$

- The null hypothesis is different from any that you have encountered so far because it is nonlinear in the parameters β and δ.
- Despite this nonlinearity, the test can be carried out using most modern software.

• The outcome of this test appears in the last two rows of Table 10.4. From the very small *p*-values associated with both the *F* and the χ^2 -statistics, we reject H_0 and conclude that the point of inflection does not occur at 1980.

Table 10.4 Estimated Growth Curve for EAF Share of Steel Production.

Dependent Variable: Y							
Method: Least Squares							
Date: 11/20/99 Time: 15:19							
Sample: 1970 1997							
Included observations: 28							
Convergence achieved after 8 iterations							
Y = C(1)/(1 + EXP(-C(2) - C(3) * T))							
	Coefficient	Std. Error	t-Statistic	Prob.			
C(1)	0.462303	0.018174	25.43765	0.0000			
C(2)	-0.911013	0.058147	-15.66745	0.0000			
C(3)	0.116835	0.010960	10.65979	0.0000			
Wald Test:							
Null Hypothesis: $-C(2)/C(3)=11$							
F-statistic	16.65686	Probability 0.0004					
Chi-square	16.65686	Proba	0.000045				

10.4 Poisson Regression

- To help decide the annual budget allocations for recreational areas, the State Government collects information on the demand for recreation.
- It took a random sample of 250 households from households who live within a 120 mile radius of Lake Keepit. Households were asked a number of questions, including how many times they visited Lake Keepit during the last year.
- The frequency of visits appears in Table 10.5. Note the special nature of the data in this table. There is a large number of households who did not visit the Lake at all, and also large numbers for 1 visit, 2 visits and 3 visits. There are fewer households who made a greater number of trips, such as 6 or 7.

Table 10.5 Frequency of Visits to Keepit Dam												
Number of visits	0	1	2	3	4	5	6	7	8	9	10	13
Frequency	61	55	41	31	23	19	8	7	2	1	1	1

- Data of this kind are called *count data*.
- The possible values that can occur are the countable integers 0, 1, 2,
- Count data can be viewed as observations on a *discrete random variable*.
- A distribution suitable for count data is the *Poisson distribution*. Its probability density function is given by

$$f(y) = \frac{\mu^{y} \exp(-\mu)}{y !}$$
(10.4.1)

 In the context our example, y is the number of times a household visits Lake Keepit per year and μ is the average or mean number of visits per year, for all households.

In *Poisson regression*, we improve on equation (10.4.1) by recognizing that the mean μ is likely to depend on various household characteristics.

$$\mu_i = \exp(\beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4})$$
(10.4.2)

where the β_i 's are unknown parameters and

 x_{i2} = distance of the *i*-th household from the Lake in miles, x_{i3} = household income in tens of thousands of dollars, and x_{i4} = number of household members.

Writing μ_i as an exponential functionensures μ_i will be positive.

• We define the zero-mean error term $e_i = y_i - \mu_i$, or $y_i = \mu_i + e_i$, from which we can write

$$y_i = \exp(\beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4}) + e_i$$
(10.4.4)

Equation (10.4.4) can be estimated via nonlinear least squares.

- The 250 sampled values for (x_2, x_3, x_4, y) appear in the file *keepit.dat* in that order.
- The nonlinear least squares estimates of equation (10.4.4) appear in Table 10.6. Because of the nonlinear nature of the function, we must be careful how we interpret the magnitudes of the coefficients.
- Examining their signs, we can say the greater the distance from Lake Keepit, the less will be the expected number of visits. Increasing income, or the size of the household, increases the frequency of visits. The income coefficient is not significantly different from zero, but those for distance and household members are.

Table 10.6 Estimated Model for Visits to Lake Keepit

Dependent Variable: VISITS							
Method: Least Squares							
Date: 11/20/99 Time: 09:15							
Sample: 1 250							
Included observations: 250							
Convergence achieved after 7 iterations							
VISITS = EXP(C(1)+C(2)*DIST+C(3)*INC+C(4)*MEMB)							
	Coefficient	Std. Error	t-Statistic	Prob.			
C(1)	1.390670	0.176244	7.890594	0.0000			
C(2)	-0.020865	0.001749	-11.93031	0.0000			
C(3)	0.022814	0.015833	1.440935	0.1509			
C(4)	0.133560	0.030310	4.406527	0.0000			

- The estimated model can also be used to compute probabilities relating to a household with particular characteristics.
- For example, what is the probability that a household located 50 miles from the Lake, with income of \$60,000, and 3 family members, visits the park less than 3 times per year?
- First we compute an estimate of the mean for this household

$$\hat{\mu} = \exp(1.39067 - 0.020865 \times 50 + 0.022814 \times 6 + 0.13356 \times 3)$$

= 2.423 (R10.6)

• Then, using the Poisson distribution, we have

$$P(y < 3) = P(y = 0) + P(y = 1) + P(y = 2)$$

$$= \frac{(2.423)^{0} \exp(-2.423)}{0!} + \frac{(2.423)^{1} \exp(-2.423)}{1!} + \frac{(2.423)^{2} \exp(-2.423)}{2!} \quad (R10.7)$$

$$= 0.0887 + 0.2148 + 0.2602$$

$$= 0.564$$