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The Principles of Interval Estimation and Hypothesis Testing 

1. Introduction 

 

In Statistical Inference I we described how to estimate the mean and variance of a population, and the 

properties of those estimation procedures.  In Statistical Inference II we introduce two more aspects of 

statistical inference: confidence intervals and hypothesis tests.  In contrast to a point estimate of the 

population mean β, like b = 17.158, a confidence interval estimate is a range of values which may contain 

the true population mean.  A confidence interval estimate contains information not only about the location 

of the population mean but also about the precision with which we estimate it.  A hypothesis test is a 

statistical procedure for using data to check the compatibility of a conjecture about a population with the 

information contained in a sample of data.  Continuing the example from Statistical Inference I, suppose 

airplane designers have been basing seat designs based on the assumption that the average hip width of 

U.S. passengers is 16 inches.  Is the information contained in the random sample of 50 hip measurements 

compatible with this conjecture, or not?  These are the issues we consider in Statistical Inference II. 

2. Interval Estimation for Mean of Normal Population When 2σ  is Known 

 

Let Y be a random variable from a normal population.  That is, assume ( )2~ ,Y N β σ .  Assume that we 

have a random sample of size T from this population, 1 2, , , TY Y Y� . The least squares estimator of the 

population mean is 
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This estimator has a normal distribution if the population is normal, 

 ( )2~ ,b N Tβ σ  (2.2) 

For the present, let us assume that the population variance 2σ  is known.  This assumption is not likely to 

be true, but making it allows us to introduce the notion of confidence intervals with few complications.  In 

the next section we introduce methods for the case when 2σ  is unknown. 

 We can create a standard normal random variable from (2.2) by subtracting the mean and 

dividing by the standard deviation, 

 ( )
2

~ 0,1
b b

Z N
TT

−β −β= =
σσ

 (2.3) 



Statistical Inference II: The Principles of Interval Estimation and Hypothesis Testing 

 

2 

The standard normal random variable Z has mean 0 and variance 1.  That is, ( )~ 0,1Z N .  Let zc be a 

“critical value” for the standard normal distribution, such that α = .05 of the probability is in the tails of 

the distribution, with α/2 = .025 of the probability in each tail.  From Table 1 at the end of UE/2 the value 

of zc = 1.96 when α = .05.  This critical value is illustrated in Figure 1. 

 

Figure 1 α = .05 critical values for the ( )0,1N  distribution 

 

Thus  

 [ ] [ ]1.96 1.96 0.025P Z P Z≥ = ≤ − =  (2.4) 

and 

 [ ]1.96 1.96 1 .05 .95P Z− ≤ ≤ = − =  (2.5) 

Substitute (2.3) into (2.5) to obtain 

 1.96 1.96 .95
b

P
T

 − β− ≤ ≤ = 
σ 

 (2.6) 

Multiplying through the inequality inside the brackets by Tσ  yields 

 1.96 1.96 .95P T b T − σ ≤ − β ≤ σ =   (2.7) 

Subtracting b from each of the terms inside the brackets gives 

 1.96 1.96 .95P b T b T − − σ ≤ −β ≤ − + σ =   (2.8) 

Multiplying by −1 within the brackets reverses the direction of the inequalities giving 

 1.96 1.96 .95P b T b T − σ ≤ β ≤ + σ =   (2.9) 
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In general, 

 1c cP b z b z
T T

σ σ − ≤β ≤ + = − α  
 (2.10) 

where zc is the appropriate critical value for a given value of  tail probability α.  In (2.10) we have defined 

the interval estimator  

 cb z
T

σ±  (2.11) 

Our choice of the phrase interval estimator is a careful one.  The interval (2.11) defines a procedure that 

can be used for any sample of data.  The interval endpoints are thus random variables.  What (2.10) 

implies is that intervals constructed using (2.11), in repeated sampling from the population, have a 

100(1−α)% chance of containing the population mean β.   

 

(2.1) An Example Using Artificial Data 

In order to use the interval estimation procedure defined in (2.11) we must have data from a normal 

population with a known variance.  To illustrate the computation, and the meaning of interval estimation, 

we will create a sample of data using a computer simulation.  Statistical software programs contain 

random number generators.  These are routines that create values from a given probability distribution.  

Table 1 contains 30 values from a normal population with mean β = 10 and variance 2 10σ = . 

 

Table 1 30 values from N(10,10) 
11.939 11.407 13.809 
10.706 12.157 7.443 

6.644 10.829 8.855 
13.187 12.368 9.461 

8.433 10.052 2.439 
9.210 5.036 5.527 
7.961 14.799 9.921 

14.921 10.478 11.814 
6.223 13.859 13.403 

10.123 12.355 10.819 
 

 

Table 2 contains the least squares estimates and the lower and upper interval estimate values based on 10 

samples like the one in Table 1. 
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Table 2 Results from 10 samples of data 
Sample b lower bound upper bound 

1 10.206 9.074 11.338 
2 9.828 8.696 10.959 
3 11.194 10.062 12.326 
4 8.822 7.690 9.953 
5 10.434 9.302 11.566 
6 8.855 7.723 9.986 
7 10.511 9.380 11.643 
8 9.212 8.080 10.343 
9 10.464 9.333 11.596 

10 10.142 9.010 11.273 
 

Table 2 illustrates the sampling variation of the least squares estimator b.  The sample means vary from 

sample to sample.  In this simulation, or Monte Carlo, experiment we know the true population mean, β = 

10, and the estimates b are centered at that value.  The width of the interval estimates is 1.96 Tσ .  Note 

that while the point estimates b in Table 2 fall near the true value β = 10, not all of the interval estimates 

contain the true value.  Intervals from samples 3, 4 & 6 do not contain the true value β = 10.  However, in 

10,000 simulated samples the average value of b = 10.004 and 0.9486% of intervals constructed using 

(2.11) contain the true parameter value β = 10. 

 These numbers reveal what is, and what is not, true about interval estimates.   

• Any one interval estimate may or may not contain the true population parameter value. 

• If many samples of size T are obtained, and intervals are constructed using the interval 

estimation procedure (2.11) with (1−α) = .95, then 95% of them will contain the true 

parameter value. 

• A 95% level of “confidence” represents the confidence (the probability that the interval 

estimator will provide an interval containing the true parameter value) we have in the 

procedure, not in any one interval estimate. 

• Since 95% of intervals constructed using (2.11) will contain the true parameter β = 10, 

we will be surprised if an interval estimate based on one sample does not contain the true 

parameter.  Indeed, the fact that 3 of the 10 intervals in Table 2 do not contain β = 10 is 

surprising, since out of 10 we would assume that only 1 95% interval estimate might not 

contain the true parameter.  This just goes to show that what happens in any one sample, 
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or just a few samples, is not what statistical sampling properties tell us.  Sampling 

properties tell us what happens in many repeated experimental trials. 
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